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Département de Mathématiques,
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Abstract

Some identities due to Karlin and Szegö which provide a relationship
between determinants of classical orthogonal polynomials of Wronskian
and Hankel type are shown to be specializations of a general algebraic
identity between minors of a matrix.

Résumé

On montre que des familles d’identités découvertes par Karlin et
Szegö, qui relient des Wronskiens et des déterminants de Hankel de
polynômes orthogonaux classiques, résultent par spécialisation d’une
identité algébrique générale entre mineurs d’une matrice.

1 Introduction

Let

Pn(x) =
1

2n

bn
2
c∑

m=0

(−1)m
(

2n− 2m

n

)(
n

m

)
xn−2m (1)

denote the nth Legendre polynomial. It was found some fifty years ago by
Turán [29, 27] that for x ∈]− 1, 1[ and all n ≥ 0, there holds∣∣∣∣∣ Pn(x) Pn+1(x)

Pn+1(x) Pn+2(x)

∣∣∣∣∣ < 0 . (2)

Turán’s inequality was soon generalized in several ways and there is today a
huge literature on Turán type inequalities (see [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 20,
23, 25, 26, 31] and references therein).
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A major contribution to this topic was made by Karlin and Szegö [12], who
showed that for even l, the Hankel determinant

T (l, n;x) =

∣∣∣∣∣∣∣∣∣∣∣

Qn(x) Qn+1(x) · · · Qn+l−1(x)

Qn+1(x) Qn+2(x) · · · Qn+l(x)
...

...
...

Qn+l−1(x) Qn+l(x) · · · Qn+2l−2(x)

∣∣∣∣∣∣∣∣∣∣∣
(3)

has a constant sign for x ∈ I in each of the following cases:

(i) Qn(x) = P (λ)
n (x) (ultraspherical polynomials, which contain

Legendre polynomials for λ = 1/2) and I =]− 1, 1[,

(ii) Qn(x) = L(α)
n (x) (Laguerre polynomials) and I =]0,+∞[,

(iii) Qn(x) = Hn(x) (Hermite polynomials) and I =]−∞,+∞[.

Their strategy was to express the determinant T (l, n;x) in terms of the Wron-
skian of certain orthogonal polynomials of another class. For instance, in the
case of Legendre polynomials they proved that∣∣∣∣∣∣∣∣∣∣∣

Pn(x) Pn+1(x) · · · Pn+l−1(x)

Pn+1(x) Pn+2(x) · · · Pn+l(x)
...

...
...

Pn+l−1(x) Pn+l(x) · · · Pn+2l−2(x)

∣∣∣∣∣∣∣∣∣∣∣
= Al,n(x2 − 1)l(n+l−1)/2

×

∣∣∣∣∣∣∣∣∣∣∣

Tl(u) Tl+1(u) · · · Tl+n−1(u)

T ′l (u) T ′l+1(u) · · · T ′l+n−1(u)
...

...
...

T
(n−1)
l (u) T

(n−1)
l+1 (u) · · · T

(n−1)
l+n−1(u)

∣∣∣∣∣∣∣∣∣∣∣
, (4)

where Tl(u) is the lth Tchebichev polynomial of the second kind,

u = −x(x2 − 1)−1/2 , T (k)
m (u) =

dkTm(u)

duk
(5)

and

Al,n =
(−1)l

2

l−1∏
p=0

21−n−2p
n−1∏
q=0

21−q

q!
. (6)

In each of the three cases (i) (ii) (iii), Karlin and Szegö managed to find and
prove a similar formula, which allowed them to reduce their analysis to that
of the sign of a Wronskian determinant, which is easier.

Thus a kind of duality emerged between Hankel and Wronskian determi-
nants of classical orthogonal polynomials. However the proofs of Karlin and
Szegö did not clearly show what in their formulas resulted from a general
algebraic transformation, and what in contrast was due to some particular
properties of the orthogonal polynomials under consideration. In trying to
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clarify this, we obtained a different derivation of the identities of Karlin and
Szegö, which consists of two steps:

Step 1. A completely general algebraic identity stating that a Wronskian of or-
thogonal polynomials is proportional to a Hankel determinant whose elements
form a new sequence of polynomials.

Step 2. The verification that in each case considered by Karlin and Szegö, this
new sequence is, after change of variable and normalization, another class of
classical orthogonal polynomials.

To be more explicit, let us consider a sequence of arbitrary numbers an, n ≥
0. With this sequence are associated two classes of polynomials in the inde-
terminate u, defined by:

pn(u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an−1 1

a1 a2 · · · an u
...

...
...

...

an−1 an · · · a2n−2 un−1

an an+1 · · · a2n−1 un

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (n ≥ 0), (7)

qn(u) =
n∑

m=0

am

(
n

m

)
(−u)n−m, (n ≥ 0). (8)

Theorem 1 The following identity holds for all integer values of l and n,
l ≥ 1, n ≥ 1:∣∣∣∣∣∣∣∣∣∣∣

pl(u) pl+1(u) · · · pl+n−1(u)

p′l(u) p′l+1(u) · · · p′l+n−1(u)
...

...
...

p
(n−1)
l (u) p

(n−1)
l+1 (u) · · · p

(n−1)
l+n−1(u)

∣∣∣∣∣∣∣∣∣∣∣
= Cl,n

∣∣∣∣∣∣∣∣∣∣∣

qn(u) qn+1(u) · · · qn+l−1(u)

qn+1(u) qn+2(u) · · · qn+l(u)
...

...
...

qn+l−1(u) qn+l(u) · · · qn+2l−2(u)

∣∣∣∣∣∣∣∣∣∣∣
,

where Cl,n is independent of u:

Cl,n = (−1)nl
n−1∏
k=1

k!

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · ak+l−1

a1 a2 · · · ak+l

...
...

...

ak+l−1 ak+l · · · a2k+2l−2

∣∣∣∣∣∣∣∣∣∣∣
.

Now, as is well known (see [28], p.27), if

ak =
∫ b

a
ukw(u) du (9)

is the kth moment of the weight function w on ]a, b[, then pn is the nth or-
thogonal polynomial associated with w (up to normalization). Thus The-
orem 1 states that the Wronskian of n consecutive orthogonal polynomials
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pl, . . . , pl+n−1 is proportional to a l × l Hankel determinant of polynomials
qn, . . . , qn+2l−2 defined in a simple way from the moments of the pk’s. In fact,
it is easy to see that the qk’s are given by the generating series

∑
k≥0

qk(u)
tk

k!
= e−tu

∫ b

a
etxw(x)dx . (10)

The proof of Theorem 1 will be obtained by application of a ‘master identity’
of Turnbull on minors of a matrix [30, 16].

Theorem 1 should be regarded as a limiting case of the well-known result of
Christoffel for the orthogonal polynomials associated with the weight function
(u− x1) · · · (u− xn)w(u) (see [28], p. 30). And indeed, one could also obtain
this Theorem by taking an appropriate limit in the formula given by Lascoux
and Shi He [14] for the Christoffel polynomials (see below, end of Section 3).

Assuming Theorem 1, the verification of the identities of Karlin and Szegö is
therefore essentially reduced to the following algebraic property of the classical
polynomials, discovered by Burchnall [4].

Theorem 2 [4] Let Qn(x) denote one of the following classes of polynomials:

(i) Qn(x) = P (λ)
n (x) ; (ii) Qn(x) = L(α)

n (x) ; (iii) Qn(x) = Hn(x) .

Then we have
Qn(x) = λn φ(x)n qn(u) (11)

where qn(u) is of the form (8), and in case (i):

λn = P (λ)
n (1), φ(x) = (x2−1)1/2, u =

−x
(x2 − 1)1/2

, a2p =
(1

2
)p

(λ+ 1
2
)p
, a2p+1 = 0,

in case (ii):

λn = L(α)
n (0), φ(x) = −x, u = 1/x, am =

1

(α + 1)m
,

and in case (iii):

λn = (−2)n, φ(x) = 1, u = x, a2p =
(−1)p (2p)!

22p p!
, a2p+1 = 0.

Theorem 2 is rather straightforward to check, using the differential relation
satisfied by each class of polynomials. On the other hand, the differential
relation for general Jacobi polynomials does not allow to write them in the
form (11), which explains why there is no identity of the Karlin-Szegö type
for these polynomials. One may note that Burchnall had already observed
that Turán’s inequality (2) follows directly from Theorem 2, as well as its
generalization to polynomials of the classes (i), (ii), (iii). He had also given
formula (12.1) of [12] for n = 0, 1.

Using the results of Karlin and Szegö on Wronskians of orthogonal poly-
nomials ([12], p.6) one deduces immediately from Theorem 1 the following
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Corollary 3 Let w be an arbitrary non-negative weight function on a real
interval ]a, b[, and let qn(u) be defined by (10). For l, n ≥ 1, set

T (w; l, n;u) =

∣∣∣∣∣∣∣∣∣∣∣

qn(u) qn+1(u) · · · qn+l−1(u)

qn+1(u) qn+2(u) · · · qn+l(u)
...

...
...

qn+l−1(u) qn+l(u) · · · qn+2l−2(u)

∣∣∣∣∣∣∣∣∣∣∣
.

Then, if n is even, T (w; l, n;u) keeps a constant sign for all real u, and if n is
odd, T (w; l, n;u) has exactly l real simple zeros strictly interlaced between the
l + 1 zeros of T (w; l + 1, n;u).

By Theorem 1, when n = 1 the polynomial T (w; l, 1;u) is equal up to a
numerical factor to the lth orthogonal polynomial pl(u) associated with w.
Thus Corollary 3 is a generalization of the well-known fact that pl(u) has l
real simple zeros interlaced between the zeros of pl+1(u).

The paper is organized as follows. Section 2 provides some background
on determinantal identities. It also introduces the Schur function notation for
orthogonal polynomials, which is extremely convenient for handling formulas
such as Theorem 1. The proof of Theorem 1 is given in Section 3, and its
specialization to the Karlin-Szegö identities is considered in Section 4. To make
the paper self-contained, we have included a proof of Theorem 2. Section 5
gives examples of specializations of Theorem 1 to other classes of polynomials,
like Euler polynomials or Bernoulli polynomials. Finally, Section 6 discusses
another family of identities of Karlin and Szegö also contained in [12].

2 Determinantal identities and Schur functions

We begin by reviewing briefly the notation of [16] for minor identities, which is
a variant of Turnbull’s dot notation (see [30], p.27). Let M be a n× p matrix
with p > n, and a, b, . . . , c be n column vectors of M . The maximal minor
of M taken on these n columns is denoted by either a bracket or a one line
tableau:

[ab . . . c] = a b . . . c .

A product of k minors of M is designated by a k× n tableau. Thus for k = 3,

[ab . . . c].[de . . . f ].[gh . . . i] =

a b . . . c
d e . . . f

g h . . . i

.

To denote alternating sums of products of minors, we use tableaux with boxes
enclosing certain vectors. Let T be a k×n tableau and A a subset of elements
of T . Write ij for the number of elements of A lying in the jth row of T . The
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tableau τ obtained from T by boxing all elements of A will be used to denote
the sum

τ =
1

i1! · · · ik!
∑

σ∈S(A)

sgn (σ)σ(T ) , (12)

where σ(T ) is the tableau in which the elements of A are permuted by σ.
Due to the skew-symmetry of (a, b, . . . , c) 7→ [ab · · · c], if σ permutes between
themselves the elements of A lying in the jth row for all j, then clearly
sgn (σ)σ(T ) = T . Such permutations σ form a Young subgroup ST of S(A)
of cardinality i1! · · · ik!. Hence (12) may be rewritten as

τ =
∑
σ

sgn (σ)σ(T ) , (13)

where σ ranges now over a set of representatives of the left cosets of ST in
S(A). For example,

τ =
a b c

d e f
:=

a b c
d e f

−
f b c

d e a
−

a f c

d e b
.

We can now state Turnbull’s identity (see [30], p. 48 and [16]).

Theorem 4 Let τ be a p×n tableau with set of enclosed elements A of cardi-
nality ≤ n. Let R be one of the rows of T and denote by B the set of elements
of R which are not enclosed. Form a new tableau υ by (i) exchanging the el-
ements of A which do not belong to R with elements of B; (ii) removing the
boxes of the elements of A; (iii) boxing the elements of A; then,

τ = υ .

Taking for instance

τ =

a α β γ δ ε

b c f g h i

d j k l m o

and choosing for R the first row, we have A = {a,b, c,d}, B = {α, β, γ, δ, ε},
and we obtain

τ =

a α β γ δ ε

b c f g h i

d j k l m o

=

a b c d δ ε

α β f g h i

γ j k l m o

= υ .

Note that here τ represents a sum of 12 products of minors, whereas υ stands
for a sum of 30 products. It has been shown in [16] that many classical deter-
minantal identities are easily obtained as simple specializations of Theorem 4.
Such identities would become quite cumbersome to state if one did not use a
convenient system of notation showing clearly what are the transformations
being performed.
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Similarly, as explained by Lascoux in [13], the Schur function approach to
orthogonal polynomials simplifies greatly the algebraic aspects of this subject.
Recall that the complete homogeneous symmetric functions Si(E) of a set E
of indeterminates are defined via the generating series

σ(E, t) :=
∑
i≥0

Si(E) ti =
∏
e∈E

1

1− te
. (14)

In particular S0(E) = 1. We decide that for i < 0, Si(E) = 0. If F is a
second set of indeterminates, we define the formal sum and difference E + F
and E − F by

σ(E + F, t) := σ(E, t)σ(F, t) , (15)

σ(E − F, t) :=
σ(E, t)

σ(F, t)
. (16)

As an example, consider the case when E consists of only one variable E = {x},
and F of n variables. We have

σ(x− F, t) =

∏
f∈F (1− tf)

1− tx
=
∏
f∈F

(1− tf)
∑
k≥0

tkxk

so that
Sn(x− F ) =

∏
f∈F

(x− f)

is the monic polynomial with set of roots F .
An important idea, extensively used by Littlewood (see [15], chap. 7), is

that any sequence ak, k ≥ 1 of elements of a commutative ring R can be
regarded as the sequence of complete symmetric functions of a fictitious set of
variables E:

Sk(E) = ak .

Indeed it is well known that the Sk form a set of algebraically independent gen-
erators of the ring of symmetric functions (see [19]), and thus one can always
define a homomorphism from this ring to R by assigning Sk 7→ Sk(E) := ak. Of
course this is very formal, but it allows to understand that certain identities,
between orthogonal polynomials for instance, arise naturally as specializations
of identities at the level of symmetric functions. An example of this phe-
nomenon was given in [17] where a conjecture of Favreau for the computation
of the linearization coefficients of Bessel polynomials was shown to result from
a known formula for multiplying two staircase Schur functions.

In the sequel the notation Sk(E) will therefore indicate nothing but a cer-
tain specialization of the ring of symmetric functions. In this context, it is
customary to call E an alphabet. A set of indeterminates is regarded as a
particular case of alphabet by means of (14). The symmetric functions of a
sum E + F or a difference E − F of alphabets are defined via (15) and (16).
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Given n alphabets E1, . . . , En and a sequence I = (i1, . . . , in) of integers,
define the (multi) Schur function

SI(E1, . . . , En) = det[Sil+l−k(El)]1≤k,l≤n . (17)

We shall often use the exponential notation for sequences I with repeated
parts, and write I = (im1

1 im2
2 · · · imrr ) to indicate the sequence with m1 terms

equal to i1, m2 terms equal to i2 and so on.
As recalled in Section 1, orthogonal polynomials have a determinantal ex-

pression which can be seen as a particular instance of Schur function. Indeed,
putting

Sk(E) =
ak
a0

, ak =
∫ b

a
ukw(u) du ,

we see that

S(n,...,n,0)(E, . . . , E, u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sn(E) Sn+1(E) · · · S2n−1(E) un

Sn−1(E) Sn(E) · · · S2n−2(E) un−1

...
...

...
...

S1(E) S2(E) · · · Sn(E) u

S0(E) S1(E) · · · Sn−1(E) 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(18)

is up to a scalar the nth orthogonal polynomial associated with the weight
function w. Here, we consider the single variable u as a particular alphabet by
defining

σ(u, t) =
∑
i≥0

Si(u) ti :=
1

1− tu
=
∑
i≥0

uiti .

By subtraction of rows in this determinant we arrive at the following more
symmetric expression:

S(nn 0)(E, . . . , E, u) =

∣∣∣∣∣∣∣∣∣∣∣

Sn(E − u) Sn+1(E − u) · · · S2n−1(E − u)

Sn−1(E − u) Sn(E − u) · · · S2n−2(E − u)
...

...
...

S1(E − u) S2(E − u) · · · Sn(E − u)

∣∣∣∣∣∣∣∣∣∣∣
= S(nn)(E − u, . . . , E − u) .

This is now an ordinary Schur function (i.e. depending on a single alphabet
E − u) that we denote more concisely by S(nn)(E − u).

The formula S(nn 0)(E, . . . , E, u) = S(nn)(E − u) is in fact a special case of
a very useful lemma going back to Jacobi (see [11], p.371).

Lemma 5 Let F be an alphabet such that Sk(−F ) = 0 for k > m. Then

SI(E1, . . . , En) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Si1(E1 − F ) . . . Sin+n−1(En − F )
...

...
Si1−n+m+1(E1 − F ) . . . Sin+m(En − F )

Si1−n+m(E1) . . . Sin+m−1(En)
...

...
Si1−n+1(E1) . . . Sin(En)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Indeed, we have Sk(Ej−F ) = Sk(Ej)+Sk−1(Ej)S1(−F )+. . .+S1(Ej)Sk−1(−F )+
Sk(−F ). Thus, since Sk(−F ) = 0 for k > m, the determinant of the right-hand
side is obtained from that of the left-hand side by adding to each of the first
n−m rows a linear combination of the next m rows.

Note that if F is a set of m indeterminates, then it satisfies the condition
Sk(−F ) = 0 for k > m, since by definition∑

i≥0

Si(−F ) ti =
∏
f∈F

(1− tf) .

Finally, as a further example of this alphabet notation, let us consider again
the alphabet u consisting of the single variable u. Iterating (15), we define a
new alphabet nu := u+ · · ·+ u by

∑
i≥0

Si(nu) ti := σ(u, t)n =
1

(1− tu)n

so that Sk(nu) =
(
n+k−1

k

)
uk. Similarly, we set

∑
i≥0

Si(−nu) ti := σ(u, t)−n = (1− tu)n ,

which gives Sk(−nu) =
(
n
k

)
(−u)k. Now one can write for an arbitrary alphabet

E:

Sn(E − nu) =
n∑
k=0

Sk(E)

(
n

k

)
(−u)n−k, (19)

in which we recognize the polynomial qn(u) of (8) with Sk(E) = ak/a0.

3 Proof of Theorem 1

Let E be an arbitrary alphabet. We put

pm(u) = (−1)(
m+1

2 ) S(mm)(E − u) = (−1)(
m+1

2 ) S(mm0)(E, . . . , E, u) ,

qm(u) = Sm(E −mu) .

We first remark that∣∣∣∣∣∣∣∣∣∣∣

qn+l−1(u) qn+l(u) · · · qn+2l−2(u)

qn+l−2(u) qn+l−1(u) · · · qn+2l−3(u)
...

...
...

qn(u) qn+1(u) · · · qn+l−1(u)

∣∣∣∣∣∣∣∣∣∣∣
= S((n+l−1)l)(E − nu) . (20)

Indeed, since all the terms of the sequence I = ((n + l − 1)l) are equal, we
can use repeatedly Lemma 5 both in the rows and in the columns of the Schur
function S((n+l−1)l)(E − nu) and subtract the alphabet ku in the (k + 1)th
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column and the (l − k)th row to get the determinant in the left-hand side of
(20).

Denoting by Wr (f1(u), . . . , fk(u)) the Wronskian of the functions fj(u), 1 ≤
j ≤ k, we deduce from Section 2 that the formula to be proved can be rewritten
as

Wr (S(ll)(E−u), . . . , S((l+n−1)l+n−1)(E−u)) = Cl,n(E)S((l+n−1)l)(E−nu) , (21)

where

Cl,n(E) = (−1)(
n
2)

n−1∏
k=1

k!S((l+k−1)l+k)(E) . (22)

Let us introduce the (l + n)× (l + 3n− 2) matrix

1 0 . . . 0 Sl+n−1 Sl+n . . . S2l+2n−3 ul+n−1 dul+n−1

du
. . . dn−1ul+n−1

dun−1

0 1 . . . 0 Sl+n−2 Sl+n−1 . . . S2l+2n−4 ul+n−2 dul+n−2

du
. . . dn−1ul+n−2

dun−1

...
...

. . .
...

...
...

...
...

...
...

0 0 . . . 1 Sl+1 Sl+2 . . . S2l+n−1 ul+1 dul+1

du
. . . dn−1ul+1

dun−1

0 0 . . . 0 Sl Sl+1 . . . S2l+n−2 ul dul

du
. . . dn−1ul

dun−1

...
...

...
...

...
...

...
...

...

0 0 . . . 0 S1 S2 . . . Sl+n−1 u 1 . . . 0

0 0 . . . 0 S0 S2 . . . Sl+n−2 1 0 . . . 0


where Sk is short for Sk(E). The column vectors of this matrix will be denoted
from left to right by:

1,2, . . . ,n− 1, σ0, σ1, . . . , σl+n−2,u,u
′, . . . ,u(n−1) .

Using the notation of Section 2, the left-hand side of (21) is written as∣∣∣∣∣∣∣∣∣∣∣

[12 . . .n− 1σ0σ1 . . . σl−1u] [12 . . .n− 2σ0σ1 . . . σlu] . . . [σ0 . . . σl+n−2u]

[12 . . .n− 1σ0σ1 . . . σl−1u
′] [12 . . .n− 2σ0σ1 . . . σlu

′] . . . [σ0 . . . σl+n−2u
′]

...
...

...

[1 . . .n− 1σ0 . . . σl−1u
(n−1)] [1 . . .n− 2σ0 . . . σlu

(n−1)] . . . [σ0 . . . σl+n−2u
(n−1)]

∣∣∣∣∣∣∣∣∣∣∣

=

1 2 . . . n− 2 n− 1 σ0 σ1 . . . σl−1 u

1 2 . . . n− 2 σ0 σ1 σ2 . . . σl u′

...
...

...

1 σ0 . . . . . . . . . . . . . . . . . . σl+n−1 u(n−2)

σ0 σ1 . . . . . . . . . . . . . . . . . . σl+n−2 u(n−1)
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Now using the transformation of Theorem 4 with R being the last row, this
tableau is equal to

1 2 . . . n− 1 n− 1 σ0 σ1 . . . σl−1 σl

1 2 . . . n− 2 σ0 σ1 σ2 . . . σl σl+1

...
...

...
1 σ0 . . . . . . . . . . . . . . . . . . σl+n−1 σl+n−2

σ0 σ1 . . . . . . σl−1 u u′ . . . u(n−2) u(n−1)

=

1 2 . . . n− 1 n− 1 σ0 σ1 . . . σl−1 σl
1 2 . . . n− 2 σ0 σ1 σ2 . . . σl σl+1

...
...

...
1 σ0 . . . . . . . . . . . . . . . . . . σl+n−1 σl+n−2

σ0 σ1 . . . . . . σl−1 u u′ . . . u(n−2) u(n−1)

Note that all boxes have been deleted in the second tableau because all the
other permutations of the letters enclosed give rise to tableaux with two equal
letters on some row, which are therefore equal to zero in view of the skew-
symmetry of the determinant. Thus, we have rewritten the Wronskian of (21)
as a product of n determinants, where only the last one depends on the variable
u. Explicitly, we have obtained that the left-hand side of (21) is equal to

S(ll+1)(E)S((l+1)l+2)(E) · · ·S((l+n−2)l+n−1)(E) ∆(u) ,

where

∆(u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sl+n−1(E) Sl+n(E) . . . S2l+n−2(E) ul+n−1 dul+n−1

du
. . . dn−1ul+n−1

dun−1

Sl+n−2(E) Sl+n−1(E) . . . S2l+n−3(E) ul+n−2 dul+n−2

du
. . . dn−1ul+n−2

dun−1

...
...

...
...

...
...

S1(E) S2(E) . . . Sl(E) u 1 . . . 0

S0(E) S1(E) . . . Sl−1(E) 1 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, noting that

dkum

duk
= k!

(
m

k

)
um−k = k!Sm−k ((k + 1)u) ,

we have

∆(u) = 1! 2! · · · (n−1)!

∣∣∣∣∣∣∣∣
Sl+n−1(E) . . . S2l+n−2(E) Sl+n−1(u) . . . Sl(nu)

...
...

...
...

S0(E) . . . Sl−1(E) S0(u) . . . S−n+1(nu)

∣∣∣∣∣∣∣∣ .
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Finally, using Lemma 5 to subtract the alphabet nu in the l first rows of this
last determinant, we see that it reduces to∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Sl+n−1(E − nu) . . . S2l+n−2(E − nu) 0 . . . 0 0
...

. . .
...

...
...

...

Sn(E − nu) . . . Sl+n−1(E − nu) 0 . . . 0 0

Sn−1(E) . . . Sl+n−2(E) Sn−1(u) . . . S1((n− 1)u) 1

Sn−2(E) . . . Sl+n−3(E) Sn−2(u) . . . 1 0
...

...
... . .. ...

...

S0(E) . . . Sl−1(E) 1 . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)(
n
2)

∣∣∣∣∣∣∣∣
Sl+n−1(E − nu) . . . S2l+n−2(E − nu)

...
...

Sn(E − nu) . . . Sl+n−1(E − nu)

∣∣∣∣∣∣∣∣
so that

∆(u) = (−1)(
n
2) 1! 2! · · · (n− 1)!S((l+n−1)l)(E − nu) ,

as required. This finishes the proof of Theorem 1.

We end this section by noting the closely related expression given by Las-
coux and Shi He [14] of the Christoffel polynomials

ψl,n := det[S((l+i−1)l+i−1)(E − fj)]1≤i,j≤n ,

where F = {f1, . . . , fn} is a set of n indeterminates (see [28], p.30). Lascoux
and Shi He found that

ψl,n =
∏

1≤i,j≤n
(fi − fj)

∏
1≤j≤n−1

S((l+j−1)l+j)(E) S((l+n−1)l)(E − F ) . (23)

Theorem 1 may be regarded as the limiting case fi −→ u of (23). Indeed, ψl,n is
clearly skew-symmetric in the fi, and therefore is divisible by the Vandermonde
determinant

∏
1≤i,j≤n(fi − fj). The quotient may be expressed as a discrete

Wronskian, that is, a Wronskian determinant where derivatives are replaced
by divided differences. Once this division is performed, one can actually pass
to the limit fi −→ u and recover the usual Wronskian of Theorem 1.

4 Specialization to classical orthogonal poly-

nomials

In the derivation of the Karlin-Szegö identities, the following lemma, which
follows immediately from (19), will be used.

12



Lemma 6 A sequence of functions fk(u) is of the form

fk(u) = Sk(E − ku) , (k ≥ 0)

for a certain alphabet E, if and only if f0 ≡ 1 and

dfk(u)

du
= −kfk−1(u) , (k ≥ 1) .

In this case, the alphabet E is specified by Sk(E) = fk(0).

4.1 Ultraspherical polynomials

Let

P
(λ)
k (x) =

b k
2
c∑

m=0

(−1)m
(
k −m+ λ− 1

k −m

)(
k −m
m

)
(2x)k−2m (24)

denote the kth ultraspherical polynomial with parameter λ > −1/2 (see [28],

(4.7.31)). (For λ = 0, the right-hand side of (24) is 0, but limλ→0
1
λ
P

(λ)
k (x) =

2
k
Tk(x) and the subsequent formulas remain valid provided P

(λ)
k (x) is replaced

by this limit [28], (4.7.8).) We put

fk(u) = (x2 − 1)−k/2
P

(λ)
k (x)

P
(λ)
k (1)

,

where u = −x(x2 − 1)−1/2. Then,

dfk(u)

du
=

d

dx

(x2 − 1)−k/2
P

(λ)
k (x)

P
(λ)
k (1)

 dx

du

= (x2 − 1)−(k−1)/2

(x2 − 1)
d

dx

P (λ)
k (x)

P
(λ)
k (1)

− kxP (λ)
k (x)

P
(λ)
k (1)

 .

Now, using the classical differential relation ([28], (4.7.27))

(1− x2)
d

dx

P (λ)
k (x)

P
(λ)
k (1)

 = −kxP
(λ)
k (x)

P
(λ)
k (1)

+ k
P

(λ)
k−1(x)

P
(λ)
k−1(1)

,

we obtain

dfk(u)

du
= −k(x2 − 1)−(k−1)/2P

(λ)
k−1(x)

P
(λ)
k−1(1)

= −k fk−1(u) .

Thus, by Lemma 6, fk(u) = Sk(Uλ − ku) for the alphabet Uλ specified by

Sk(Uλ) = fk(0) = (−1)−k/2
P

(λ)
k (0)

P
(λ)
k (1)

=


(1

2
)l

(λ+ 1
2
)l

if k = 2l,

0 if k = 2l + 1,

(25)
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where we have used Pochammer’s symbol (a)n := a(a+1) · · · (a+n−1). Thus,
Theorem 2 is verified in case (i). It follows that

det

P (λ)
n+i+j(x)

P
(λ)
n+i+j(1)


0≤i,j≤l−1

= det
[
(x2 − 1)(n+i+j)/2 Sn+i+j(Uλ − (n+ i+ j)u)

]
0≤i,j≤l−1

= (x2 − 1)l(n+l−1)/2 det [Sn+i+j(Uλ − (n+ i+ j)u)]0≤i,j≤l−1

= (−1)(
l
2)(x2 − 1)l(n+l−1)/2S((n+l−1)l)(Uλ − nu) .

On the other hand, the moments of the weight function

wλ(u) = (1− u2)λ−1/2 , (−1 < u < 1)

associated with the polynomials P (λ)
n (u) are readily computed, and one finds

∫ 1
−1 u

k wλ(u)du∫ 1
−1 wλ(u)du

=


(1

2
)l

(λ+ 1)l
if k = 2l,

0 if k = 2l + 1.

Thus, comparing with (25), we have∫ 1
−1 u

k wλ(u)du∫ 1
−1 wλ(u)du

= Sk(Uλ+1/2) . (26)

Note the shift λ −→ λ + 1/2 which explains in particular the relationship
between Legendre and Tchebichev polynomials expressed by (4). It follows
from (26) that the Schur function S(nn)(Uλ − u) is equal up to a numerical
factor to P (λ−1/2)

n (u). Therefore, applying Theorem 1 we find that

det

P (λ)
n+i+j(x)

P
(λ)
n+i+j(1)


0≤i,j≤l−1

= A
(λ)
l,n (x2−1)l(n+l−1)/2 Wr (P

(λ−1/2)
l (u), . . . , P

(λ−1/2)
l+n−1 (u)) ,

where A
(λ)
l,n is a constant depending only on l, n and λ. By (22), to evaluate this

constant it remains to compute the specialized Schur functions S(mm+1)(Uλ).
We omit this calculation and only mention that it may be done using the
following result of Saalschütz [22]:

Lemma 7 Write (2m+ 1)!! = (2m+ 1)(2m− 1) . . . 3.1. Then∣∣∣∣∣∣∣∣∣∣∣

(2k + 1)!! (a)1 (2k − 1)!! . . . (a)n−1 (2(k − n) + 3)!!

(2k + 3)!! (a+ 1)1 (2k + 1)!! . . . (a+ 1)n−1 (2(k − n) + 5)!!
...

...
...

(2(k + n)− 1)!! (a+ n− 1)1 (2(k + n)− 3)!! . . . (a+ n− 1)n−1 (2k + 3)!!

∣∣∣∣∣∣∣∣∣∣∣
= (2(k−a)+1)n−1(2(k−a)−1)n−2 · · · (2(k−a−n)+5)(2k+1)!! · · · (2(k−n)+3)!!

This completes our derivation of the identity of Karlin and Szegö for ultras-
pherical polynomials ([12], (14.1)).
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4.2 Laguerre polynomials

The (generalized) Laguerre polynomials are given by ([28], (5.1.6))

L
(α)
k (x) =

k∑
m=0

(−1)m
(
k + α

k −m

)
1

m!
xm . (27)

Defining Lα by

Sm(Lα) =
1

(1 + α)m
, (m ≥ 0) (28)

we obtain easily that

L
(α)
k (x)

L
(α)
k (0)

= (−x)k Sk(Lα − ku), (29)

where u = 1/x.
On the other hand, the moments of the weight function

wα(u) = xαe−x , (x > 0)

are given by ∫+∞
0 uk wα(u)du∫+∞

0 wα(u)du
= (1 + α)k .

It follows by a simple calculation that the polynomial S(mm)(Lα − u) is equal
up to a numerical factor to x−m L(−α−2m)

m (−x), and thus, by application of
Theorem 1, we obtain

det

L(α)
n+i+j(x)

L
(α)
n+i+j(0)


0≤i,j≤l−1

= B
(α)
l,n x

l(n+l−1) Wr (λl(u), . . . , λl+n−1(u)) ,

where
λp(u) := up L(−α−2p)

p (−u−1) .

The value of B
(α)
l,n may be calculated from (22) and the easily checked formula:

S(mm+1)(Lα) =
m∏
k=0

(−1)(
m+1

2 ) k!

(1 + α)m+k

,

and this completes our derivation of the identity of Karlin and Szegö for La-
guerre polynomials ([12], (16.1)).

4.3 Hermite polynomials

The Hermite polynomials are given by ([28], (5.5.4))

Hk(x) = k!

b k
2
c∑

m=0

(−1)m
1

m!(k − 2m)!
(2x)k−2m . (30)
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Setting

Sm(H) =


(−1)l (2l)!

22l l!
if m = 2l,

0 if m = 2l + 1,

(31)

we obtain immediately that

Hk(x)

(−2)k
= Sk(H− kx). (32)

On the other hand, the moments of the weight function

w(x) = e−x
2

, (x ∈ R)

are easily found to be

∫+∞
−∞ xk w(x)dx∫+∞
−∞ w(x)dx

=


(2l)!

22l l!
if k = 2l,

0 if k = 2l + 1,
.

This implies, by application of Theorem 1, that

det

[
Hn+i+j(x)

(−2)n+i+j

]
0≤i,j≤l−1

= El,n Wr (Hl(
√
−1x), . . . , Hl+n−1(

√
−1x)) , (33)

where El,n is given by

El,n = ib
l+n

2
c−b l

2
c 2(n+l−1)(l−n)/2

∏l+n−1
k=n k!∏l+n−1
k=l k!

.

Note that (33) is not the formula (18.1) of [12]. Indeed, the formula of Karlin
and Szegö, which is simpler, involves a Wronskian and a Hankel determinant
of the same order n, and is thus of a different type.

5 Miscellaneous examples

Example 1. Let us consider the polynomial

dk(x) =
k∑
i=0

(−1)i
k!

i!
xk−i ,

which for x = 1 gives the number of permutations in Sk without fixed point.
We have

dk(x) = xk Sk(D − ku) ,

where u = 1/x and Sm(D) = m!. The Hankel determinant S(mm+1)(D) is easily
found to be

S(mm+1)(D) = (−1)m(m+1)/2

(
m∏
k=0

k!

)2

,
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and by Theorem 1, we get

det [dn+i+j(x)]0≤i,j≤l−1

= (−1)n(n+1)/2
l∏

k=1

k!
l+n−1∏
k=n

k! x(l+1)(l+n−1) Wr (Ll(u), . . . , Ll+n−1(u)) ,

where u = 1/x and Lm(u) = L(0)
m (u) is the (ordinary) Laguerre polynomial.

Example 2. Let En(x) denote the nth Euler polynomial defined via the gen-
erating series ∑

n≥0

En(x)
tn

n!
=

2etx

et + 1
.

Then, we have

En(x) = 2−n
n∑
k=0

Ek

(
n

k

)
(2x− 1)n−k ,

where Ek = 2kEk(1/2) is the kth Euler number. (Note that E2l+1 = 0). Thus,
putting

Sk(E) = Ek ,

we have En(x) = 2−n Sn(E − nu), with u = 1− 2x.
The calculation of the orthogonal polynomials S(nn)(E − u) is known to be

equivalent to the determination of the (formal) continued fraction expansion
of the associated power series

∑
n≥0 Sn(E)zn. But this continued fraction has

been computed by Stieltjes [24], who found that

∑
n≥0

Enu
−n−1 =

∫ ∞
0

e−ut

ch t
dt =

1

u+
1

u+
4

u+
9

u+
16

u + · · ·

(34)

It follows that

S(nn)(E − u) = (−1)n
(
n−1∏
k=1

k!

)2 bn
2
c∑

l=0

σl,n u
n−2l , (35)

where
σl,n =

∑
k2

1 k
2
2 · · · k2

l , (36)

the sum running over all integer sequences (ki)1≤i≤l satisfying

1 ≤ ki < n , ki+1 − ki ≥ 2 . (37)
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Therefore the specialization of Theorem 1 to the sequence of Euler polyno-
mials reads

det [En+i+j(x)]0≤i,j≤l−1 = Fl,n Wr (πl(u), . . . , πl+n−1(u)) , (38)

where

Fl,n =
(−1)nl+l(l−1)/2(1! 2! · · · (l − 1)!)2

2l(l+n−1) 1! 2! · · · (n− 1)!
, (39)

and

πm(u) =

bm
2
c∑

k=0

σk,m u
m−2k (40)

is the denominator of the mth partial fraction of (34).

Example 3. Let Bn(x) denote the nth Bernoulli polynomial defined via the
generating series ∑

n≥0

Bn(x)
tn

n!
=

tetx

et − 1
.

Then, we have

Bn(x) =
n∑
k=0

Bk

(
n

k

)
xn−k ,

where Bk = Bk(0) is the kth Bernoulli number. (Note that B2l+1 = 0 for
l ≥ 1). Thus, putting

Sk(B) = Bk ,

we have Bn(x) = Sn(B − nu), with u = −x.
The calculation of the orthogonal polynomials S(nn)(B−u) is equivalent to

the continued fraction expansion of
∑
n≥0 Sn(B)zn which has been obtained by

Rogers [21]:

∑
n≥0

Bnu
−n−1 =

∫ ∞
0

te−ut

et − 1
dt = 2

∫ ∞
0

ye−(1+2u)y

sh y
dy

=
2

1 + 2u+
14

3(1 + 2u) +
24

5(1 + 2u) +
34

7(1 + 2u) +
44

9(1 + 2u) + · · ·
(41)

It follows that

S(nn)(B − u) = (−1)n S((n−1)n)(B)ϕn(u+ 1/2) (42)
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where

S((n−1)n)(B) =
1

4(n2) (2n− 1)!!

n−1∏
k=2

k!4

(2k − 1)!!2
, ϕn(w) =

bn
2
c∑

l=0

τl,nw
n−2l ,

(43)
and

τl,n =
1

4l
∑ k4

1

(2k1 − 1)(2k1 + 1)
· · · k4

l

(2kl − 1)(2kl + 1)
, (44)

the sum running over all integer sequences (ki)1≤i≤l satisfying

1 ≤ ki < n , ki+1 − ki ≥ 2 . (45)

Therefore the specialization of Theorem 1 to the sequence of Bernoulli
polynomials reads

det [Bn+i+j(x)]0≤i,j≤l−1 = Gl,n Wr
(
ϕl

(
1

2
− x

)
, . . . , ϕl+n−1

(
1

2
− x

))
, (46)

where

Gl,n =
(−1)nl+l(l−1)/2

4(l2) 1! 2! · · · (n− 1)! (2l − 1)!!

l−1∏
j=2

j!4

(2j − 1)!!2
. (47)

6 A transformation of alphabets

There are other formulas in [12], Section 28 which suggest an algebraic ap-
proach. They can all be deduced from the following general

Proposition 8 Let E be an arbitrary alphabet. Define for r ≥ l

∆l,r(u) =

∣∣∣∣∣∣∣∣∣∣∣

Sl(E − lu) · · · S2l−1(E − (2l − 1)u) Sr+l(E − (r + l)u)

Sl−1(E − (l − 1)u) · · · S2l−2(E − (2l − 2)u) Sr+l−1(E − (r + l − 1)u)
...

. . .
...

...

S0(E) · · · Sl−1(E − (l − 1)u) Sr(E − ru)

∣∣∣∣∣∣∣∣∣∣∣
.

Then, we have

∆l,r(u) =

(
r

l

)
S(ll+1)(E)Sr−l(dlE − (r − l)u) , (48)

where the alphabet dlE is defined from the alphabet E by

Sm(dlE) =
S(ll(l+m))(E)(
l+m
l

)
S(ll+1)(E)

, (m ≥ 0).
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The proof of Proposition 8 is elementary. First, by several applications of
Lemma 5, one can write

∆l,r(u) = S(llr)(E, . . . , E,E − ru) .

Then, one uses (19) to rewrite this determinant as a sum and obtain the right-
hand side of (48).

Taking this into account, the formulas of Section 28 of [12] for determinants
of the type ∆l,r(u) whose elements are orthogonal polynomials of the classes
(i) (ii) (iii) of Theorem 2, are equivalent to the following properties of the
alphabets Uλ, Lλ and H associated with these polynomials (see Section 4):

dlUλ = Uλ+l , dlLα = Lα+2l , dlH = H . (49)

We believe that these properties, which represent nontrivial evaluations of
certain determinants, are to be added to the remarkable algebraic properties
of the classical polynomials discovered by Burchnall and recalled in Theorem 2.

Acknowledgements

The results of this paper were obtained in 1991 during the preparation of my
doctoral thesis. I want to express my gratitude to A. Lascoux, who arose my
interest in orthogonal polynomials and taught me that they should be regarded
as special Schur functions. I also want to thank S. Milne for convincing me
that this work should be written down because it might find applications in the
vast program on exact sums of squares formulas that he has recently unveiled
in [18].

References
[1] R. Askey, On some problems posed by Karlin and Szegö concerning orthogonal polynomials, Boll.
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