On the Automorphism Group of Solomon's Descent Algebra

Thorsten Bauer

Mathematisches Seminar
Christian-Albrechts-Universität zu Kiel
D-24118 Kiel, Germany

By Δ_{n} we denote the subalgebra of $\mathbb{Q} S_{n}$ which is known as Solomon's Descent Algebra $[7,6,1]$. This article gives a sketch of a proof for the following theorem about the automorphisms of Δ_{n}. (Details and related developments will be given in a forthcoming publication.)

Main Theorem For the automorphism group of Solomon's Descent Algebra Δ_{n} the following holds:

$$
\operatorname{Aut}\left(\Delta_{n}\right)= \begin{cases}\operatorname{Inn}\left(\Delta_{n}\right) & \text { if } n \text { odd } \\ \operatorname{Inn}\left(\Delta_{n}\right) \times C_{2} & \text { if } n \text { even }\end{cases}
$$

The proof of this theorem splits into four main steps:

- the reduction of the problem to show that a stabilizer of a certain set is generated by inner automorphisms,
- the definition of a graph Γ_{n},
- the mentioned stabilizer is determined by its action on Γ_{n},
- the action of the stabilizer on Γ_{n} is induced by conjugation by invertible elements of Δ_{n}, i.e. by inner automorphisms, and possibly a central involutionary outer automorphism.

1 Notation

We write \mathbb{N} for the set of positive integers $\{1,2, \ldots\}, \mathbb{N}^{*}$ for the free monoid generated by \mathbb{N} and $\mathbb{Q N}^{*}$ for the free algebra generated by \mathbb{N} over the field of the rational numbers \mathbb{Q}. The elements of \mathbb{N}^{*} are written as words in the alphabet \mathbb{N}, e.g. $132 \in \mathbb{N}^{*}$ is the product of 1,3 and 2 . If $w=w_{1} \ldots w_{k}$ is a word, we set $|w|:=k$, the length of w.

Let $n \in \mathbb{N}$ and $p=p_{1} \ldots p_{k} \in \mathbb{N}^{*}$ such that $p_{1}, \ldots, p_{k} \in \mathbb{N}$. The word p is called a partition of $n(p \vdash n)$ if $p_{1}+\cdots+p_{k}=n$ and $p_{1} \geq p_{2} \geq \cdots \geq p_{k}$. We write $p(n)$ for the number of all partitions of n. For each letter c we set

$$
a_{c}(p):=\left|\left\{i \mid p_{i}=c\right\}\right|,
$$

the number of occurences of the letter c in p. Then we may write

$$
p=n^{a_{n}(p)}(n-1)^{a_{n-1}(p)} \ldots 1^{a_{1}(p)} .
$$

2 Reduction of the problem

By a theorem of Malcev [4], $[5,11.6]$ we know that the set $1+\operatorname{Rad}\left(\Delta_{n}\right)$ of invertible elements acts transitively by conjugation on the set of complements of $\operatorname{Rad}\left(\Delta_{n}\right)$.

By Frattini's lemma $[3,3.3]^{1}$, for each complement H of $\operatorname{Rad}\left(\Delta_{n}\right)$ we have:

$$
\begin{equation*}
\operatorname{Aut}\left(\Delta_{n}\right)=\operatorname{Stab}_{\operatorname{Aut}\left(\Delta_{n}\right)}(H) \overline{\left(1+\operatorname{Rad}\left(\Delta_{n}\right)\right)}, \tag{1}
\end{equation*}
$$

where $\overline{\left(1+\operatorname{Rad}\left(\Delta_{n}\right)\right)}$ denotes the group of automorphisms induced by conjugation by the elements of $1+\operatorname{Rad}\left(\Delta_{n}\right)$.

Now we construct a complement H of $\operatorname{Rad}\left(\Delta_{n}\right)$ to which the above mentioned theorem and lemma will be applied.

In [2], D. Blessenohl and H. Laue define elements ${ }^{2} \nu^{p}, p \vdash n$, with the following properties [2, 1.2 Proposition]:
(a) ν^{p} is an idempotent for each $p \vdash n$.
(b) $\nu^{p} \nu^{r}=0$ for all partitions p, r such that $p \neq r$.
(c) $\sum_{p \vdash n} \nu^{p}=1$.

[^0](d) $\Delta_{n}=\left\langle\nu^{p} \mid p \vdash n\right\rangle_{\mathbb{Q}} \oplus \operatorname{Rad}\left(\Delta_{n}\right)$.

The set $H:=\left\langle\nu^{p} \mid p \vdash n\right\rangle_{\mathbb{Q}}$ is a subalgebra-complement of $\operatorname{Rad}\left(\Delta_{n}\right)$ in Δ_{n}. We observe that

$$
H \cong \underbrace{\mathbb{Q} \oplus \cdots \oplus \mathbb{Q}}_{p(n)},
$$

and that $\left\{\nu^{p} \mid p \vdash n\right\}$ is the unique set of $p(n)$ mutually orthogonal idempotents $\neq 0$ of H.

By Equation (1) it suffices to show that $\operatorname{Stab}_{\operatorname{Aut}\left(\Delta_{n}\right)}(H)$ is generated by inner automorphisms in the case that n is even and by inner automorphisms and an involutionary outer automorphism in the case that n is odd.

3 Directed graph of partitions

Now we define a directed graph Γ_{n}, the nodes of which are the partitions of n. The node r is called connected with $p\left(r \nsim{ }_{\text {pf }} p\right)$ if $|r|=|p|+1$ and there exist letters $c, d \in \mathbb{N}$ such that $c \neq d, a_{c}(r)=a_{c}(p)+1, a_{d}(r)=a_{d}(p)+1$ and $a_{c+d}(r)+1=a_{c+d}(p)$, i.e. p can be obtained from r by coalescing two different letters of r and reordering the letters to obtain a partition.

The shape of the graph Γ_{7} is shown in Figure 1.
Obviously Γ_{n} has two (three resp.) connected subgraphs in the case that n is odd (even resp.). More precisely, the partition $1 \ldots 1$ if n is odd and $1 \ldots 1$ and $2 \ldots 2$ if n is even are not connected with any other node. We observe further that for each $k<n$ the subgraph of Γ_{n} induced by all partitions which include the letter k is isomorphic to Γ_{n-k}. It is not at all trivial to see that, if φ is an automorphism of Γ_{n}, for each $k \in \mathbb{N}$ this subgraph is invariant under φ. We get by an inductive argument the following lemma about Γ_{n} :

Lemma 1 For the automorphism group of Γ_{n} holds:

$$
\operatorname{Aut}\left(\Gamma_{n}\right)= \begin{cases}\{\operatorname{id}\} & \text { if } n \text { odd } \\ \{\operatorname{id}, \tau\} & \text { if } n \text { even }\end{cases}
$$

where τ is the automorphism of Γ_{n} that exchanges the nodes $1 \ldots 1$ and $2 \ldots 2$ and fixes the other nodes.

4 The action of $\operatorname{Stab}_{\operatorname{Aut}\left(\Delta_{n}\right)}(H)$ on Γ_{n}

Now let φ be an automorphism of Δ_{n} such that $H^{\varphi} \subseteq H$.

211111

1111111

Figure 1: The graph Γ_{7}

Since the elements $\nu^{p}, p \vdash n$, are mutually orthogonal idempotents, φ acts on the set $\left\{\nu^{p} \mid p \vdash n\right\}$. Therefore φ induces an action on the set of partitions of n.

It turns out that the action of φ on the set of partitions of n is compatible with the relation $\nsim{ }_{\text {pf }}$, i.e. for all partitions r, p of n we have:

$$
r \nsim{ }_{\mathrm{pf}} p \Longleftrightarrow r^{\varphi} \sim_{{ }_{\mathrm{pf}}} p^{\varphi} .
$$

Therefore φ induces an automorphism of Γ_{n}.
By Lemma 1 we see that the spaces $\nu^{p} \Delta_{n} \nu^{r}$ are φ-invariant for all partitions p, r such that $r \nsim{ }_{\text {pp }} p$.

By [1, 2.2 Corollary ${ }^{3}$ we get then
Lemma 2 Let p,r partitions of n such that $r \nsim \dot{p}_{p f} p$. Then $\nu^{p} \Delta_{n} \nu^{r}$ is a one-dimensional φ-invariant space, and $\left.\varphi\right|_{\nu^{p} \Delta_{n} \nu^{r}}$ has an eigenvalue $\neq 0$.

By [1, 2.4 Corollary] we can deduce

$$
\operatorname{Rad}\left(\Delta_{n}\right)=\left\langle\nu^{p} \Delta_{n} \nu^{r} \mid r \nmid{ }_{\mathrm{pf}} p\right\rangle_{(+, \cdot)}
$$

from which we see that the action of φ on $\operatorname{Rad}\left(\Delta_{n}\right)$ is determined by the action on the subspaces $\nu^{p} \Delta_{n} \nu^{r}, r \nsim$. $_{\text {pf }} p$.

Now we define a certain subgraph Γ_{n}^{*} of Γ_{n}, the nodes of which are the partitions of n, too. At first, we set

$$
P_{n}^{*}:=\left\{p \in P_{n} \mid p=p_{1} \ldots p_{k}, p_{1} \neq p_{k}\right\},
$$

i.e. the set of all partitions of n that have at least two different letters. For each partition $p=p_{1} \ldots p_{k} \in P_{n}^{*}$ let

$$
\iota(p):=\min \left\{i \mid i \in\{1, \ldots, k\}, p_{i} \neq p_{1}\right\}
$$

and

$$
\zeta(p):=\left(p_{1}+p_{\iota(p)}\right) p_{2} \ldots p_{\iota(p)-1} p_{\iota(p)+1} \ldots p_{k}
$$

i.e. we form the sum of the two largest different letters that occur in p, delete these two letters from p and add the sum as a new letter. If $p \in P_{n}^{*}$ then $\zeta(p)$ is a partition of n and it holds $p \nsim{ }_{\text {pf }} \zeta(p)$.

The partitions p, r of n are called connected in $\Gamma_{n}^{*}(p \succ r)$, if $p \in P_{n}^{*}$ and $r=\zeta(p)$ or if $r=d^{k}$ for some $d, k \in \mathbb{N}$ and $p=d^{k-1}(d-1) 1$.

The relation \succ is coarser than $\nsim{ }_{\text {pf }}$ and defines a spanning tree for the "big" connected component of Γ_{n}, seen as an undirected graph, that contains the node n. Figure 2 shows Γ_{7}^{*}.

We obtain

[^1]

211111

1111111

Figure 2: The edges defined by \succ

Main Lemma Let $\varphi \in \operatorname{Stab}_{\operatorname{Aut}^{\left(\Delta_{n}\right)}}(H)$ such that $\left.\varphi\right|_{\nu^{p} \Delta_{n} \nu^{r}}=$ id for all partitions p, r such that $r \succ p$. Then $\left.\varphi\right|_{\operatorname{Rad}\left(\Delta_{n}\right)}=\mathrm{id}$.

The proof of the Main Lemma needs hard conclusions. For this reason we give only some instructive examples in Section 5 that demonstrate the important ideas.

But now we may easily construct for each $\varphi \in \operatorname{Stab}_{\text {Aut }\left(\Delta_{n}\right)}(H)$ an invertible element $h \in H$ such that the conjugation by h coincides with the action of φ on the subspaces $\nu^{p} \Delta_{n} \nu^{r}, r \succ p$. By the Main Lemma, we see that the action of h and φ coincide on $\operatorname{Rad}\left(\Delta_{n}\right)$.

Therefore the automorphism $\psi: \Delta_{n} \rightarrow \Delta_{n}, x \mapsto\left(x^{\varphi}\right)^{h^{-1}}$ centralizes $\operatorname{Rad}\left(\Delta_{n}\right)$ and stabilizes the set $\left\{\nu^{p} \mid p \vdash n\right\}$. By what we have observed above, ψ induces an automorphism of Γ_{n}. Now Lemma 1 implies, that ψ is the identity or an involution. Hence, it follows

Lemma 3

$\operatorname{Stab}_{\operatorname{Aut}\left(\Delta_{n}\right)}(H)= \begin{cases}\{\text { inner automorphisms induced by } H\} & \text { if } n \text { odd, }, \\ \{\text { inner automorphisms induced by } H\} \times C_{2} & \text { if } n \text { even } .\end{cases}$

5 Example for $n=7$

We illustrate the proof of the Main Lemma by discussing the example of $n=7$ which provides a spectrum of all three typical cases which may occur in general. This discussion therefore does not only give a flavour of the general proof but presents all its basic elements in a concrete form.

In [1, p. 718] a basis of Δ_{n} consisting of idempotents $\nu_{q}, q \models n$, is given. In the following, we consider the linear extension $\nu:\langle q \mid q \models n\rangle_{\mathbb{Q}} \rightarrow \Delta_{n}$ of the mapping $\{q \mid q \models n\} \rightarrow \Delta_{n}, q \mapsto \nu_{q}$.

We use the Lie product \circ on $\mathbb{Q N}^{*}$ defined by $a \circ b:=a b-b a$ for all $a, b \in \mathbb{Q N}^{*}$.
E.g. we write

$$
\nu_{1 \circ 2}=\nu_{12-21}=\nu_{12}-\nu_{21}
$$

In order to illustrate the proof of the Main Lemma we may assume φ fixes elementwise the subspaces $\nu^{7} \Delta_{n} \nu^{61}, \nu^{7} \Delta_{n} \nu^{52}, \nu^{7} \Delta_{n} \nu^{43}, \nu^{61} \Delta_{n} \nu^{511}$, $\nu^{61} \Delta_{n} \nu^{421}, \nu^{52} \Delta_{n} \nu^{322}, \nu^{43} \Delta_{n} \nu^{331}, \nu^{511} \Delta_{n} \nu^{4111}, \nu^{511} \Delta_{n} \nu^{3211}, \nu^{322} \Delta_{n} \nu^{2221}$, $\nu^{4111} \Delta_{n} \nu^{31111}, \nu^{3211} \Delta_{n} \nu^{22111}, \nu^{31111} \Delta_{n} \nu^{211111}$.

We have to show that the subspaces $\nu^{52} \Delta_{n} \nu^{421}, \nu^{43} \Delta_{n} \nu^{421}, \nu^{421} \Delta_{n} \nu^{3211}$, $\nu^{331} \Delta_{n} \nu^{3211}$ are fixed elementwise by φ, too.

Figure 3 shows this situation. The thick edges represent the subspaces on which the action of φ is assumed as identity. The thin edges represent
the subspaces on which the action of φ is not known. The eigenvalues of φ on these eigenspaces are denoted by a, b, c and d. We have to show that $a=b=c=d=1$.

In the following considerations we use rules described in [1, 1.5 Theorem, 2.1 Proposition].

Case 1: The calculation of a and b. There are the one-dimensional spaces

$$
\begin{aligned}
& \left(\nu^{7} \Delta_{n} \nu^{61}\right)\left(\nu^{61} \Delta_{n} \nu^{421}\right) \\
= & \left\langle\nu^{7} \nu_{7} \nu_{61} \nu_{421}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{601} \nu_{421}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{(402) \circ 1}\right\rangle_{\mathbb{Q}}
\end{aligned}
$$

with eigenvalue 1 ,

$$
\begin{aligned}
& \left(\nu^{7} \Delta_{n} \nu^{52}\right)\left(\nu^{52} \Delta_{n} \nu^{421}\right) \\
= & \left\langle\nu^{7} \nu_{7} \nu_{52} \nu_{421}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{502} \nu_{421}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{(401) \circ 2}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{(104) \circ 2}\right\rangle_{\mathbb{Q}}
\end{aligned}
$$

with eigenvalue a,

$$
\begin{aligned}
& \left(\nu^{7} \Delta_{n} \nu^{71}\right)\left(\nu^{43} \Delta_{n} \nu^{421}\right) \\
= & \left\langle\nu^{7} \nu_{7} \nu_{43} \nu_{421}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{403} \nu_{421}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{4 \circ(201)}\right\rangle_{\mathbb{Q}} \\
= & \left\langle\nu^{7} \nu_{(201) \circ 4}\right\rangle_{\mathbb{Q}}
\end{aligned}
$$

with eigenvalue b.
Applying the Jacobi identity $((x \circ y) \circ z+(y \circ z) \circ x+(z \circ x) \circ y=0)$ we get

$$
\begin{aligned}
0 & =0^{\varphi} \\
& =\left(\nu^{7}\right)^{\varphi}(\overbrace{\left.\nu_{(4 \circ 2) \circ 1}+\nu_{(1 \circ 4) \circ 2}+\nu_{(2 \circ 1) \circ 4}\right)^{\varphi}}^{=0} \\
& =\left(\nu^{7}\right)^{\varphi}\left(\nu_{(4 \circ 2) \circ 1}+a \nu_{(104) \circ 2}+b \nu_{(201) \circ 4}\right) \\
& =\left(\nu^{7}\right)^{\varphi}\left(\left(-\nu_{(104) \circ 2}-\nu_{(201) \circ 4}+a \nu_{(104) \circ 2}+b \nu_{(2 \circ 1) \circ 4}\right)\right. \\
& =\left(\nu^{7}\right)^{\varphi}\left((a-1) \nu_{(104) \circ 2}+(b-1) \nu_{(2 \circ 1) \circ 4}\right) .
\end{aligned}
$$

The summands in the last equation are linearly independent. It follows that $a=1$ and $b=1$.

211111

1111111

Figure 3: Γ_{7} with the eigenvalues as weights

In a similar manner we treat the other two cases.
Case 2: The calculation of c. There are the one-dimensional spaces

$$
\left(\nu^{61} \Delta_{n} \nu^{511}\right)\left(\nu^{511} \Delta_{n} \nu^{3211}\right)\left(\nu^{3211} \Delta_{n} \nu^{22111}\right)=\left\langle\nu^{61} \nu_{(((201) \circ 2) \circ 1) 1)}\right\rangle_{\mathbb{Q}}
$$

with eigenvalue 1 ,

$$
\left(\nu^{61} \Delta_{n} \nu^{421}\right)\left(\nu^{421} \Delta_{n} \nu^{3211}\right)\left(\nu^{3211} \Delta_{n} \nu^{22111}\right)=\left\langle\nu^{61} \nu_{(((201) \circ 1) \circ 2) 1)}\right\rangle_{\mathbb{Q}}
$$

with eigenvalue c.
The anticommutative law and the Jacobi identity imply that both spaces are generated by the same element. It follows that $c=1$.

Case 3: The calculation of d. There are the one-dimensional spaces

$$
\left(\nu^{43} \Delta_{n} \nu^{421}\right)\left(\nu^{421} \Delta_{n} \nu^{3211}\right)=\left\langle\nu^{43} \nu_{(301)(201)}\right\rangle_{\mathbb{Q}}
$$

with eigenvalue $b=1$,

$$
\left(\nu^{43} \Delta_{n} \nu^{331}\right)\left(\nu^{331} \Delta_{n} \nu^{3211}\right)=\left\langle\nu^{43} \nu_{(301)(201)}\right\rangle_{\mathbb{Q}}
$$

with eigenvalue d. Both spaces are generated by the same element. It follows that $d=b=1$.

References

[1] D. Blessenohl, H. Laue: On the Descending Loewy Series of Solomon's Descent Algebra. J. Algebra 180 (1996), 698-724.
[2] D. Blessenohl, H. Laue: The Module Structure of Solomon's Descent Algebra. Berichtsreihe des Mathematischen Seminars Kiel, 96-6 (1996).
[3] H. Kurzweil: Endliche Gruppen. Springer Verlag, Berlin 1977.
[4] A. Malcev: On the representation of an algebra as a direct sum of the radical and a semi-simple subalgebra. C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 42-45.
[5] R. Pierce: Associative Algebras. Springer Verlag, New York 1982.
[6] C. Reutenauer: Free Lie algebras. Oxford Univ. Press, London 1993.
[7] L. Solomon: A Mackey formula in the group ring of a Coxeter group. J. Algebra 41 (1976), 255-268.

[^0]: ${ }^{1}$ Though the lemma is only stated for finite groups, it holds for infinte groups, too.
 ${ }^{2}$ In [2] these elements are not indexed by the partitions themselves but by listing them in the lexicographically decreasing order: $\nu^{(j)}$ instead of ν^{p} if p is the j-th partition.

[^1]: ${ }^{3}$ In [1], the spaces $\omega_{p} \Lambda^{r}$ are treated. But these are isomorphic to $\nu^{p} \Delta_{n} \nu^{r}$.

