Eigenspace Decompositions with Respect to Symmetrized Incidence Mappings

Helmut Krämer
Mathematisches Seminar der Universität Hamburg Bundesstraße 55
D-20146 Hamburg

Abstract

Let \mathbb{K} denote one of the fields $\mathbb{Q}, \mathbb{F}_{2}$ and define $H(t, q), t \leq q$, to be the \mathbb{K}-incidence matrix of the t-sets vs. the q-sets of the n-set $\{1,2, \ldots, n\}$. This matrix is considered as a linear map of \mathbb{K}-vector spaces $$
{ }_{\mathbb{K}} C_{q}(n) \longrightarrow{ }_{\mathbb{K}} C_{t}(n),
$$ where ${ }_{\mathbb{K}} C_{s}(n)(s \leq n)$ is the \mathbb{K}-vector space having the s-sets as a basis. The symmetrized \mathbb{K}-incidence matrix (of $H(t, q)$) is defined to be the symmetric matrix $\widetilde{H}(t, q):=H(t, q)^{T} \cdot H(t, q)$ which is also considered as an endomorphism of ${ }_{\mathbb{K}} C_{q}(n)$. In case $\mathbb{K}=\mathbb{Q}$ we exhibit explicitely a decomposition of $\mathbb{Q}_{q}(n)$ into eigenspaces with respect to $\widetilde{H}(t, q)$. A closer examination of the proof of this result yields a canonical decomposition of ker $H(t, q)$ (provided $\binom{n}{t}<\binom{n}{q}$) extending work done by J.B. Graver and W.B. Jurkat.

In case $\mathbb{K}=\mathbb{F}_{2}$ denote $\widetilde{H}(q \mid n):=\widetilde{H}(q-1, q)$. Then $\widetilde{H}(q \mid n)$ is a projection hence diagonalizable if n is odd (otherwise nilpotent). In both cases the rank of $\widetilde{H}(q \mid n)$ is determined; among other results an explicit decomposition of ${ }_{\mathbb{F}_{2}} C_{q}(n)$ into the two eigenspaces with respect to $\widetilde{H}(q \mid n)$ is obtained provided n is odd.

As a basic tool we use the graded commutative \mathbb{K}-algebra $$
\mathbb{K}_{\mathbb{K}} \mathfrak{C}_{*}(n)=\mathbb{K}\left[T_{1}, \ldots, T_{n}\right] /\left(T_{1}^{2}, T_{2}^{2}, \ldots, T_{n}^{2}\right) .
$$

Here the \mathbb{K}-vector spaces of the elements of degree q of ${ }_{\mathbb{K}} \mathfrak{C}_{*}(n)$ are isomorphic to ${ }_{\mathbb{K}} C_{q}(n)$.

1. We denote for $n \in \mathbb{N}$

$$
\underline{\underline{n}}=\{1,2, \ldots, n\},
$$

let in additon \mathbb{K} be a field. Assume $0 \leq t \leq q \leq n$. Then $H(t, q)$ denotes the \mathbb{K}-incidence matrix $(\iota(N, M))$. Here M runs through the q-sets of $\underline{\underline{n}}, N$ runs through the t-sets of $\underline{\underline{n}}$ and we define

$$
\iota(N, M)=\left\{\begin{array}{ll}
1, & N \subseteq M, \\
0, & \text { otherwise }
\end{array} \quad(0,1 \in \mathbb{K})\right.
$$

Let ${ }_{\mathbb{K}} C_{q}(n)$ be the \mathbb{Q}-vector space with basis $\{[M]\}_{M \in\left(\frac{n}{q}\right)}$, such that $H(t, q)$ defines a linear mapping

$$
{ }_{\mathbb{K}} C_{q}(n) \longrightarrow{ }_{\mathbb{K}} C_{t}(n),[M] \longrightarrow \sum_{\substack{N,|N|=t}} \iota(N, M)[N]
$$

which again is denoted by the same symbol $H(t, q)$. The transposed matrix $H(t, q)^{T}$ defines a linear mapping

$$
{ }_{\mathbb{K}} C_{t}(n) \longrightarrow{ }_{\mathbb{K}} C_{q}(n),[N] \longrightarrow \sum_{\substack{M,|M|=q}} \iota(N, M)[M],
$$

which again is denoted by the same symbol $H(t, q)^{T}$. Finally we define an "augmentation map"

$$
H(-1,0):{ }_{\mathbb{K}} C_{0}(n) \longrightarrow 0 .
$$

We are dealing here with the "symmetrized incidence mapping" $\widetilde{H}(t, q)$. This is defined to be the mapping

$$
\widetilde{H}(t, q):=H(t, q)^{T} \circ H(t, q):{ }_{\mathbb{K}} C_{q}(n) \longrightarrow{ }_{\mathbb{K}} C_{q}(n)
$$

which is already diagonalizable in case $\mathbb{K}=\mathbb{Q}$ as we soon will see. The following proposition is well known.

Proposition 1. We have

$$
\widetilde{H}(t, q)([M])=\sum_{\substack{M^{\prime},\left|M^{\prime}\right|=q}} 1 \cdot\binom{\left|M \cap M^{\prime}\right|}{t} \cdot\left[M^{\prime}\right] .
$$

Proof. We have

$$
\widetilde{H}(t, q)([M])=\sum_{\substack{N,|N|=t}} \sum_{\substack{M^{\prime} \\\left|M^{\prime}\right|=q}} \iota(N, M) \iota\left(N, M^{\prime}\right) \cdot\left[M^{\prime}\right],
$$

in addition

$$
\begin{aligned}
\sum_{|N|=t}^{N} \iota(N, M) \cdot \iota\left(N, M^{\prime}\right) & =1 \cdot \#\left\{N| | N \mid=t, N \subseteq M \cap M^{\prime}\right\} \\
& =1 \cdot\binom{\left|M \cap M^{\prime}\right|}{t}
\end{aligned}
$$

Therefore all entries of the matrix $\widetilde{H}(t, q)$ are non-negative in case $\mathbb{K}=\mathbb{Q}$. If $\mathfrak{z}(M)$ denotes the row sum of the matrix $\widetilde{H}(t, q)$ indexed by the q-set M we have

$$
\mathfrak{z}(M)=\sum_{\substack{M^{\prime},\left|M^{\prime}\right|=q}}\binom{\left|M \cap M^{\prime}\right|}{t}
$$

and this sum is independent from M; so we denote the constant row sum by \mathfrak{z}.

- ([3], Lemma 5.1.1) Suppose A is a real $n \times n$-matrix with non-negative entries and constant row sum k. Then $(1,1, \ldots, 1)^{T}$ is an eigenvector of A with eigenvalue k. Moreover if μ is another (complex) eigenvalue of A then it holds that

$$
|\mu| \leq k .
$$

Suppose now $n>1$. Then k is an eigenvalue of geometric multiplicity 1 if and only if A is irreducible.
The last assertion follows from the so-called Perron-Frobenius-Theory.
We note another result which applies to the matrix $\widetilde{H}(t, q)$:
-• ([3], Theorem 3.2.1) Suppose that A is a real or complex $n \times n$-matrix. Then A is irreducible if and only if the directed graph $D(A)$ associated to A is strongly connected.
Now if $A=\widetilde{H}(t, q), t<q, \mathbb{K}=\mathbb{Q}$, the graph $D(A)$ has $\left(\frac{n}{\bar{q}}\right)$ as set of vertices V. If $L, M \in V$ then the directed $\operatorname{arc}(L, M)$ is in the set E of edges of $D(A)$ if and only if $\binom{|L \cap M|}{t} \neq 0$, that is $|L \cap M| \geq t$ ist. In this case (M, L) is an arc in $D(A)$, too.
We conclude therefore that $D(A)$ is strongly connected if and only if the corresponding undirected graph is connected. This is indeed the case as can be easily seen as follows: Fix $L, M \in V$. Then there exist q-sets $L=L_{1}, L_{2}$, $\ldots, L_{r}=M$ with the property

$$
\left|L_{i} \cap L_{i+1}\right|=q-1 \geq t, 1 \leq i \leq r-1
$$

If one denotes the eigenspace of $\widetilde{H}(t, q)$ with eigenvalue $\lambda \in \mathbb{R}$ by

$$
\operatorname{Eig}(\widetilde{H}(t, q), \lambda) \subset{ }_{\mathbb{R}} C_{q}(n)
$$

then the arguments stated above yield

$$
\operatorname{Eig}(\widetilde{H}(t, q), \mathfrak{z})=\mathbb{R} \cdot\left(\sum_{\substack{M,|M|=q}}[M]\right)
$$

In the following we make the convention $\binom{n}{-1}=0$.

Theorem 1. We assume $\mathbb{K}=\mathbb{Q}$ and $0 \leq t<q \leq n$. Then $\widetilde{H}(t, q)$ is diagonalizable (as a mapping of \mathbb{Q}-vector spaces). More exactly the following holds: In case $0 \leq s \leq \min \{q, n-q\}$ we define

$$
\mu(q, t ; s)=\binom{q-s}{q-t} \cdot\binom{n-t-s}{q-t}
$$

1) Assume $t \geq \min \{q, n-q\}$. Then we have
i) $\mu(q, t ; 0)>\mu(q, t ; 1)>\ldots>\mu(q, t ; \min \{q, n-q\})>0$ and
ii) $\operatorname{Eig}(\widetilde{H}(t, q), \mu(q, t ; s))=H(s, q)^{T}(\operatorname{ker} H(s-1, s))$,
iii) $\operatorname{dim} H(s, q)^{T}(\operatorname{ker} H(s-1, s))=\binom{n}{s}-\binom{n}{s-1}$,
such that
iv) ${ }_{\mathbb{Q}} C_{q}(n)=\bigoplus_{s=0}^{\min \{q, n-q\}} H(s, q)^{T}(\operatorname{ker} H(s-1, s))$
is a decomposition of ${ }_{\mathbb{Q}} C_{q}(n)$ into eigenspaces with respect to the endomorphism $\widetilde{H}(t, q)$.
2) Assume $t<\min \{q, n-q\}$. Then we have
i) $\mu(q, t ; 0)>\mu(q, t ; 1)>\ldots>\mu(q, t ; t)>0$,

$$
\mu(q, t ; t+1)=\ldots=\mu(q, t ; \min \{q, n-q\})=0
$$

In case $0 \leq s \leq t$ we have
ii) $\operatorname{Eig}(\widetilde{H}(t, q), \mu(q, t ; s))=H(s, q)^{T}(\operatorname{ker} H(s-1, s))$,
iii) $\operatorname{dim} H(s, q)^{T}(\operatorname{ker} H(s-1, s))=\binom{n}{s}-\binom{n}{s-1}$.

Furthermore it holds that
iv) $\operatorname{Eig}(\widetilde{H}(t, q), 0)=\operatorname{ker} H(t, q)$,
$v) \operatorname{dim} \operatorname{ker} H(t, q)=\binom{n}{q}-\binom{n}{t}$,
such that
vi) $\mathbb{Q}_{\mathbb{Q}} C_{q}(n)=\left(\bigoplus_{s=0}^{t} H(s, q)^{T}(\operatorname{ker} H(s-1, s))\right) \oplus \operatorname{ker} H(t, q)$
is a decomposition of ${ }_{\mathbb{Q}} C_{q}(n)$ into eigenspaces with respect to the endomorphism $\widetilde{H}(t, q)$.

Corollary 1. We assume $q+t=n$. Then the following identity holds

$$
|\operatorname{det} H(t, q)|=\prod_{s=0}^{t-1}\binom{q-s}{q-t}^{\binom{n}{s}-\binom{n}{s-1}} .
$$

This statement can also be derived from [7], Theorem 2.
2. For the proof of the theorem we make use of a graded \mathbb{K}-algebra which was essentially introduced in the previous paper [6]. We denote this algebra by $\mathbb{K}^{\mathfrak{C}_{*}}(n)$. It is defined by

$$
\mathbb{K}_{\mathbb{K}} \mathfrak{C}_{*}(n)=\mathbb{K}\left[T_{1}, \ldots, T_{n}\right] /\left(T_{1}^{2}, \ldots, T_{n}^{2}\right)=\mathbb{K}\left[X_{1}, \ldots, X_{n}\right],
$$

here T_{1}, \ldots, T_{n} are algebraically independent elements and X_{j} denotes the residue-class $T_{j} \bmod \left(T_{1}^{2}, \ldots, T_{n}^{2}\right), j \in \underline{n}$. This algebra will be used in the sequel in the cases $\mathbb{K}=\mathbb{Q}$ and $\mathbb{K}=\overline{\bar{Z}} / 2 \mathbb{Z}=\mathbb{F}_{2}$. Let ${ }_{\mathbb{K}} \mathfrak{C}_{*}(n)_{p}$ denote the \mathbb{K}-vector space of the elements of degree p in this algebra; then we have that

$$
\mathbb{K} \mathfrak{C}_{*}(n)_{p}=0, p>n,
$$

and

$$
{ }_{\mathbb{K}} \mathfrak{C}_{*}(n)_{p} \cong{ }_{\mathbb{K}} C_{p}(n), 0 \leq p \leq n .
$$

The isomorphisms under consideration are induced by the mappings

$$
\begin{aligned}
\mathbb{K} \ni 1 & \longrightarrow[\emptyset] \\
X_{j_{1}} \cdot X_{j_{2}} \cdot \ldots \cdot X_{j_{p}} & \longrightarrow\left[\left\{j_{1}, j_{2}, \ldots, j_{p}\right\}\right], \\
\left(1 \leq j_{1}<j_{2}\right. & \left.<\ldots<j_{p} \leq n\right) .
\end{aligned}
$$

In case $0 \leq q \leq n$ we will identify the spaces $\mathbb{K}_{\mathbb{K}} \mathfrak{C}_{*}(n)_{q}$ and ${ }_{\mathbb{K}} C_{q}(n)$. - To the incidence mappings $H(q-1, q), 0 \leq q \leq n$, corresponds the \mathbb{K}-linear map Δ of ${ }_{\mathbb{K}} \mathfrak{C}_{*}(n)$ with degree -1 induced by

$$
\begin{aligned}
\left.\Delta\right|_{\mathbb{Q}} & =0, \Delta X_{j}=1, j \in \underline{\underline{n}} \\
\Delta\left(X_{j_{1}} \cdot X_{j_{2}} \cdot \ldots \cdot X_{j_{q}}\right) & =\sum_{k=1}^{q} X_{j_{1}} \cdot \ldots \cdot \widehat{X}_{j_{k}} \cdot \ldots \cdot X_{j_{q}}, 2 \leq q \leq n,
\end{aligned}
$$

where we assume that the $X_{j_{k}}$ are pairwise distinct and ^ denotes the deletion operator.
Finally we define $\mathbb{X}:=\sum_{j=1}^{n} X_{j}$.

Proposition 2. We agree upon $\Delta^{\circ}=\mathrm{id}, \mathbb{X}^{\circ}=1$. Then we have
i) in case $\mathbb{K}=\mathbb{Q}$

$$
\begin{aligned}
(q-t)!H(t, q) & =\left.\Delta^{q-t}\right|_{C_{q}(n)} \\
(q-t)!H(t, q)^{T}(w) & =\mathbb{X}^{q-t} \cdot w, w \in C_{t}(n)
\end{aligned}
$$

ii) in case $\mathbb{K}=\mathbb{F}_{2}$

$$
\begin{gathered}
\Delta^{2}=0, \mathbb{X}^{2}=0 \\
H(t, t+1)^{T}(w)=\mathbb{X} \cdot w, w \in C_{t}(n), 0 \leq t \leq n-1
\end{gathered}
$$

Proof. For the proof of i) we refer to [6], Proposition 1. -
In the second statement it is obvious that Δ^{2} vanishes on the vectorspace $\mathbb{F}_{2} C_{1}(n)$. In case $2 \leq q \leq n$ we rewrite

$$
\Delta\left(X_{j_{1}} \cdot \ldots \cdot X_{j_{q}}\right)=\sum_{k=1}^{q}(-1)^{k} X_{j_{1}} \cdot \ldots \cdot \widehat{X}_{j_{k}} \cdot \ldots \cdot X_{j_{q}}
$$

and apply a standard argument from simplicial homology. The remaining assertions are obvious.

We remark that $\left({ }_{\mathbb{F}_{2}} \mathfrak{C}_{*}(n), \Delta\right)$ is isomorphic to a Koszul-complex. We will return to this topic in the last section of this paper.
Let us write $w \in_{\mathbb{K}} \mathfrak{C}_{*}(n)$ as a sum of monomials (with respect to X_{1}, \ldots, X_{n}) with coefficients from \mathbb{K}. Then we have defined in [6] the foundation of w (in signs Fund (w)), to be the product of all X_{j} which appear in this decomposition with non-vanishing coeffients. Sometimes we will identify Fund (w) with a subset of $\underline{\underline{n}}$. This convention is used in the next proposition.

Proposition 3. Assume $v, w \in \mathbb{K} \mathfrak{C}_{*}(n)$ and Fund $(v) \cap$ Fund $(w)=\emptyset$. Then it holds that

$$
\Delta(v \cdot w)=w \Delta(v)+v \Delta(w)
$$

For the proof we refer to [6], Prop. 2.
Finally we define the "falling factorial"

$$
[r]_{k}=r(r-1)(r-2) \cdot \ldots \cdot(r-k+1),[r]_{0}=1
$$

Proposition 4. i) In case $\mathbb{K}=\mathbb{Q}$ let α, β be non-negative integers. We assume $0 \leq s \leq n-1,1 \leq \alpha, \alpha+s \leq n, 0 \leq \beta \leq \alpha$, and $w \in \mathbb{Q}_{\mathbb{Q}} C_{s}(n)$. Then the following identity holds

$$
\Delta^{\beta}\left(\mathbb{X}^{\alpha} \cdot w\right)=\sum_{k=0}^{\beta}\binom{\beta}{k}[\alpha]_{k}[n-\alpha-2 s+\beta]_{k} \cdot \mathbb{X}^{\alpha-k} \cdot \Delta^{\beta-k}(w)
$$

ii) In case $\mathbb{K}=\mathbb{F}_{2}$ we assume $0 \leq s \leq n-1$ and $w \in_{\mathbb{F}_{2} C_{s}(n) \text {. Then the }}$ following identity holds

$$
\Delta(\mathbb{X} w)=\mathbb{X} \cdot \Delta(w)+(n \cdot 1) \cdot w
$$

Proof. For the first statement we refer to [6], Prop. 4.
The second statement is obvious in case $s=0$. Assume now $s \geq 1$. Let $\widetilde{w} \in{ }_{\mathbb{Q}} C_{s}(n)$ be a sum of monomials (with respect to X_{1}, \ldots, X_{n}) with integer coefficients. Then as we have seen in the first part of the proof it holds that

$$
\Delta(\mathbb{X} \widetilde{w})=\mathbb{X} \cdot \Delta(\widetilde{w})+(n-2 s) \cdot \widetilde{w} .
$$

Reducing this equation modulo 2 now yields the claim.

Proposition 5. ([4], Chapt. 15, Corollary 8.5).
We assume $\mathbb{K}=\mathbb{Q}$ and $s \leq \min \{q, n-q\}$. Then the mapping

$$
H(s, q)^{T}: \mathbb{Q}_{s}(n) \longrightarrow \mathbb{Q}_{q}(n)
$$

is injective.

Proof. We use the relation derived in Prop. 4, i) and assume $\alpha=\beta=q-s \geq 0$. Let us rewrite this relation in terms of matrices. The left hand side of the relation is $((q-s)!)^{2} H(s, q) \circ H(s, q)^{T}$; the right hand side is sum of the positive semi-definite matrices

$$
H(2 s-q+k, s)^{T} \circ H(2 s-q+k, s), q-2 s \leq k \leq q-s,
$$

with non-negative integer coefficients. Also the unit matrix occurs here (take $k=q-s$) with the coefficient

$$
[q-s]_{q-s} \cdot[n-2 s]_{q-s}
$$

which doesn't vanish since $s \leq n-q$. We conclude that in case $s \leq n-q$

$$
H(s, q) \circ H(s, q)^{T}
$$

is an isomorphism, hence the mapping $H(s, q)^{T}$ is injective.
3. In this section we first come to the proof of Theorem 1.

Ad 1) So assume $t \geq \min \{q, n-q\}$. Suppose $\binom{q-s}{q-t}=0$. This yields

$$
t<s \leq \min \{q, n-q\}
$$

a contradiction. In the same straightforward manner we conclude that the second factor occuring in $\mu(q, t ; s)$ doesn't vanish. Now it is easily seen that the $\mu(q, t ; s), k=0,1, \ldots, \min \{q, n-q\}$ are strictly decreasing. This establishes statement i).
Assume now $w \in \operatorname{ker} \Delta=\operatorname{ker} H(s-1, s) \subset C_{s}(n)$. According to Prop. 4 we have that

$$
\Delta^{q-t}\left(\mathbb{X}^{q-s} w\right)=[q-s]_{q-t} \cdot[n-s-t]_{q-t} \cdot \mathbb{X}^{t-s} \cdot w
$$

We multiply this equation with \mathbb{X}^{q-t} and obtain

$$
\left(\mathbb{X}^{q-t} \cdot \Delta^{q-t}\right) \cdot\left(\mathbb{X}^{q-s} w\right)=[q-s]_{q-t} \cdot[n-s-t]_{q-t} \cdot \mathbb{X}^{q-s} \cdot w
$$

Now we use Prop. 2. This yields

$$
\begin{gathered}
\mathbb{X}^{q-s} \cdot w=(q-s)!H(s, q)^{T}(w) \\
\mathbb{X}^{q-t} \cdot \Delta^{q-t}(w)=((q-t)!)^{2} \widetilde{H}(t, q)(w)
\end{gathered}
$$

Therefore we have now

$$
\widetilde{H}(t, q)\left(H(s, q)^{T} \cdot w\right)=\mu(q, t ; s) \cdot\left(H(s, q)^{T} \cdot w\right)
$$

and in turn
(1) $\ldots \quad H(s, q)^{T}(\operatorname{ker} H(s-1, s)) \subseteq \operatorname{Eig}(\widetilde{H}(t, q), \mu(q, t ; s))$.

Since $s \leq \min \{q, n-q\}$ the inequality $s \leq\left\lfloor\frac{n}{2}\right\rfloor$ holds.
Now we use the following
Lemma. Assume $h, k \in\{0,1, \ldots, n\}$ and $\binom{n}{h} \leq\binom{ n}{k}$. Then the mapping $H(h, k): C_{k}(n) \longrightarrow C_{h}(n)$ is surjective.

For a proof of the Lemma we refer to [5], 2.3., 2.4.
For another independent proof see [6], Theorem 1.
According to the Lemma we have

$$
\operatorname{dim} \operatorname{ker} H(s-1, s)=\binom{n}{s}-\binom{n}{s-1} .
$$

We now invoke Prop. 5 and obtain

$$
\operatorname{dim} H(s, q)^{T}(\operatorname{ker} H(s-1, s))=\binom{n}{s}-\binom{n}{s-1}
$$

Since eigenspaces to different eigenvalues are independent, we conclude

$$
\sum_{s=0}^{\min \{q, n-q\}} H(s, q)^{T}(\operatorname{ker} H(s-1, s))=\bigoplus_{s=0}^{\min \{q, n-q\}} H(s, q)^{T}(\operatorname{ker} H(s-1, s))
$$

and this subspace of ${ }_{\mathbb{Q}} C_{q}(n)$ has the dimension

$$
\sum_{s=0}^{\min \{q, n-q\}}\left(\binom{n}{s}-\binom{n}{s-1}\right)=\binom{n}{q}=\operatorname{dim} \mathbb{Q}_{q}(n)
$$

Therefore strict equality must hold in Eq (1). At the same time all other statements are proved.
ad 2): The proof of assertion i) is straigthforward. Also, along the same lines as in the corresponding statement in case 1) we conclude

$$
\begin{gathered}
(2) \ldots \quad H(s, q)^{T}(\operatorname{ker} H(s-1, s)) \subseteq \operatorname{Eig}(\widetilde{H}(t, q), \mu(q, t ; s)), \\
0 \leq s \leq \min \{1, n-q\}
\end{gathered}
$$

and

$$
\operatorname{dim} H(t, q)^{T}(\operatorname{ker} H(s-1, s))=\binom{n}{s}-\binom{n}{s-1}
$$

provided $0 \leq s \leq \min \{q, n-q\}$.
Now we assume $t<\min \{q, n-q\}$ and obtain $t+q+1 \leq n$. This inequality is equivalent to the condition $\binom{n}{t}<\binom{n}{q}$. According to the Lemma in the first part of the proof $H(t, q)$ is surjective, in turn

$$
\operatorname{dim} \operatorname{ker} H(t, q)=\binom{n}{q}-\binom{n}{t}
$$

Obviously it holds that

$$
\begin{equation*}
\operatorname{ker} H(t, q) \subseteq \operatorname{Eig}(\widetilde{H}(t, q), 0) .- \tag{3}
\end{equation*}
$$

Now we apply the first half of assertion i) and obtain

$$
\begin{aligned}
& \sum_{s=0}^{t} H(s, q)^{T}(\operatorname{ker} H(s-1, s))+\operatorname{ker} H(t, q)= \\
= & \bigoplus_{s=0}^{t} H(s, q)^{T}(\operatorname{ker} H(s-1, s)) \oplus \operatorname{ker} H(t, q) .
\end{aligned}
$$

This subspace of ${ }_{\mathbb{Q}} C_{q}(n)$ therefore has the dimension

$$
\sum_{s=0}^{t}\left(\binom{n}{s}-\binom{n}{s-1}\right)+\binom{n}{q}-\binom{n}{t}=\binom{n}{q}=\operatorname{dim}_{\mathbb{Q}} C_{q}(n)
$$

We conclude that strict equality must hold in Eq (2), (3). At the same time, all other statements have been proved.

Remarks:

a) We note the particular result

$$
\operatorname{Eig}(\widetilde{H}(t, q), \mu(q, t ; 0))=\mathbb{Q} \cdot\left(\sum_{\substack{M,|M|=q}}[M]\right)
$$

This allows us to compute the constant row-sums \mathfrak{z} of $\widetilde{H}(t, q)$. We obtain

$$
\mathfrak{z}=\mu(q, t ; 0)=\binom{q}{t} \cdot\binom{n-t}{q-t} .
$$

b) From the second part of the proof we derive

$$
\operatorname{ker} H(t, q)=\operatorname{Eig}(\widetilde{H}(t, q), 0)=\operatorname{ker}\left(H(t, q)^{T} \circ H(t, q)\right)
$$

Of course this is also a consequence of the following well-known equality

$$
\operatorname{rank} H(t, q)=\operatorname{rank}\left(H(t, q)^{T} \circ H(t, q)\right)\left(=\operatorname{rank}\left(H(t, q) \circ H(t, q)^{T}\right)\right)
$$

(see for instance [1], Chapt. II, 2.5 Lemma).
Now we turn to the proof of the corollary.
Assume first $t=q$. The claim is trivially true since $\widetilde{H}(t, q)$ is the unit matrix.
Now assume $t<q$. Of course

$$
|\operatorname{det} H(t, q)|=\sqrt{\operatorname{det} \widetilde{H}(t, q)}
$$

and $\operatorname{det} \widetilde{H}(t, q)$ is the product of the eigenvalues counted with the corresponding multiplicities.
Since $q=n-t$, case 1) of the Theorem applies and yields

$$
\mu(q, t ; s)=\binom{q-s}{q-t}^{2}, 0 \leq s \leq t=\min \{q, n-q\}
$$

Let us once again return to the proof of the Theorem, case 2). We consider the sum

$$
U=\sum_{s=0}^{\min \{q, n-q\}} H(s, q)^{T}(\operatorname{ker} H(s-1, s))
$$

Our arguments have shown that all subspaces occuring in this sum are subspaces of eigenspaces with respect to $\widetilde{H}(t, q)$ but the eigenspaces under consideration do not necessarily have distinct eigenvalues. In fact the last $\min \{q, n-q\}-t$ eigenvalues are zero according to assertion i). So in general we cannot conclude by standard arguments that U is a direct sum. However, this is true as can be seen from our next result which was announced in the previous paper ([6], Theorem 3).

Theorem 2. Assume $\binom{n}{t}<\binom{n}{q}$. Then it holds that

$$
\operatorname{ker} H(t, q)=\bigoplus_{s=t+1}^{\min \{q, n-q\}} H(s, q)^{T}(\operatorname{ker} H(s-1, s))
$$

Proof. Assume $t+1 \leq s \leq \min \{q, n-q\}$ and define

$$
V_{s}:=H(s, q)^{T}(\operatorname{ker} H(s-1, s))
$$

We have already remarked that the condition imposed in Theorem 2 is equivalent to $t+q+1 \leq n$. Now we use the following

Lemma. Assume $0 \leq s \leq \min \{q, n-q\}$ and $w_{s} \in \operatorname{ker} H(s-1, s)$. Then we have

$$
\Delta^{q-r}\left(\mathbb{X}^{q-s} \cdot w_{s}\right)=\left\{\begin{array}{cc}
\alpha(q, s) \cdot w_{s}, \alpha(q, s) \neq 0, & \text { if } r=s \\
0, & \text { if } r<s
\end{array}\right.
$$

Proof (of the lemma): From Prop. 4 we derive

$$
\begin{gathered}
\Delta^{q-s}\left(\mathbb{X}^{q-s} \cdot w_{s}\right)=\alpha(q, s) \cdot w_{s} \\
\alpha(q, s)=[q-s]_{q-s} \cdot[n-2 s]_{q-s} \neq 0
\end{gathered}
$$

provided $s \leq \min \{q, n-q\}$.
Now assume $r<s$. Then we obtain

$$
\Delta^{q-r}\left(\mathbb{X}^{q-s} \cdot w_{s}\right)=\Delta^{s-r}\left(\Delta^{q-s}\left(\mathbb{X}^{q-s} \cdot w_{s}\right)\right)=\Delta^{s-r}\left(\alpha(q, s) \cdot w_{s}\right)=0
$$

Now take $r=t$ in the lemma and apply Prop. 2. Then we have proved anew that V_{s} are contained in ker $H(t, q)$. - Let us show now that the sum

$$
V:=\sum_{s=t+1}^{\min \{q, n-q\}} V_{s}
$$

is direct.
We take $v \in V$ and write

$$
\text { (4) } \ldots \quad v=\sum_{s=t+1}^{\min \{q, n-q\}} \mathbb{X}^{q-s} w_{s}=0, w_{s} \in \operatorname{ker} H(s-1, s) \text {. }
$$

In case $t+1=\min \{q, n-q\}$, nothing is to be proved. Otherwise apply $\Delta^{q-(t+1)}$ in Eq (4). According to the Lemma we obtain

$$
\Delta^{q-(t+1)}(v)=\alpha(q, t+1) w_{t+1}=0
$$

which in turn shows $w_{t+1}=0$. Suppose now that it has already be shown that in Eq (4) the following equalities hold

$$
w_{t+1}=w_{t+2}=\ldots=w_{p}=0, p<\min \{q, n-q\} .
$$

Then we obtain again according to the Lemma

$$
\Delta^{q-(p+1)}(v)=\alpha(q, p+1) \cdot w_{p+1}=0
$$

and therefore $w_{p+1}=0$.
We recall from the proof of Theorem 1

$$
\operatorname{dim} V_{s}=\binom{n}{s}-\binom{n}{s-1}
$$

This in turn implies now

$$
\operatorname{dim} V=\sum_{s=t+1}^{\min \{q, n-q\}}\left(\binom{n}{s}-\binom{n}{s-1}\right)=\binom{n}{q}-\binom{n}{t}=\operatorname{dim} \operatorname{ker} H(t, q)
$$

which finishes the proof of the Theorem.

We recall that the two conditions imposed in Theorem 1, viz " $t \geq$ min $\{q, n-q\}$ " and " $t<\min \{q, n-q\}$ ", respectively, are equivalent to the conditions " $\binom{n}{t} \geq\binom{ n}{q}$ " and " $\binom{n}{t}<\binom{n}{q}$ ". In the first case $\widetilde{H}(t, q)$ is an isomorphism according to Theorem 1. If we use only [6] in the proof of that theorem, which is possible, then we have proved anew independently from [5], 2.3, 2.4 that $H(t, q)$ is an isomorphism provided $\binom{n}{t} \geq\binom{ n}{q}$.
(Of course this proof is (much) more complicated.) In particular we conclude that ker $H(q-1, q) \neq 0$ if and only if $q \leq\left\lfloor\frac{n}{2}\right\rfloor$. Now we quote
\bullet • ([5], 4.2, [6], 4.). Assume $q \leq\left\lfloor\frac{n}{2}\right\rfloor$. Then $\operatorname{ker} H(q-1, q)$ is generated by elements of the type

$$
\left(X_{j_{1}}-X_{j_{2}}\right)\left(X_{j_{3}}-X_{j_{4}}\right) \cdot \ldots \cdot\left(X_{j_{2 q-1}}-X_{j_{2 q}}\right) .
$$

If we combine this result with Theorem 2 we obtain systems of generators of $\operatorname{ker} H(t, q)$; however, these systems are in general different from those exhibited in [5]. - In the same way we have explicite systems of generators of the eigenspaces with respect to $\widetilde{H}(t, q)$.
Finally we make a remark concerning the eigenspaces of $H(t, q) \circ H(t, q)^{T}$. We restrict ourselves to quote the following result:
-•• ([4], Chapt. 10, Lemma 3.2) For any matrix A the non-zero eigenvalues of $A A^{T}$ and $A^{T} A$ are the same, and have the same multiplicities.
4. In this last section we take $\mathbb{K}=\mathbb{F}_{2}$. We investigate now the mappings

$$
\widetilde{H}_{q}(q \mid n)=: \widetilde{H}(q-1, q):{ }_{\mathbb{F}_{2}} C_{q}(n) \longrightarrow \mathbb{F}_{2} C_{q}(n),
$$

using the algebra $\mathbb{F}_{2} \mathfrak{C}_{*}(n)$. According to Prop. 1 we have

$$
\widetilde{H}(q \mid n)([M])=(q \cdot 1) \cdot[M]+\sum_{\left|M \cap M^{\prime}\right|=q-1}^{\left|M^{\prime}\right|=q} 1 \cdot\left[M^{\prime}\right] .
$$

The reader might have wondered why we admit a field of positive characteristic. In fact, as we soon will see, $\widetilde{H}(q \mid n)$ is a projection (hence diagonalizable) if n is odd (otherwise nilpotent). We have already observed in 3. that $\left(\mathbb{F}_{2} \mathfrak{C}_{*}(n), \Delta\right)$ is a complex in the sense of homological algebra. Let us rewrite this complex \mathfrak{K}_{n} in the following way

$$
0 \longrightarrow C_{n}(n) \xrightarrow{\Delta_{n}} C_{n-1}(n) \xrightarrow{\Delta_{n-1}} \ldots \xrightarrow{\Delta_{2}} C_{1}(n) \xrightarrow{\Delta_{1}} C_{0}(n) \longrightarrow 0,
$$

where of course we use the notation $\Delta_{q}=\left.\Delta\right|_{C_{q}(n)}$.

Proposition 6. The complex \mathfrak{K}_{n} is exact.
This can be seen in different ways: First, the homology of the ball vanishes over any field. Or secondly, \mathfrak{K}_{n} is isomorphic to a Koszulkomplex. The claim now follows from standard arguments about the vanishing of the homology modules of this complex. Third, the claim follows also from the much more general considerations in [2].

However, it will be useful for our purposes to prove the exactness of \mathfrak{K}_{n} as follows: Since the statement is trivial if $n=1$, we assume in the sequel always $n \geq 2$.

Proposition 7.

i) $\operatorname{Im} \Delta_{q}$ is already generated by the images of the elements $X_{n} \cdot u$, where $u \in C_{q-1}(n-1)$.
ii) $\operatorname{rank} \Delta_{q}=\binom{n-1}{q-1}$.

Proof. The elements different from zero recorded in assertion i) are exactly those $w \in C_{q}(n)$ with the property Fund $(w) \cap\left\{X_{n}\right\} \neq \emptyset$. If $q=n$, the claim is obvious. So assume now $1 \leq q \leq n-1$ and take $w \in C_{q}(n)$, Fund $(w) \cap\left\{X_{n}\right\}=\emptyset$. It follows that $X_{n} \cdot w \in C_{q+1}(n)$ and according to Prop. 3

$$
\Delta_{q+1}\left(X_{n} \cdot w\right)=w+X_{n} \cdot \Delta_{q}(w) .
$$

But $\Delta_{q} \circ \Delta_{q+1}=0$, so we obtain

$$
\Delta_{q}(w)=\Delta_{q}\left(X_{n} \cdot \Delta_{q}(w)\right)
$$

which proves the first claim.
To prove ii) it is sufficient to show that Δ_{q} restricted to the subspace $X_{n} \cdot C_{q-1}(n-1)$ is injective. So assume $X_{n} \cdot u$ is contained in that subspace. Then again according to Prop. 3 we obtain

$$
0=\Delta_{q}\left(X_{n} \cdot u\right)=u+X_{n} \cdot \Delta_{q-1}(u)
$$

and hence $u=0$, since X_{n} is no factor of u. Combined with assertion i) we obtain now

$$
\operatorname{rank} \Delta_{q}=\operatorname{dim} C_{q-1}(n-1)=\binom{n-1}{q-1}
$$

As announced we prove again the exactness of \mathfrak{K}_{n} as follows: Assume $1 \leq q \leq n-1$. Then it holds that

$$
\operatorname{dim} \operatorname{ker} \Delta_{q}=\binom{n}{q}-\binom{n-1}{q-1}=\binom{n-1}{q}=\operatorname{dim} \operatorname{Im} \Delta_{q+1}
$$

The exactness of \mathfrak{K}_{n} at the positions $0, n$ is obvious.
The rank-formula in Prop. 7 is also a consequence of the more general considerations in [7]. Here the rank of the integer valued incidence matrix $H(t, q)$ reduced $\bmod p \mathbb{Z}, p$ any prime, was determined. The rank-formula obtained there (loc. cit., Theorem 1) applied to our case yields

$$
\operatorname{rank} \Delta_{q}=\binom{n}{q-1}-\binom{n}{q-2}+\binom{n}{q-3} \mp \ldots+(-1)^{q+1}\binom{n}{0} .
$$

For a proof that both expressions obtained for the rank of Δ_{q}, coincide we refer to [6], Theorem 2, Lemma.

Theorem 3. i) $\widetilde{H}(q \mid n)^{2}=\left\{\begin{array}{cl}\widetilde{H}(q \mid n), & \text { if } n \text { is odd, } \\ 0, & \text { if } n \text { is even. }\end{array}\right.$
ii) If n is odd then

$$
\operatorname{rank} \widetilde{H}(q \mid n)=\binom{n-1}{q-1}
$$

Assume $1 \leq q \leq n-1$. Then

$$
\operatorname{ker} \widetilde{H}(q \mid n)=\operatorname{Im} H(q, q+1)
$$

iii) If n is even then

$$
\operatorname{rank} \widetilde{H}(q \mid n)=\binom{n-2}{q-1}
$$

Assume $1 \leq q \leq n-1$. Then

$$
\operatorname{ker} \widetilde{H}(q \mid n)=X_{n} \cdot \operatorname{Im} \widetilde{H}(q-1 \mid n-1) \oplus \operatorname{Im} H(q, q+1)
$$

Proof. ad i). Suppose $u \in C_{q-1}(n)$. Then according to Prop. 4, ii) we have that

$$
\Delta(\mathbb{X} u)=\mathbb{X} \cdot \Delta(u)+(n \cdot 1) \cdot u
$$

But $\mathbb{X}^{2}=0$, so we obtain

$$
\mathbb{X} \Delta \mathbb{X}(u)=(n \cdot 1) \mathbb{X} u
$$

Now we take $u=\Delta w, w \in C_{q}(n)$. This yields

$$
\mathbb{X} \Delta \mathbb{X} \Delta(w)=(n \cdot 1) \cdot \mathbb{X} \Delta(w)
$$

We observe $\mathbb{X} \Delta(w)=\widetilde{H}(q \mid n)(w)$. The claim now follows.
To prove the remaining assertions let us make some preliminaries: Denote by $\widetilde{H}(q \mid n)_{r}$ the restriction of $\widetilde{H}(q \mid n)$ to the subspace $X_{n} \cdot C_{q-1}(n-1)$ of $C_{q}(n)$. Then according to Prop. 7, i)

$$
\operatorname{Im} \widetilde{H}(q \mid n)=\operatorname{Im} \widetilde{H}(q \mid n)_{r} .
$$

Take now $u \in C_{q-1}(n-1)$ and denote $\mathbb{X}_{(n-1)}:=\sum_{j=1}^{n-1} X_{j}$. Then according to Prop. 3

$$
\begin{aligned}
\mathbb{X} \Delta\left(X_{n} \cdot u\right) & =\left(\mathbb{X}_{(n-1)}+X_{n}\right) \cdot\left(u+X_{n} \cdot \Delta_{q-1}(u)\right)= \\
& =X_{n} \cdot\left(u+\mathbb{X}_{(n-1)} \Delta_{q-1}(u)\right)+\mathbb{X}_{(n-1)} \cdot u .
\end{aligned}
$$

We rewrite this equation as follows
(5) $\ldots \quad \widetilde{H}(q \mid n)\left(X_{n} \cdot u\right)=X_{n} \cdot(u+\widetilde{H}(q-1 \mid n-1)(u))+\mathbb{X}_{(n-1)} \cdot u$.
(Observe that $\widetilde{H}(0 \mid n-1)$ is the zero-mapping.)
Now assume in $\mathrm{Eq}(5)$ that $X_{n} \cdot u$ is contained in the kernel of $\widetilde{H}(q \mid n)$. Since $\mathbb{X}_{(n-1)} \cdot u$ does not contain X_{n} as a factor both terms on the right-hand side in Eq (5) must be zero, in particular

$$
(6) \ldots
$$

$$
u+\widetilde{H}(q-1 \mid n-1)(u)=0
$$

ad ii). We derive from the first part of the proof that now $\widetilde{H}(q-1 \mid n-1)$ is nilpotent. Therefore $\mathrm{Eq}(6)$ possesses only the trivial solution $u=0$, so $\widetilde{H}(q \mid n)_{r}$ is injective. In turn

$$
\operatorname{rank} \widetilde{H}(q \mid n)=\operatorname{rank} \widetilde{H}(q \mid n)_{r}=\operatorname{dim} C_{q-1}(n-1)=\binom{n-1}{q-1}
$$

Now take $1 \leq q \leq n-1$. Since \mathfrak{K}_{n} is exact

$$
\operatorname{Im} \Delta_{q+1} \subseteq \operatorname{ker} \widetilde{H}(q \mid n)
$$

According to Prop. 7, ii) we have

$$
\operatorname{dim} \operatorname{Im} \widetilde{H}(q \mid n)+\operatorname{dim} \operatorname{Im} \Delta_{q+1}=\binom{n-1}{q-1}+\binom{n-1}{q}=\binom{n}{q}=\operatorname{dim} C_{q}(n)
$$

This proves the remaining assertions.
ad iii). Assume first $q \geq 2$. Let $X_{n} \cdot u$ be in the kernel of $\widetilde{H}(q \mid n)_{r}$. Then as it was stated above u must solve $\mathrm{Eq}(6)$. Now according to i) $\widetilde{H}(q-1 \mid n-1)$ is a projection. Therefore $\operatorname{Eq}(6)$ has exactly all $u \in \operatorname{Im} \widetilde{H}(q-1 \mid n-1)$ as solutions. Now we apply i) and obtain

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker} \widetilde{H}(q \mid n)_{r} & =\operatorname{dim}\left(X_{n} \cdot \operatorname{Im} \widetilde{H}(q-1 \mid n-1)\right)= \\
& =\operatorname{dim} \operatorname{Im} \widetilde{H}(q-1 \mid n-1)=\binom{n-2}{q-2}
\end{aligned}
$$

in turn

$$
\operatorname{rank} \widetilde{H}(q \mid n)=\operatorname{rank} \widetilde{H}(q \mid n)_{r}=\binom{n-1}{q-1}-\binom{n-2}{q-2}=\binom{n-2}{q-1}
$$

(Observe that $\widetilde{H}(n \mid n)=0$.) These arguments carry easily over to the case $q=1$; we leave the details to the reader whom we remind of our convention $\binom{m}{-1}=0$.
Assume now $1 \leq q \leq n-1$. Then we claim that the subspaces $X_{n} \cdot \operatorname{Im} \widetilde{H}$ $(q-1 \mid n-1)$ and $\operatorname{Im} \Delta_{q+1}$ of $\operatorname{ker} \widetilde{H}(q \mid n)$ are disjoint. In fact according to Prop. 7 , i) $\operatorname{Im} \Delta_{q+1}$ is already generated by the $\Delta_{q+1}\left(X_{n} \cdot u\right), u \in C_{q}(n-1)$. But

$$
\Delta_{q+1}\left(X_{n} \cdot u\right)=u+X_{n} \cdot \Delta_{q}(u)
$$

Therefore we conclude

$$
\begin{aligned}
\operatorname{dim} \operatorname{Im} & \widetilde{H}(q \mid n)+\operatorname{dim}\left(X_{n} \cdot \operatorname{Im} \widetilde{H}(n-1 \mid q-1)+\operatorname{Im} \Delta_{q+1}\right) \\
& =\binom{n-2}{q-1}+\binom{n-2}{q-2}+\binom{n-1}{q}=\binom{n-1}{q-1}+\binom{n-1}{q} \\
& =\binom{n}{q}=\operatorname{dim} C_{q}(n) .
\end{aligned}
$$

This finishes the proof.

Acknowledgement.

The author is indebted to the referee for helpful comments.

References

[1] Th. Beth, D. Jungnickel, H. Lenz: Design Theory. Mannheim/Wien/Zürich 1985 (B.I. Wissenschaftsverlag)
[2] Th. Bier: Eine homologische Interpretation gewisser Inzidenzmatrizen mod p. Math. Ann. 297 (1993) 289-302
[3] R. A. Brualdi, H. Ryser: Combinatorial Matrix Theory. Cambridge 1991 (Cambridge University Press)
[4] C.D. Godsil: Algebraic Combinatorics. New York/London 1993 (Chapman \& Hall).
[5] J.B. Graver, W.B. Jurkat: The Module Structure of Integral Designs. Journal of Comb. Theory A 15 (1973), 75-90
[6] H. Krämer: Inversion of Incidence Mappings. Séminaire Lotharingien de Combinatoire, B39f (1997), 20pp.
http://cartan.u-strasbg.fr:80/~slc/
[7] R.M. Wilson: A Diagonal Form for the Incidence Matrices of t-Subsets vs. k-Subsets. Europ. J. Combinatorics 11 (1990) 609-615.

