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Abstract

Let K denote one of the fields Q,F2 and define H (t, q), t ≤ q, to
be the K–incidence matrix of the t–sets vs. the q–sets of the n–set
{1, 2, . . . , n}. This matrix is considered as a linear map of K–vector
spaces

KCq(n) −→ KCt(n),

where KCs(n) (s ≤ n) is the K–vector space having the s–sets as a
basis. The symmetrized K–incidence matrix (of H (t, q)) is defined to
be the symmetric matrix H̃ (t, q) := H (t, q)T · H (t, q) which is also
considered as an endomorphism of KCq(n). In case K = Q we exhibit
explicitely a decomposition of QCq(n) into eigenspaces with respect
to H̃ (t, q). A closer examination of the proof of this result yields a
canonical decomposition of kerH (t, q) (provided

(
n
t

)
<
(
n
q

)
) extending

work done by J.B. Graver and W.B. Jurkat.
In case K = F2 denote H̃ (q | n) := H̃ (q − 1, q). Then H̃ (q | n)

is a projection hence diagonalizable if n is odd (otherwise nilpotent).
In both cases the rank of H̃ (q | n) is determined; among other results
an explicit decomposition of F2Cq(n) into the two eigenspaces with
respect to H̃ (q | n) is obtained provided n is odd.

As a basic tool we use the graded commutative K–algebra

KC∗(n) = K [T1, . . . , Tn]/(T 2
1 , T

2
2 , . . . , T

2
n).
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Here the K–vector spaces of the elements of degree q of KC∗(n) are
isomorphic to KCq(n).

1. We denote for n ∈ N

n = {1, 2, . . . , n},

let in additon K be a field. Assume 0 ≤ t ≤ q ≤ n. Then H (t, q) denotes the

K–incidence matrix
(
ι (N,M)

)
. Here M runs through the q–sets of n, N

runs through the t–sets of n and we define

ι (N,M) =

{
1, N ⊆M,
0, otherwise.

(0, 1 ∈ K).

Let KCq(n) be the Q–vector space with basis {[M ]}M∈(nq), such that H (t, q)

defines a linear mapping

KCq(n) −→ KCt(n), [M ] −→
∑
N,
|N|=t

ι (N,M)[N ]

which again is denoted by the same symbol H (t, q). The transposed matrix
H (t, q)T defines a linear mapping

KCt(n) −→ KCq(n), [N ] −→
∑
M,
|M|=q

ι (N,M)[M ],

which again is denoted by the same symbol H (t, q)T . Finally we define an
“augmentation map”

H (−1, 0) : KC0(n) −→ 0.

We are dealing here with the “symmetrized incidence mapping” H̃ (t, q). This
is defined to be the mapping

H̃ (t, q) := H (t, q)T ◦H (t, q) : KCq(n) −→ KCq(n)

which is already diagonalizable in case K = Q as we soon will see.

The following proposition is well known.
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Proposition 1. We have

H̃ (t, q)
(

[M ]
)

=
∑
M′,
|M′|=q

1 ·
(
|M ∩M ′|

t

)
· [M ′].

Proof. We have

H̃ (t, q)
(

[M ]
)

=
∑
N,
|N|=t

∑
M′,
|M′|=q

ι (N,M) ι (N,M ′) · [M ′],

in addition

N∑
|N |=t

ι (N,M) · ι (N,M ′) = 1 ·#
{
N
∣∣∣|N | = t, N ⊆M ∩M ′

}
= 1 ·

(|M∩M ′|
t

)
.

Therefore all entries of the matrix H̃ (t, q) are non–negative in case K = Q.

If z(M) denotes the row sum of the matrix H̃ (t, q) indexed by the q–set M
we have

z(M) =
∑
M′,
|M′|=q

(
|M ∩M ′|

t

)

and this sum is independent from M ; so we denote the constant row sum
by z.

• ([3], Lemma 5.1.1) Suppose A is a real n × n–matrix with non–negative
entries and constant row sum k. Then (1, 1, . . . , 1)T is an eigenvector of A
with eigenvalue k. Moreover if µ is another (complex) eigenvalue of A then
it holds that

|µ| ≤ k.

Suppose now n > 1. Then k is an eigenvalue of geometric multiplicity 1 if
and only if A is irreducible.

The last assertion follows from the so–called Perron–Frobenius–Theory.

We note another result which applies to the matrix H̃ (t, q):
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•• ([3], Theorem 3.2.1) Suppose that A is a real or complex n×n–matrix.
Then A is irreducible if and only if the directed graph D (A) associated to A
is strongly connected.

Now if A = H̃ (t, q), t < q, K = Q, the graph D (A) has
(
n
q

)
as set of

vertices V . If L,M ∈ V then the directed arc (L,M) is in the set E of edges
of D (A) if and only if

(|L∩M |
t

)
6= 0, that is |L∩M | ≥ t ist. In this case (M,L)

is an arc in D (A), too.

We conclude therefore that D (A) is strongly connected if and only if the
corresponding undirected graph is connected. This is indeed the case as can
be easily seen as follows: Fix L,M ∈ V . Then there exist q–sets L = L1, L2,
. . . , Lr = M with the property

|Li ∩ Li+1| = q − 1 ≥ t, 1 ≤ i ≤ r − 1.

If one denotes the eigenspace of H̃ (t, q) with eigenvalue λ ∈ R by

Eig
(
H̃ (t, q), λ

)
⊂ RCq(n)

then the arguments stated above yield

Eig
(
H̃ (t, q), z

)
= R ·

∑
M,
|M|=q

[M ]

 .

In the following we make the convention
(
n
−1

)
= 0.

Theorem 1. We assume K = Q and 0 ≤ t < q ≤ n. Then H̃ (t, q) is
diagonalizable (as a mapping of Q–vector spaces). More exactly the following
holds: In case 0 ≤ s ≤ min{q, n− q} we define

µ (q, t; s) =

(
q − s
q − t

)
·
(
n− t− s
q − t

)
.

1) Assume t ≥ min{q, n− q}. Then we have

i) µ (q, t; 0) > µ (q, t; 1) > . . . > µ (q, t; min{q, n− q}) > 0 and

ii) Eig
(
H̃ (t, q), µ (q, t; s)

)
= H (s, q)T

(
kerH (s− 1, s)

)
,
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iii) dimH (s, q)T
(

kerH (s− 1, s)
)

=
(
n
s

)
−
(
n
s−1

)
,

such that

iv) QCq(n) =
min{q,n−q}⊕

s=0

H (s, q)T
(

kerH (s− 1, s)
)

is a decomposition of QCq(n) into eigenspaces with respect to the endo-

morphism H̃ (t, q).

2) Assume t < min{q, n− q}. Then we have

i) µ (q, t; 0) > µ (q, t; 1) > . . . > µ (q, t; t) > 0,

µ (q, t; t+ 1) = . . . = µ
(
q, t; min{q, n− q}

)
= 0.

In case 0 ≤ s ≤ t we have

ii) Eig
(
H̃ (t, q), µ (q, t; s)

)
= H (s, q)T

(
kerH (s− 1, s)

)
,

iii) dimH (s, q)T
(

kerH (s− 1, s)
)

=
(
n
s

)
−
(
n
s−1

)
.

Furthermore it holds that

iv) Eig
(
H̃ (t, q), 0

)
= kerH (t, q),

v) dim kerH (t, q) =
(
n
q

)
−
(
n
t

)
,

such that

vi) QCq(n) =

(
t⊕

s=0

H (s, q)T
(

kerH (s− 1, s)
))
⊕ kerH (t, q)

is a decomposition of QCq(n) into eigenspaces with respect to the endo-

morphism H̃ (t, q).

Corollary 1. We assume q + t = n. Then the following identity holds

∣∣detH (t, q)
∣∣ =

t−1∏
s=0

(
q − s
q − t

)(ns)−( n
s−1)

.
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This statement can also be derived from [7], Theorem 2.

2. For the proof of the theorem we make use of a graded K–algebra which
was essentially introduced in the previous paper [6]. We denote this algebra
by KC∗(n). It is defined by

KC∗(n) = K [T1, . . . , Tn]/(T 2
1 , . . . , T

2
n) = K [X1, . . . , Xn],

here T1, . . . , Tn are algebraically independent elements and Xj denotes the
residue–class Tjmod(T 2

1 , . . . , T
2
n), j ∈ n. This algebra will be used in the

sequel in the cases K = Q and K = Z/2Z = F2. Let KC∗(n)p denote the
K–vector space of the elements of degree p in this algebra; then we have that

KC∗(n)p = 0, p > n,

and

KC∗(n)p ∼= KCp(n), 0 ≤ p ≤ n.

The isomorphisms under consideration are induced by the mappings

K 3 1 −→ [ ∅ ],

Xj1 ·Xj2 · . . . ·Xjp −→
[
{j1, j2, . . . , jp}

]
,

(1 ≤ j1 < j2 < . . . < jp ≤ n).

In case 0 ≤ q ≤ n we will identify the spaces KC∗(n)q and KCq(n). – To the
incidence mappings H (q − 1, q), 0 ≤ q ≤ n, corresponds the K–linear map
∆ of KC∗(n) with degree –1 induced by

∆
∣∣∣
Q

= 0, ∆Xj = 1, j ∈ n,

∆ (Xj1 ·Xj2 · . . . ·Xjq) =
q∑

k=1

Xj1 · . . . · X̂jk · . . . ·Xjq , 2 ≤ q ≤ n,

where we assume that the Xjk are pairwise distinct and ̂ denotes the deletion
operator.

Finally we define X :=
n∑
j=1

Xj.
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Proposition 2. We agree upon ∆◦ = id,X◦ = 1. Then we have

i) in case K = Q

(q − t)!H (t, q) = ∆q−t
∣∣∣
Cq(n)

,

(q − t)!H (t, q)T (w) = X
q−t · w, w ∈ Ct(n),

ii) in case K = F2

∆2 = 0, X2 = 0,

H (t, t+ 1)T (w) = X · w, w ∈ Ct(n), 0 ≤ t ≤ n− 1.

Proof. For the proof of i) we refer to [6], Proposition 1. –

In the second statement it is obvious that ∆2 vanishes on the vectorspace

F2C1(n). In case 2 ≤ q ≤ n we rewrite

∆ (Xj1 · . . . ·Xjq) =

q∑
k=1

(−1)kXj1 · . . . · X̂jk · . . . ·Xjq

and apply a standard argument from simplicial homology. The remaining
assertions are obvious.

We remark that
(
F2C∗(n), ∆

)
is isomorphic to a Koszul–complex. We will

return to this topic in the last section of this paper.

Let us write w ∈ KC∗(n) as a sum of monomials (with respect to X1, . . . , Xn)
with coefficients from K. Then we have defined in [6] the foundation of
w (in signs Fund (w)), to be the product of all Xj which appear in this
decomposition with non–vanishing coeffients. Sometimes we will identify
Fund (w) with a subset of n. This convention is used in the next proposition.

Proposition 3. Assume v, w ∈ KC∗(n) and Fund (v)∩ Fund (w) = ∅. Then
it holds that

∆ (v · w) = w∆ (v) + v∆ (w).
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For the proof we refer to [6], Prop. 2. �

Finally we define the “falling factorial”

[r]k = r (r − 1)(r − 2) · . . . · (r − k + 1), [r]0 = 1.

Proposition 4. i) In case K = Q let α, β be non–negative integers. We
assume 0 ≤ s ≤ n− 1, 1 ≤ α, α+ s ≤ n, 0 ≤ β ≤ α, and w ∈ QCs(n).
Then the following identity holds

∆β(Xα · w) =

β∑
k=0

(
β

k

)
[α]k[n− α− 2s+ β]k · Xα−k ·∆β−k(w).

ii) In case K = F2 we assume 0 ≤ s ≤ n − 1 and w ∈ F2Cs(n). Then the
following identity holds

∆ (Xw) = X ·∆ (w) + (n · 1) · w.

Proof. For the first statement we refer to [6], Prop. 4.

The second statement is obvious in case s = 0. Assume now s ≥ 1. Let
w̃ ∈ QCs(n) be a sum of monomials (with respect to X1, . . . , Xn) with integer
coefficients. Then as we have seen in the first part of the proof it holds that

∆ (Xw̃) = X ·∆ (w̃) + (n− 2s) · w̃.

Reducing this equation modulo 2 now yields the claim.

Proposition 5. ([4], Chapt. 15, Corollary 8.5).

We assume K = Q and s ≤ min{q, n− q}. Then the mapping

H (s, q)T : QCs(n) −→ QCq(n)

is injective.
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Proof. We use the relation derived in Prop. 4, i) and assume
α = β = q − s ≥ 0. Let us rewrite this relation in terms of matrices. The

left hand side of the relation is
(
(q− s)!

)2
H (s, q) ◦H (s, q)T ; the right hand

side is sum of the positive semi–definite matrices

H (2s− q + k, s)T ◦H (2s− q + k, s), q − 2s ≤ k ≤ q − s,

with non–negative integer coefficients. Also the unit matrix occurs here (take
k = q − s) with the coefficient

[q − s]q−s · [n− 2s]q−s

which doesn’t vanish since s ≤ n− q. We conclude that in case s ≤ n− q

H (s, q) ◦H (s, q)T

is an isomorphism, hence the mapping H (s, q)T is injective.

3. In this section we first come to the proof of Theorem 1.

Ad 1) So assume t ≥ min{q, n− q}. Suppose
(
q−s
q−t

)
= 0. This yields

t < s ≤ min{q, n− q},

a contradiction. In the same straightforward manner we conclude that the
second factor occuring in µ (q, t; s) doesn’t vanish. Now it is easily seen
that the µ (q, t; s), k = 0, 1, . . . , min {q, n− q} are strictly decreasing. This
establishes statement i). –
Assume now w ∈ ker ∆ = kerH (s− 1, s) ⊂ Cs(n). According to Prop. 4 we
have that

∆q−t(Xq−sw) = [q − s]q−t · [n− s− t]q−t · Xt−s · w.

We multiply this equation with Xq−t and obtain

(Xq−t ·∆q−t) · (Xq−sw) = [q − s]q−t · [n− s− t]q−t · Xq−s · w.

Now we use Prop. 2. This yields

X
q−s · w = (q − s)!H (s, q)T (w),

X
q−t ·∆q−t(w) =

(
(q − t)!

)2

H̃ (t, q)(w).
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Therefore we have now

H̃ (t, q)
(
H (s, q)T · w

)
= µ (q, t; s) ·

(
H (s, q)T · w

)
,

and in turn

(1) . . . H (s, q)T
(

kerH (s− 1, s)
)
⊆ Eig

(
H̃ (t, q), µ (q, t; s)

)
.

Since s ≤ min{q, n− q} the inequality s ≤ bn
2
c holds.

Now we use the following

Lemma. Assume h, k ∈ {0, 1, . . . , n} and
(
n
h

)
≤
(
n
k

)
. Then the mapping

H (h, k) : Ck(n) −→ Ch(n) is surjective.

For a proof of the Lemma we refer to [5], 2.3., 2.4.

For another independent proof see [6], Theorem 1. �

According to the Lemma we have

dim kerH (s− 1, s) =

(
n

s

)
−
(

n

s− 1

)
.

We now invoke Prop. 5 and obtain

dimH (s, q)T
(

kerH (s− 1, s)
)

=

(
n

s

)
−
(

n

s− 1

)
.

Since eigenspaces to different eigenvalues are independent, we conclude

min{q,n−q}∑
s=0

H (s, q)T
(

kerH (s− 1, s)
)

=

min{q,n−q}⊕
s=0

H (s, q)T
(

kerH (s− 1, s)
)
,

and this subspace of QCq(n) has the dimension

min{q,n−q}∑
s=0

((
n

s

)
−
(

n

s− 1

))
=

(
n

q

)
= dim QCq(n).

Therefore strict equality must hold in Eq (1). At the same time all other
statements are proved.
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ad 2): The proof of assertion i) is straigthforward. Also, along the same lines
as in the corresponding statement in case 1) we conclude

(2) . . . H (s, q)T
(

kerH (s− 1, s)
)
⊆ Eig

(
H̃ (t, q), µ (q, t; s)

)
,

0 ≤ s ≤ min {1, n− q},

and

dimH (t, q)T
(

kerH (s− 1, s)
)

=

(
n

s

)
−
(

n

s− 1

)
provided 0 ≤ s ≤ min{q, n− q}.
Now we assume t < min{q, n− q} and obtain t+ q + 1 ≤ n. This inequality
is equivalent to the condition

(
n
t

)
<
(
n
q

)
. According to the Lemma in the first

part of the proof H (t, q) is surjective, in turn

dim kerH (t, q) =

(
n

q

)
−
(
n

t

)
.

Obviously it holds that

(3) . . . kerH (t, q) ⊆ Eig
(
H̃ (t, q), 0

)
.−

Now we apply the first half of assertion i) and obtain∑t
s=0 H (s, q)T

(
kerH (s− 1, s)

)
+ kerH (t, q) =

=
⊕t

s=0 H (s, q)T
(

kerH (s− 1, s)
)
⊕ kerH (t, q).

This subspace of QCq(n) therefore has the dimension

t∑
s=0

((
n

s

)
−
(

n

s− 1

))
+

(
n

q

)
−
(
n

t

)
=

(
n

q

)
= dim QCq(n).

We conclude that strict equality must hold in Eq (2), (3). At the same time,
all other statements have been proved. �
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Remarks:

a) We note the particular result

Eig
(
H̃ (t, q), µ (q, t; 0)

)
= Q ·

∑
M,
|M|=q

[M ]

 .

This allows us to compute the constant row–sums z of H̃ (t, q). We obtain

z = µ (q, t; 0) =

(
q

t

)
·
(
n− t
q − t

)
.

b) From the second part of the proof we derive

kerH (t, q) = Eig
(
H̃ (t, q), 0

)
= ker

(
H (t, q)T ◦H (t, q)

)
.

Of course this is also a consequence of the following well–known equality

rankH (t, q) = rank
(
H (t, q)T ◦H (t, q)

)(
= rank

(
H (t, q) ◦H (t, q)T

))
,

(see for instance [1], Chapt. II, 2.5 Lemma).

Now we turn to the proof of the corollary.

Assume first t = q. The claim is trivially true since H̃ (t, q) is the unit matrix.

Now assume t < q. Of course

| detH (t, q)| =
√

det H̃ (t, q),

and det H̃ (t, q) is the product of the eigenvalues counted with the corre-
sponding multiplicities.
Since q = n− t, case 1) of the Theorem applies and yields

µ (q, t; s) =

(
q − s
q − t

)2

, 0 ≤ s ≤ t = min {q, n− q}. �
Let us once again return to the proof of the Theorem, case 2). We consider
the sum

U =

min{q,n−q}∑
s=0

H (s, q)T
(
kerH (s− 1, s)

)
.
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Our arguments have shown that all subspaces occuring in this sum are sub-
spaces of eigenspaces with respect to H̃ (t, q) but the eigenspaces under
consideration do not necessarily have distinct eigenvalues. In fact the last
min{q, n− q}− t eigenvalues are zero according to assertion i). So in general
we cannot conclude by standard arguments that U is a direct sum. However,
this is true as can be seen from our next result which was announced in the
previous paper ([6], Theorem 3).

Theorem 2. Assume
(
n
t

)
<
(
n
q

)
. Then it holds that

kerH (t, q) =

min{q,n−q}⊕
s=t+1

H (s, q)T
(

kerH (s− 1, s)
)
.

Proof. Assume t+ 1 ≤ s ≤ min{q, n− q} and define

Vs := H (s, q)T
(

kerH (s− 1, s)
)
.

We have already remarked that the condition imposed in Theorem 2 is equiv-
alent to t+ q + 1 ≤ n. Now we use the following

Lemma. Assume 0 ≤ s ≤ min{q, n− q} and ws ∈ kerH (s− 1, s). Then we
have

∆q−r(Xq−s · ws) =

{
α (q, s) · ws, α (q, s) 6= 0, if r = s,

0 , if r < s.

Proof (of the lemma): From Prop. 4 we derive

∆q−s(Xq−s · ws) = α (q, s) · ws
α (q, s) = [q − s]q−s · [n− 2s]q−s 6= 0

provided s ≤ min {q, n− q}.
Now assume r < s. Then we obtain

∆q−r(Xq−s · ws) = ∆s−r
(

∆q−s(Xq−s · ws)
)

= ∆s−r
(
α (q, s) · ws

)
= 0.

�
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Now take r = t in the lemma and apply Prop. 2. Then we have proved anew
that Vs are contained in kerH (t, q). – Let us show now that the sum

V :=

min{q,n−q}∑
s=t+1

Vs

is direct.

We take v ∈ V and write

(4) . . . v =

min{q,n−q}∑
s=t+1

X
q−sws = 0, ws ∈ kerH (s− 1, s).

In case t + 1 = min{q, n − q}, nothing is to be proved. Otherwise apply
∆q−(t+1) in Eq (4). According to the Lemma we obtain

∆q−(t+1)(v) = α (q, t+ 1)wt+1 = 0,

which in turn shows wt+1 = 0. Suppose now that it has already be shown
that in Eq (4) the following equalities hold

wt+1 = wt+2 = . . . = wp = 0, p < min{q, n− q}.

Then we obtain again according to the Lemma

∆q−(p+1)(v) = α (q, p+ 1) · wp+1 = 0,

and therefore wp+1 = 0. –

We recall from the proof of Theorem 1

dimVs =

(
n

s

)
−
(

n

s− 1

)
.

This in turn implies now

dimV =

min{q,n−q}∑
s=t+1

((
n

s

)
−
(

n

s− 1

))
=

(
n

q

)
−
(
n

t

)
= dim kerH (t, q)

which finishes the proof of the Theorem. �
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We recall that the two conditions imposed in Theorem 1, viz “t ≥ min
{q, n − q}” and “t < min{q, n − q}”, respectively, are equivalent to the

conditions “
(
n
t

)
≥
(
n
q

)
” and “

(
n
t

)
<
(
n
q

)
”. In the first case H̃ (t, q) is an

isomorphism according to Theorem 1. If we use only [6] in the proof of that
theorem, which is possible, then we have proved anew independently from [5],
2.3, 2.4 that H (t, q) is an isomorphism provided

(
n
t

)
≥
(
n
q

)
.

(Of course this proof is (much) more complicated.) In particular we conclude
that kerH(q − 1, q) 6= 0 if and only if q ≤ bn

2
c. Now we quote

• • • ([5], 4.2, [6], 4.). Assume q ≤ bn
2
c. Then kerH (q − 1, q) is generated

by elements of the type

(Xj1 −Xj2)(Xj3 −Xj4) · . . . · (Xj2q−1 −Xj2q).

If we combine this result with Theorem 2 we obtain systems of generators
of kerH (t, q); however, these systems are in general different from those
exhibited in [5]. – In the same way we have explicite systems of generators

of the eigenspaces with respect to H̃ (t, q).

Finally we make a remark concerning the eigenspaces of H (t, q) ◦H (t, q)T .
We restrict ourselves to quote the following result:

• • • • ([4], Chapt. 10, Lemma 3.2) For any matrix A the non–zero eigen-
values of AAT and ATA are the same, and have the same multiplicities.

4. In this last section we take K = F2. We investigate now the mappings

H̃q(q|n) =: H̃ (q − 1, q) : F2Cq(n) −→ F2Cq(n),

using the algebra F2C∗(n). According to Prop. 1 we have

H̃ (q|n)
(

[M ]
)

= (q · 1) · [M ] +

|M ′|=q∑
|M∩M ′|=q−1

1 · [M ′].

The reader might have wondered why we admit a field of positive character-
istic. In fact, as we soon will see, H̃ (q|n) is a projection (hence diagonaliz-
able) if n is odd (otherwise nilpotent). We have already observed in 3. that
(F2C∗(n),∆) is a complex in the sense of homological algebra. Let us rewrite
this complex Kn in the following way

0 −→ Cn(n)
∆n−→ Cn−1(n)

∆n−1−→ . . .
∆2−→ C1(n)

∆1−→ C0(n) −→ 0,
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where of course we use the notation ∆q = ∆
∣∣∣
Cq(n)

.

Proposition 6. The complex Kn is exact.

This can be seen in different ways: First, the homology of the ball vanishes
over any field. Or secondly, Kn is isomorphic to a Koszulkomplex. The claim
now follows from standard arguments about the vanishing of the homology
modules of this complex. Third, the claim follows also from the much more
general considerations in [2].

However, it will be useful for our purposes to prove the exactness of Kn as
follows: Since the statement is trivial if n = 1, we assume in the sequel
always n ≥ 2.

Proposition 7.

i) Im ∆q is already generated by the images of the elements Xn · u, where
u ∈ Cq−1(n− 1).

ii) rank ∆q =
(
n−1
q−1

)
.

Proof. The elements different from zero recorded in assertion i) are exactly
those w ∈ Cq(n) with the property Fund (w) ∩ {Xn} 6= ∅. If q = n, the
claim is obvious. So assume now 1 ≤ q ≤ n − 1 and take w ∈ Cq(n),
Fund (w) ∩ {Xn} = ∅. It follows that Xn · w ∈ Cq+1(n) and according to
Prop. 3

∆q+1(Xn · w) = w +Xn ·∆q(w).

But ∆q ◦∆q+1 = 0, so we obtain

∆q(w) = ∆q

(
Xn ·∆q(w)

)
which proves the first claim.

To prove ii) it is sufficient to show that ∆q restricted to the subspace
Xn ·Cq−1(n− 1) is injective. So assume Xn · u is contained in that subspace.
Then again according to Prop. 3 we obtain

0 = ∆q(Xn · u) = u+Xn ·∆q−1(u)

16



and hence u = 0, since Xn is no factor of u. Combined with assertion i) we
obtain now

rank ∆q = dimCq−1(n− 1) =

(
n− 1

q − 1

)
.

As announced we prove again the exactness of Kn as follows: Assume
1 ≤ q ≤ n− 1. Then it holds that

dim ker ∆q =

(
n

q

)
−
(
n− 1

q − 1

)
=

(
n− 1

q

)
= dim Im ∆q+1.

The exactness of Kn at the positions 0, n is obvious.

The rank–formula in Prop. 7 is also a consequence of the more general
considerations in [7]. Here the rank of the integer valued incidence matrix
H (t, q) reduced mod pZ, p any prime, was determined. The rank–formula
obtained there (loc. cit., Theorem 1) applied to our case yields

rank ∆q =

(
n

q − 1

)
−
(

n

q − 2

)
+

(
n

q − 3

)
∓ . . .+ (−1)q+1

(
n

0

)
.

For a proof that both expressions obtained for the rank of ∆q, coincide we
refer to [6], Theorem 2, Lemma.

Theorem 3. i) H̃ (q|n)2 =

{
H̃ (q|n), if n is odd,

0, if n is even.

ii) If n is odd then

rank H̃ (q|n) =

(
n− 1

q − 1

)
.

Assume 1 ≤ q ≤ n− 1. Then

ker H̃ (q|n) = ImH (q, q + 1).

iii) If n is even then

rank H̃ (q|n) =

(
n− 2

q − 1

)
.

Assume 1 ≤ q ≤ n− 1. Then

ker H̃ (q|n) = Xn · Im H̃ (q − 1|n− 1)⊕ ImH (q, q + 1).
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Proof. ad i). Suppose u ∈ Cq−1(n). Then according to Prop. 4, ii) we have
that

∆ (Xu) = X ·∆ (u) + (n · 1) · u.

But X2 = 0, so we obtain

X∆X (u) = (n · 1)Xu.

Now we take u = ∆w, w ∈ Cq(n). This yields

X∆X∆ (w) = (n · 1) · X∆ (w).

We observe X∆ (w) = H̃ (q|n)(w). The claim now follows.

To prove the remaining assertions let us make some preliminaries: Denote by
H̃ (q|n)r the restriction of H̃ (q|n) to the subspace Xn ·Cq−1(n− 1) of Cq(n).
Then according to Prop. 7, i)

Im H̃ (q|n) = Im H̃ (q|n)r.

Take now u ∈ Cq−1(n − 1) and denote X(n−1) :=
n−1∑
j=1

Xj. Then according to

Prop. 3

X∆ (Xn · u) = (X(n−1) +Xn) ·
(
u+Xn ·∆q−1(u)

)
=

= Xn ·
(
u+ X(n−1)∆q−1(u)

)
+ X(n−1) · u.

We rewrite this equation as follows

(5) . . . H̃ (q|n)(Xn · u) = Xn ·
(
u+ H̃ (q − 1|n− 1)(u)

)
+ X(n−1) · u.

(Observe that H̃ (0|n− 1) is the zero–mapping.)

Now assume in Eq (5) that Xn ·u is contained in the kernel of H̃ (q|n). Since
X(n−1) · u does not contain Xn as a factor both terms on the right–hand side
in Eq (5) must be zero, in particular

(6) . . . u+ H̃ (q − 1|n− 1)(u) = 0.
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ad ii). We derive from the first part of the proof that now H̃ (q− 1|n− 1)
is nilpotent. Therefore Eq (6) possesses only the trivial solution u = 0, so

H̃ (q|n)r is injective. In turn

rank H̃ (q|n) = rank H̃ (q|n)r = dimCq−1(n− 1) =

(
n− 1

q − 1

)
.

Now take 1 ≤ q ≤ n− 1. Since Kn is exact

Im ∆q+1 ⊆ ker H̃ (q|n).

According to Prop. 7, ii) we have

dim Im H̃ (q|n) + dim Im ∆q+1 =

(
n− 1

q − 1

)
+

(
n− 1

q

)
=

(
n

q

)
= dimCq(n).

This proves the remaining assertions.

ad iii). Assume first q ≥ 2. Let Xn ·u be in the kernel of H̃ (q|n)r. Then as

it was stated above u must solve Eq (6). Now according to i) H̃ (q− 1|n− 1)

is a projection. Therefore Eq (6) has exactly all u ∈ Im H̃ (q − 1|n − 1) as
solutions. Now we apply i) and obtain

dim ker H̃ (q|n)r = dim
(
Xn · Im H̃ (q − 1|n− 1)

)
=

= dim Im H̃ (q − 1|n− 1) =

(
n− 2

q − 2

)
,

in turn

rank H̃ (q|n) = rank H̃ (q|n)r =

(
n− 1

q − 1

)
−
(
n− 2

q − 2

)
=

(
n− 2

q − 1

)
.

(Observe that H̃ (n|n) = 0.) These arguments carry easily over to the case
q = 1; we leave the details to the reader whom we remind of our convention(
m
−1

)
= 0.

Assume now 1 ≤ q ≤ n− 1. Then we claim that the subspaces Xn · Im H̃
(q − 1|n − 1) and Im ∆q+1 of ker H̃ (q|n) are disjoint. In fact according to
Prop. 7, i) Im ∆q+1 is already generated by the ∆q+1(Xn · u), u ∈ Cq(n− 1).
But

∆q+1(Xn · u) = u+Xn ·∆q(u).
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Therefore we conclude

dim ImH̃ (q|n) + dim
(
Xn · Im H̃ (n− 1|q − 1) + Im∆q+1

)
=

(
n− 2

q − 1

)
+

(
n− 2

q − 2

)
+

(
n− 1

q

)
=

(
n− 1

q − 1

)
+

(
n− 1

q

)
=

(
n

q

)
= dimCq(n).

This finishes the proof.
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