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Abstract

In this paper we consider sets of factors of a finite word which
permit us to reconstruct the entire word. This analysis is based on
the notion of box. The initial (resp. terminal) box of w is the shortest
prefix (resp. suffix) of w which is an unrepeated factor. A factor u
of w is a proper box if there are letters a, a′, b, b′ with a′ 6= a, b′ 6= b
such that u = asb and a′s, sb′ are factors of w. A box is called
maximal if it is not a proper factor of another box. The main result
of the paper is the following theorem (maximal box theorem): Any
finite word w is uniquely determined by the initial box, the terminal
box and the set of maximal boxes. Another important combinatorial
notion is that of superbox. A superbox is any factor of w of the kind
asb, with a, b letters, such that s is a repeated factor, whereas as
and sb are unrepeated factors. A theorem for superboxes similar to
the maximal box theorem is proved. Some algorithms allowing us to
construct boxes and superboxes and, conversely, to reconstruct the
word are given. An extension of these results to languages is also
presented.

1 Introduction

The study of the factors of finite as well as infinite words represents a topic
of great interest in combinatorics on words. The number of factors of any
length of a word (subword complexity) has been viewed as an evaluation of
the richness of the structure of the considered word. However, for a finite
word, it is sufficient to know its factors up to a certain length to reconstruct
the entire word. For instance, it is easily seen that the only word whose
factors of length 2 are ab, bc and cd is abcd.

The problem of reconstructing a word by knowing its ‘short’ factors ap-
pears in several fields. For instance, in analyzing DNA molecules, it is not
possible to read the entire sequence of bases but only segments of limited
length.
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The aim of this paper is to study some sets of ‘short’ factors of a word
which completely characterize the word itself, as well as the methods to
reconstruct the word from such factors.

There are two combinatorial properties of factors of a word which turn out
to be crucial for our purpose, namely repetition and extendability. Indeed,
we shall show that the special factors (see e.g. [1, 5, 7, 8, 9, 10]), the shortest
unrepeated initial and terminal factors and some related concepts are of
fundamental importance in determining the ‘structure’ of the word itself.

We recall that a factor u of a finite word w is called right (resp. left)
special if there exist two distinct extensions on the right (resp. on the left)
in factors of w. A factor is bispecial if it is right and left special.

We shall introduce two classes of factors of a word, both of which uniquely
determine the word. The first one is constituted by the boxes : the initial and
terminal box of a word w are, respectively, the shortest prefix and suffix of
w which are unrepeated factors while a proper box is any factor of w of the
kind asb with a and b letters and s a bispecial factor of w. The second one is
the set of the superboxes, which are factors of w of the kind asb with a and
b letters, s a repeated factor of w and as, sb unrepeated factors of w.

In Sec. 4 we prove the surprising result, called the maximal box theorem
(cf. Theorem 1), that any word is completely determined by the set of its
(maximal) boxes and the initial and terminal boxes. A simple procedure to
construct the word from the boxes is also given. A remarkable corollary is
the following. Let Kf be the length of the terminal box of a word f and Rf

be the minimal integer such that there are no right special factors of f of
length Rf . If g is a word having the same set of factors as f up to the length
n = max{Rf , Kf} + 1, then f = g. The value of n is optimal since one can
prove that there exists a word g′ having the same set of factors of f up to
the length n− 1, and, moreover, all the factors of f of length n are factors of
g′ and all the factors of g′ of length n with the exception of one, are factors
of f .

In Sec. 5 we study some interesting structural properties of boxes. In
particular it is shown that the set of the maximal boxes in Theorem 1, is
‘nearly’ optimal because for any given word w one can construct another
word v with the property that all boxes of w are factors of v, whereas there
exist at most two boxes of v which are not factors of w. Moreover, we show
that, starting from the set of maximal boxes of a word, one can construct
the so-called ‘reduced sets’. An analog of the maximal box theorem for
reduced sets holds. These sets are convenient, since they provide a simpler
representation of the word.

In Sec. 6 the notion of superbox is studied. We prove a theorem show-
ing that the initial and terminal boxes and the set of superboxes determine
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uniquely the word w. Moreover, we give two simple algorithms: the first al-
lows us for any word w to determine the set of all superboxes and the second
permits us to reconstruct the word starting from the set of all superboxes
and the initial and terminal boxes.

In Sec. 7 we deal with languages and a box theorem for languages is
presented. As a consequence of this result, we give a new proof of the Fine
and Wilf ‘uniqueness theorem’ for periodic functions in the discrete case.

2 Preliminaries

Let A be a finite non-empty set or alphabet and A∗ the free monoid generated
by A. The elements of A are usually called letters and those of A∗ words.
The identity element of A∗ is called empty word and denoted by ε. We set
A+ = A∗ \ {ε}.

A word w ∈ A+ can be written uniquely as w = w1w2 · · ·wn, with wi ∈ A,
1 ≤ i ≤ n, n > 0. The integer n is called the length of w and denoted |w|.
The length of ε is 0. For any n ≥ 0, we denote by An the set of all the words
of A∗ of length n and set A[n] =

⋃n
i=0 A

n.
Let w ∈ A∗. The word u ∈ A∗ is a factor (or subword) of w if there exist

p, q ∈ A∗ such that w = puq. A factor u of w is called proper if u 6= w.
If w = uq, for some q ∈ A∗ (resp. w = pu, for some p ∈ A∗), then u is

called a prefix (resp. a suffix ) of w.
For any w ∈ A∗, we denote respectively by F (w), Pref(w) and Suff(w)

the sets of its factors, prefixes and suffixes.
We shall denote F (w) ∩ A by alph(w). This set represents the subset of

the letters of A occurring in the word w.
For any X ⊆ A∗, we set

F (X) =
⋃
u∈X

F (u).

An element of F (X) will be also called a factor of X.
Let u ∈ F (w). Any pair (λ, µ) ∈ A∗ × A∗ such that w = λuµ is called

an occurrence of u in w. If λ = ε (resp. µ = ε), then the occurrence of u is
called initial (resp. terminal). An occurrence is called internal if it is neither
initial nor terminal. An occurrence (λ, µ) of u in w is called leftmost (resp.
rightmost) if the length of λ (resp. µ) is minimal. A factor u of w is called
internal if there exists an internal occurrence of u in w.

Let w = w1w2 · · ·wn (wi ∈ A, 1 ≤ i ≤ n) be a word on the alphabet A.
A set C ⊆ F (w) is a covering of w if, for any k = 1, . . . , n, there exist i, j,
1 ≤ i ≤ k ≤ j ≤ n, such that wiwi+1 · · ·wj ∈ C.
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Let us suppose Card(A) = d and consider in A∗ the prefix ordering of the
words. It is well known that the graph associated with this order is a d-ary
tree Td, whose nodes represent the words of A∗ and the root represents the
empty word.

With each finite word w, one can associate a finite subtree Tw of Td
obtained by taking all the nodes which represent factors of the word w. We
call Tw the factor tree of w, since any factor of w will be represented by a
node n of Tw or, equivalently, by a unique path going from the root to the
node n.

If one replaces the prefix ordering of words by the suffix ordering one can
construct in a similar way another tree T ′w, whose nodes represent the factors
of w.

3 Repeated factors

A factor u of a word w is called repeated if there are at least two distinct
occurrences of u in w. In the opposite case, the factor u is called unrepeated.

A factor u of w is extendable on the right (resp. left) in w if there exists
a letter x ∈ A such that ux ∈ F (w) (resp. xu ∈ F (w)). The factor ux (resp.
xu) of w is called a right (resp. left) extension of u in w.

If u is a factor of w, then the right (resp. left) valence of u is the integer
Card({x ∈ A | ux ∈ F (w)}) (resp. Card({x ∈ A | xu ∈ F (w)})). The right
(resp. left) valence of u is then the number, possibly 0, of all the distinct
right (resp. left) extensions of u in w. In terms of the factor tree Tw (resp.
T ′w) the right (resp. left) valence of u is the degree (that is the number of
sons) of the node representing the factor u.

With each word w ∈ A∗ one can associate the factor kw defined as the
shortest suffix of w which is an unrepeated factor of w. This is also equivalent
to say that kw is the shortest factor of w which cannot be extended on the
right in w, i.e. it has right valence equal to 0. The set of the factors of w
which are not extendable on the right is given by A∗kw ∩ Suff(w). In the
factor tree Tw, these factors are represented by the leaves. In a symmetric
way, one can define hw as the shortest prefix of w which cannot be extended
on the left in w. Also in this case, the factors of w which are not extendable
on the left are represented by the leaves of the tree T ′w.

In the following, we shall set Kw = |kw| and Hw = |hw|. If w 6= ε, then
one has 1 ≤ Kw ≤ |w| and 1 ≤ Hw ≤ |w|. If w = ε, then Hε = Kε = 0.

One can remark that all the proper prefixes of hw and all the proper
suffixes of kw are repeated factors, while hw and kw are unrepeated.
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In the following, for w 6= ε, we shall denote by h′w (resp. k′w) the prefix
(resp. suffix) of w of length Hw − 1 (resp. Kw − 1).

A word s is called a right (resp. left) special factor of w if there exist two
letters x, y ∈ A, x 6= y, such that sx, sy ∈ F (w) (resp. xs, ys ∈ F (w)).

A right (resp. left) special factor of w is then a repeated factor having at
least two distinct extensions on the right (resp. left) in w, i.e. it has a right
(resp. left) valence ≥ 2. This implies that a right (resp. left) special factor
of w has at least an internal occurrence in w.

We remark that the set of right (resp. left) special factors is closed by
suffixes (resp. prefixes).

A factor of w which is right and left special is called bispecial.
Let us remark that the empty word ε is always a bispecial factor of w,

except when w is a power of a single letter. In such a case, w = kw = hw.
We denote by Rw (resp. Lw) the minimal non-negative integer such that

there are no right (resp. left) special factors of length Rw (resp. Lw). One has
0 ≤ Rw, Lw ≤ |w|−1. Since the set of right special factors is closed by suffixes,
there are no right special factors of length larger than Rw. Symmetrically,
there are no left special factors of length larger than Lw.

A repeated factor of a word w is called maximal (with respect to the
factorial order) if it is not a proper factor of another repeated factor of w.

Proposition 1 If a repeated factor u of a word w is maximal, then one of
the following conditions is satisfied:

(i) u is a bispecial factor,

(ii) u = h′w,

(iii) u = k′w.

Proof. Let us first suppose that u is a prefix of w. Since u is a repeated
factor, then u has to be a prefix of h′w. From the maximality, it follows that
u = h′w. In a symmetric way, one proves that if u is a suffix of w, then
u = k′w.

Let us then suppose that u is neither a prefix nor a suffix of w. Then,
since u is repeated, there will exist two internal occurrences of u in w, and
then letters x, x′, y, y′ ∈ A such that xuy, x′uy′ are two different occurrences
of factors of w. Since u is a maximal repeated factor, it follows x 6= x′ and
y 6= y′. Hence, u is a bispecial factor of w.

Let w ∈ A∗ be a non-empty word. We denote by Gw the maximal length
of a repeated factor of w. The following proposition, whose proof we omit
for the sake of brevity, holds [3, 6].
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Proposition 2 Let w ∈ A+. One has

Gw = max{Rw, Kw} − 1 = max{Lw, Hw} − 1.

Let us now for any word w ∈ A∗ introduce an important set of factors
that we call boxes.

Let w ∈ A∗ be a word. A factor f of w is called a proper box of w if
f = asb with a, b ∈ A and s is a bispecial factor. The factor hw (resp. kw) is
called the initial (resp. terminal) box of w.

By box, without specification, we mean indifferently the initial, the ter-
minal or a proper box.

A box is called maximal (with respect to the factorial order) if it is not a
proper factor of another box.

The set of maximal boxes of w will be denoted by Bw. We note that, for
any word, the initial, the terminal and the maximal boxes can be constructed
by a simple algorithm, whose description is omitted.

4 Maximal box theorem

In this section we prove a theorem, called the ‘maximal box theorem’, which
shows that if of a given word one knows the initial box, the terminal box
and the set of the maximal boxes, then the word is uniquely determined.
A simple procedure in order to reconstruct the word from the boxes is also
given. A remarkable consequence of this theorem is that if two words f and
g have the same set of factors up to the length n = max{Rf , Kf} + 1, then
g = f . We prove also that this value of n is optimal.

Lemma 1 Let α be a box of w. Then any internal factor of α is repeated in
w.

Proof. Let us first suppose that α = kw and f is an internal factor of α. One
has that f is a factor of k′w, so that it is repeated in w. In a symmetrical
way, one reaches the same result if f is an internal factor of α = hw. Let us
now suppose that α = asb is a proper box of w. An internal factor f of α is
a factor of s, which is a bispecial factor of w. Since s is a repeated factor of
w, so will be f .

Example 1 Let w be the word w = abccbabcab. One has hw = abcc, kw =
cab. The proper boxes of w are ab, ba, bc, ca, cb, cc, abc, bca, bcc, cba, ccb.
The maximal boxes are

abcc, bca, cab, cba, ccb.
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Let w = abaababaaba. In this case hw = abaabab, kw = babaaba and these
are the only maximal boxes of w.

For all n ≥ 0, we introduce the binary relation �n in A∗ defined as: for
f, g ∈ A∗,

f �n g if and only if F (f) ∩ A[n] ⊆ F (g) ∩ A[n].

One easily verifies that the relation �n is a well-founded quasi-order and, for
all f, u, v ∈ A∗, n ≥ 0, one has f �n ufv. We note that the intersection of
the �n for all n ≥ 0 is the factorial order, that we denote by �.

For all n ≥ 0, we consider the equivalence relation ∼n = �n ∩ �n−1.
Thus

f ∼n g if and only if F (f) ∩ A[n] = F (g) ∩ A[n].

Theorem 1 (Maximal box theorem) Let f, g ∈ A∗ be two words such that

(i) hf = hg, kf = kg,

(ii) Bf ⊆ F (g),

(iii) Bg ⊆ F (f).

Then f = g.

Proof. We prove, by induction, that for all n ≥ 0, f ∼n g. Clearly, this
implies that f = g.

Let us prove first the base of the induction, i.e. f ∼1 g. If Card(alph(f)) ≤
1, then f = kf = kg. Thus, f ∈ F (g). Let us then suppose Card(alph(f)) >
1. In such a case, ε is a bispecial factor and any w ∈ A2 ∩ F (f) is a box.
Since w is included in a maximal box, one has w ∈ F (g). Thus we have
f �1 g. In a symmetrical way, one proves that g �1 f .

Now, let us prove the induction step. We suppose that n ≥ 1, f ∼n g
and prove that f ∼n+1 g.

Let w be a factor of f of length n + 1. If w is a box of f , then w is a
factor of a maximal box and, therefore, by condition (ii), w is a factor of g.

Let us then suppose that w is not a box. We factorize w as w = atb, with
a, b ∈ A, t ∈ A∗, and t is not a bispecial factor of f . Since |at| = |tb| = n, by
the inductive hypothesis, one has that at, tb ∈ F (g).

Let us first suppose that t is not a right special factor of f . Since at
is extendable on the right in f , kg = kf cannot be a suffix of at. This
implies that at can be extended on the right in g. Thus there exists a letter
c such that atc ∈ F (g). By the inductive hypothesis, tc ∈ F (f). Since t
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is not right special in f , one obtains b = c and then atb ∈ F (g). With a
symmetrical argument, if t is not a left special factor of f , one proves again
that atb ∈ F (g). Thus we have obtained that f �n g. In a symmetrical way,
one derives that g �n f .

Proposition 3 Let w be a word. If v is a factor of w, then there exists
u ∈ Suff(v) such that for any a ∈ A

va ∈ F (w) if and only if (ua ∈ F (Bw) and va 6∈ A+hw). (1)

Proof. If v is not right extendable, then the statement is trivially verified by
u = v. If Card(alph(w)) = 1, then the statement is verified by u = ε, since
in this case hw = w. If v = ε, then u = ε satisfies the condition.

Let us then suppose that v 6= ε is right extendable and that Card(alph(w))
> 1. We can write

v = λbs, b ∈ A, λ ∈ A∗,
where s is the longest proper suffix of v which is a bispecial factor of w. We
set u = bs. Let a be a letter of A and suppose va ∈ F (w). This trivially
implies that va 6∈ A+hw. Moreover, ua = bsa is a box so that ua ∈ F (Bw).

Conversely, let ua ∈ F (Bw), va 6∈ A+hw and suppose, by contradiction,
that va 6∈ F (w). Let t be the longest suffix of v such that ta ∈ F (w). Since
t 6= v, one can write

v = µct, with c ∈ A, µ ∈ A∗ and cta 6∈ F (w).

Since va 6∈ A+hw, it follows that ta 6= hw. Thus, since t is left extendable
in w, one derives that ta is left extendable in w, so that there exists a letter
x ∈ A such that xta ∈ F (w). Moreover, since v is right extendable in w,
there exists a letter y ∈ A such that cty ∈ F (w). One has x 6= c and
y 6= a, since cta 6∈ F (w). Hence, t is bispecial. This contradicts the fact that
|t| ≥ |u| > |s|.

The previous proposition shows that if v is a right extendable factor of
w, then to find a right extension of v it is sufficient to determine the longest
suffix u of v in w such that there is at least one letter a ∈ A satisfying the
right hand side condition of Eq. (1). For such a letter a one has va ∈ F (w).

Let us now give a simple procedure, based on Proposition 3, which allows
us to construct the word w knowing the initial box hw, the terminal box kw
and the set Bw of maximal boxes.

Let us write hw = h′wz, with z ∈ A.
Initially, we set p = hw. Now suppose that we have already constructed

a prefix p of w of length |p| ≥ Hw.
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If p ∈ A∗kw, then the procedure ends and w = p. Otherwise, the right
valence of p is 1. In order to extend p in w, we have to distinguish the
following cases:

(i) p 6∈ A∗h′w.

In this case, we search for the shortest suffix u of p which can be extended
on the right in F (Bw) by a unique letter x and replace p by px.

Indeed, by Proposition 3, there exists a suffix of p which can be extended
on the right in F (Bw) by a unique letter which is exactly the letter extending
p on the right in w.

(ii) p ∈ A∗h′w.

In this case, we search for the shortest suffix u of p which can be extended
on the right in F (Bw) by a unique letter x ∈ A \ {z} and replace p by px.

Indeed, by Proposition 3, there exists a suffix of p which can be extended
on the right in F (Bw) by a unique letter in the set A \ {z} which is exactly
the letter extending p on the right in w.

Proposition 4 Let f ∈ A∗ and n = Rf + 1. If g ∈ A∗ is such that g ∼n f
and kf = kg, then f = g.

Proof. Let us first prove that Rf = Rg. By the hypothesis, f and g have
the same set of factors up to the length n = Rf + 1, so that all right special
factors of f are also right special factors of g. Thus Rf ≤ Rg.

Let us suppose that Rf < Rg. Since the right special factors are closed
by suffixes, there exists a right special factor of g of length Rf . This is also
a right special factor of f , since f ∼Rf+1 g, and this is a contradiction. Thus
Rf = Rg = R.

Remark that the length of any proper box of f or of g is at most n.
Indeed, any proper box of f (resp. of g) can be written as asb with a, b ∈ A
and s a bispecial factor of f (resp. of g). This implies that |asb| ≤ R + 1.

Hence, by the hypothesis that g ∼n f , one derives that any proper max-
imal box of f is a factor of g and, conversely, any proper maximal box of g
is a factor of f .

Since kf = kg, in view of Theorem 1, in order to prove f = g, it is
sufficient to show that hf = hg.

Let us first suppose that |hf | ≤ R. Then hf is a factor of g which cannot
be extended on the left in g because f ∼n g. Thus hg has to be a prefix of
hf . This implies |hg| ≤ R, so that, by using the same argument, it follows
that hf has to be a prefix of hg, and then hf = hg.

By a symmetrical argument, one arrives to the same conclusion if one
supposes that |hg| ≤ R.
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Hence, we may suppose that |hf |, |hg| > R. This implies that h′f (resp.
h′g) is not a right special factor of f (resp. g). Let us show that h′f cannot be
an internal factor of f . Indeed, otherwise there would exist letters x, y ∈ A
such that hf = h′fx and h′fy ∈ F (f). Since hf is unrepeated then x 6= y
so that h′f would be a right special factor of f . Thus, h′f has to be a suffix
of k′f . Since k′f is repeated, and h′f is not an internal factor of f , the only
possibility is that h′f = k′f . In a similar way, one has that h′g = k′g. By the
hypothesis that kf = kg, one derives h′f = k′f = k′g = h′g = u.

Let hf = ux and hg = uy, x, y ∈ A. Let v be the suffix of u of length
R. Since f ∼n g, vx and vy are factors of both f and g. Since v is not right
special, it follows x = y and hf = hg.

By a symmetric argument, the following proposition can be proved.

Proposition 5 Let f ∈ A∗ and n = Lf + 1. If g ∈ A∗ is such that g ∼n f ,
and hf = hg, then f = g.

Theorem 2 Let f ∈ A∗ and n = max{Rf , Kf} + 1. For any g ∈ A∗, if
g ∼n f , then g = f .

Proof. Let g ∼n f . By Proposition 4, it is sufficient to prove that kf = kg.
Since f ∼n g, then the factor kf of f cannot be extended on the right in

g, since otherwise kf could be also extended on the right in f . Hence, kg is
a suffix of kf . If kg is a proper suffix of kf , then kg would be extendable on
the right in f and, by hypothesis, also in g, which is a contradiction. Thus,
kf = kg.

Proposition 6 Let f ∈ A∗ and n = max{Rf , Kf}. There exists g ∈ A∗

such that g 6= f and g ∼n f . Moreover, f �n+1 g and all the factors of g of
length n+ 1, with the exception of one, are factors of f .

Proof. If f = ε, then n = 0 and the statement is trivially satisfied by g = a,
a ∈ A. Let us then suppose f 6= ε. By Proposition 2 the word f has a
repetition of length n− 1, i.e. we can write

f = prq = p′rq′,

with |r| = n− 1 and |p| < |p′|.
Set g = p′rq. Let us prove that f �n+1 g. Since |p′| > |p|, one has p′ = pξ

with ξ ∈ A+ and then f = pξrq′. As |ξr| ≥ n, then a factor u of f of length
n + 1 is either a factor of pξr = p′r or a factor of ξrq′ = rq, so that u is a
factor of g.
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Conversely, a factor of g of length n is either a factor of p′r or of rq and,
therefore, it is a factor of f . This proves that f ∼n g.

All factors of length n+ 1 of g which occur in p′r or in rq are also factors
of f . The only exception is given by xry, where x is the last letter of p′ and
y is the first letter of q.

Example 2 Let A = {a, b, c} and w = abccbabcab. The factor abc is the
right special factor of w of maximal length and kw = cab. In this case,
Rw = 4 and Kw = 3. We can write w = prq = p′rq′, where r = abc,
p = ε, q = cbabcab, p′ = abccb and q′ = ab. Let us then consider the word
g = p′rq = abccbabccbabcab. One easily verifies that g ∼4 w, w �5 g and
that babcc is the only factor of g of length 5 which is not a factor of w.

5 Boxes and reduced sets

In this section we prove some structural properties of boxes. In particular
it is shown that any maximal box is an unrepeated factor. Moreover, one
can prove that the set of the maximal boxes in the maximal box theorem is
‘nearly’ optimal in the sense that for any given word w one can construct
another word v with the property that all boxes of w are factors of v, whereas
there exist at most two boxes of v which are not factors of w. However, a
simpler representation of a word is given by the so-called ‘reduced sets’ for
which a result similar to the maximal box theorem holds.

Proposition 7 Let α be a maximal box of w. Then α is an unrepeated factor
of w.

Proof. Suppose, by contradiction, that the maximal box α is a repeated
factor of w. The box α will be a factor of a maximal repeated factor u of w.
By Proposition 1, there are three possibilities:

1. u = h′w. In such a case it follows that α is a proper factor of the initial
box hw, which contradicts the maximality of α as a box.

2. u = k′w. In such a case it follows that α is a proper factor of the
terminal box kw, which contradicts the maximality of α as a box.

3. u is a bispecial factor of w. Since u has always an internal occurrence in
w, it can be extended in a box. The same will occur for α, which contradicts
again the maximality of α.

Proposition 8 Let w = λasbµ, where asb 6= kw (resp. asb 6= hw) is a proper
maximal box of w with a, b ∈ A, s ∈ A∗. If csb (resp. asc) is a box of w
with c ∈ A and c 6= a (resp. c 6= b) having the leftmost (resp. rightmost)
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occurrence in w given by (λ′, µ′), then kw = csbµ′ and µ′ ∈ Pref(µ) (resp.
hw = λ′asc and λ′ ∈ Suff(λ)).

Proof. We can write the word w as

w = λasbµ = λ′csbµ′. (2)

First, we show that one of the words µ and µ′ is a prefix of the other one.
Indeed, if it is not the case, we can write

µ = uxδ, µ′ = uyδ′

with x, y ∈ A, x 6= y, u, δ, δ′ ∈ A∗. Hence asbux, csbuy ∈ F (w). This implies
that sbu is a bispecial factor, so that asbux is a box properly containing asb.
This contradicts the maximality of asb.

Now, let us suppose that µ is a prefix of µ′. By Eq. (2), one has that asbµ
is a suffix of w and sbµ is repeated in w. This implies that |asbµ| ≤ Kw.
Since asb 6= kw, it follows that asb is a proper factor of kw, which contradicts
the maximality of asb as a box.

Thus µ′ is a prefix of µ. By Eq. (2), one has that csbµ′ is a suffix of w
and sbµ′ is repeated in w. Consequently, csbµ′ is a suffix of kw. If csbµ′ is a
proper suffix of kw, then it will be repeated and this contradicts the fact that
(λ′, µ′) is the leftmost occurrence of csb in w. We conclude that kw = csbµ′.

The remaining part of the proof is obtained by a symmetrical argument.

The following theorem [3], whose proof we omit, shows that for any given
word w one can construct another word v with the property that all boxes
of w are factors of v, whereas there exist at most two boxes of v which are
not factors of w.

Theorem 3 Let w = λasbµ, where asb is a proper maximal box of w. Then,
there exists a further occurrence of s in w, i.e. w = ξsη, such that the word
v defined by

v =

{
λasη if |λa| > |ξ|
ξsbµ if |λa| < |ξ|, (3)

satisfies the following conditions:

(i) Bw ⊆ F (v),

(ii) 1 ≤ Card(Bv \ F (w)) ≤ 2.
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Example 3 Let w be the word w = abccbabcab considered in Example 1.
One has hw = abcc, kw = cab and the maximal boxes are

abcc, bca, cab, cba, ccb.

Let us underline in w the occurrences of the two maximal boxes bca and ccb:

w = abccbabcab = abccbabcab.

According to Theorem 3, we construct the word

v = abccbabcbabcab.

One easily verifies that the maximal boxes of v are hv = abcc, kv = cab,
ccbabcb and bcbabca. Moreover, Bw ⊆ F (v) and ccbabcb and bcbabca are the
only two maximal boxes of v which are not factors of v.

Starting from the set of maximal boxes of a given word w, we introduce
now the so-called reduced sets which also provide a representation of the
word. These sets can be convenient since, as we shall see, the representation
is simpler in the sense that any element of a reduced set is a factor of a
maximal box.

Let f be a word and Bf be the set of its maximal boxes. We construct a
new set Df as follows. Let s be a bispecial factor of f and consider the set

Ωs = {asb ∈ Bf | a, b ∈ A, as 6∈ Suff(h′f ), sb 6∈ Pref(k′f )}.

If Ωs is not empty, we take arbitrarily one maximal box α = asb ∈ Ωs

and replace it by all boxes which are proper factors of it. Iterating these
operations over all bispecial factors of f , we obtain a set of boxes. By deleting
all elements which are not maximal, with respect to the factor order, we
construct a set Df that we call a reduced set of f .

We observe that, in the construction of Df , it is sufficient to replace
the maximal box α ∈ Ωs by the longest box which is a proper prefix of α
and the longest box which is a proper suffix of α. Indeed, it is easily seen
that any other box in α will not appear in a reduced set. Moreover, by the
construction, any box of f which is not maximal, is a factor of an element of
Df .

We remark that, by the arbitrary choice in each Ωs of the maximal box
to be replaced, one can obtain, in general, several distinct reduced sets.

Example 4 Let w be the word w = babacbcabaccbb. One has hw = bab,
kw = bb. The bispecial factors of w are

ε, a, b, c, cb, abac.
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The set of maximal boxes of w is

Bw = {bca, acbc, ccbb, babacb, cabacc}.

We can construct a reduced set Dw in the following way. We make the
following replacements:

bca → bc, ca,

acbc → acb, cbc,

babacb → bab, acb.

By deleting all non-maximal elements, we obtain the reduced set

Dw = {bab, acb, cbc, ccbb, cabacc}.

The following theorem [3], which is an analog of the maximal box theorem,
holds. The proof is omitted for the sake of brevity.

Theorem 4 Let f, g ∈ A∗ be two words and Df , Dg be reduced sets of f and
g, respectively. Suppose that

(i) hf = hg, kf = kg,

(ii) Df ⊆ F (g),

(iii) Dg ⊆ F (f).

Then f = g.

6 Superboxes

In this section we introduce the important notion of superbox which is strongly
related to that of maximal box. An analog of the maximal box theorem is
proved in the case of superboxes. Two simple algorithms are given, the first
allows us to determine the superboxes of any word w, the second permits to
reconstruct the word starting from hw, kw and the set of all superboxes.

Proposition 9 Let f = asb be a box of the word w with a, b ∈ A, s ∈ A∗
such that as and sb are unrepeated. Then f is a maximal box.
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Proof. Suppose that asb is not maximal. Then, there exists a box α such
that α = λasbµ, where λ, µ ∈ A∗ and λµ 6= ε. It follows that either as or
sb is an internal factor of α and then, by Lemma 1, a repeated factor of w,
which is a contradiction.

We shall set

Mw = {asb ∈ F (w) | a, b ∈ A, s repeated and as, sb unrepeated.}

The elements of Mw will be called superboxes. The reason of this name is
due to the fact that, as we shall prove by Proposition 13, any element of
Bw \ {hw, kw} is a factor of an element of Mw.

Let us recall (cf. [2]) that a subset X of A∗ is called a factor code if no
word of X is a proper factor of another word of X.

Proposition 10 Let w be a word. The set Mw is a factor code. Moreover,
no element of Mw can be a factor of hw or of kw.

Proof. Suppose by contradiction that asb, ctd ∈ Mw, with a, b, c, d ∈ A,
s, t ∈ A∗, and that asb is a proper factor of ctd. This implies that either as
or sb is a factor of t, which is absurd since t is a repeated factor of w. Suppose
now that asb is a factor of hw (resp. kw). Then as (resp. sb) is a factor of
h′w (resp. k′w) and then it is a repeated factor, which is a contradiction.

Proposition 11 Let f = asb ∈ Mw with a, b ∈ A and s ∈ A∗. If s 6= k′w
and s 6= h′w, then f is a proper maximal box.

Proof. Since s is a repeated factor of w, there will be at least another occur-
rence of s in w. Let us prove that we can always reduce ourselves to consider
only the case when this occurrence is internal.

Let us suppose that s is a suffix of w. Then there exists a letter c such
that cs is a suffix of w, and c 6= a, since as is unrepeated. If |cs| < Kw,
then cs is repeated and, therefore, s has a further internal occurrence in w.
If |cs| > Kw, then |s| ≥ Kw. This implies that s is unrepeated, which is
a contradiction. Finally, if |cs| = Kw one has s = k′w, which contradicts
the hypothesis made. The case when s is a prefix is dealt with a symmetric
argument.

Let us consider then the case that the further occurrence of s is internal.
In such a case, there exist two letters c, d ∈ A, for which csd ∈ F (w). One
has c 6= a and d 6= b, because as and sb are unrepeated. This implies that s
is a bispecial factor and that f = asb is a proper box. By Proposition 9, the
result follows.
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Proposition 12 Let asb be a proper maximal box of the word w, with a, b ∈
A and s ∈ A∗. If sb (resp. as) is neither a prefix (resp. suffix) of k′w nor of
h′w, then sb (resp. as) is unrepeated.

Proof. Suppose that sb is a repeated factor of w. If sb is a prefix of w,
then sb has to be a prefix of h′w, which has been excluded. Thus there is a
letter c such that csb is a factor of w and c 6= a, since asb is unrepeated by
Proposition 7. By Proposition 8, one derives that csb is a prefix of kw and
then sb is a prefix of k′w, which has been excluded. Thus, sb is unrepeated.

The remaining part of the proof is carried out in a symmetrical way.

Proposition 13 Any maximal box α of a word w, such that α 6= hw and
α 6= kw is a factor of a superbox.

Proof. Let α = asb be a proper maximal box of w such that α 6= hw and
α 6= kw. We consider the set of all factors of w of the kind f = xry where
x, y ∈ A, r is a repeated factor of w and α is a factor of f .

Let us take in this set a maximal element, with respect to factor ordering,
say β = ctd, with c, d ∈ A, t ∈ A∗. Let us prove that β ∈ Mw. Let us first
suppose that td is repeated. If β is right extendable, then one contradicts
the maximality of β. If β is not right extendable, since td is repeated, then
α � β = kw. Since α 6= kw, one contradicts the maximality of α as a box.
This proves that td is unrepeated. In a symmetric way, one shows that ct is
unrepeated.

Proposition 14 The maximal boxes α ∈ Bw \{hw, kw} are either superboxes
or prefixes or suffixes of elements of Mw ∩ A{h′w, k′w}A.

Proof. Let α ∈ Bw \ {hw, kw}. By Proposition 13, one has that α is a
factor of a superbox β. Hence either α = β or α is a proper factor of β. In
this latter case, β is not a maximal box. By Proposition 11, it follows that
β ∈ A{h′w, k′w}A. Since α is a maximal box, α cannot be a factor of h′w or of
k′w and then, necessarily, it is a prefix or a suffix of β.

Proposition 15 Let f, g ∈ A∗ be two words such that

(i) hf ∈ Pref(g), kf ∈ Suff(g), hg ∈ Pref(f), kg ∈ Suff(f),

(ii) Mf ⊆ F (g),

(iii) Mg ⊆ F (f).

Then f = g.
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Proof. By Proposition 13, any element of Bf is a factor of an element of
Mf∪{hf , kf} and any element of Bg is a factor of an element ofMg∪{hg, kg}.
Hence, Bf ⊆ F (g) and Bg ⊆ F (f). Thus, by the maximal box theorem, it is
sufficient to prove that hf = hg and kf = kg.

Let us prove that hf = hg. By (i), we can write f as f = hfξ = hgξ
′,

ξ, ξ′ ∈ A∗ and g = hgλ = hfλ
′, λ, λ′ ∈ A∗. Let us suppose that |hf | < |hg|.

This implies that hf is a prefix of h′g and then it is repeated in g.
We consider a further occurrence of hf in g and a repeated factor α of g

of maximal length containing as a factor such an occurrence of hf . We can
write g as g = δαµ with δ, µ ∈ A∗. If δ and µ are non-empty, then there exist
letters x and y such that xαy is a factor of g and xα, αy are unrepeated.
Thus, xαy ∈ Mg and then xαy is a factor of f . One derives that in f
there is a repeated occurrence of hf , which is a contradiction. Now, suppose
δ = ε. Since α is repeated, α is a proper prefix of hg and, therefore, hf has
two occurrences in hg. Since hg ∈ F (f), this is a contradiction. Finally, if
µ = ε, then α is a suffix of k′g which, by (i), is a proper suffix of f . Thus
α has a non-initial occurrence in f . Consequently hf is repeated, which is a
contradiction.

Thus, |hf | ≥ |hg|. Symmetrically, one can prove that |hg| ≥ |hf | and then
hf = hg. In a symmetric way, one proves that kf = kg, which concludes the
proof.

Let α, β ∈ A∗. We denote by α ∧ β the maximal overlap of α with β, i.e.
the suffix of maximal length of α which is a prefix of β. Then α and β can
be written as α = λ(α ∧ β), β = (α ∧ β)µ, λ, µ ∈ A∗. We shall denote by
α ∨ β the word

α ∨ β = λ(α ∧ β)µ = αµ = λβ.

Lemma 2 Let u and v be two factors of a word w ∈ A∗. If t is an unrepeated
factor of w such that t ∈ Suff(u)∩Pref(v), then t = u∧ v and u∨ v ∈ F (w).

Proof. One has u = ξt and v = tη, where ξ, η ∈ A∗. Since |t| ≤ |u ∧ v|,
t is both a prefix and a suffix of u ∧ v. But t is unrepeated and, therefore,
necessarily t = u ∧ v. Moreover, the only occurrence of t in w has to be
preceded by ξ and followed by η, so that u ∨ v = ξtη ∈ F (w).

If t, u, v ∈ F (w) and both Suff(t)∩Pref(u) and Suff(u)∩Pref(v) contain
elements which are unrepeated factors of w, then one has (t∨u)∨v = t∨(u∨v).
Indeed, by an iterated application of Lemma 2, one has that (t ∨ u) ∨ v and
t∨ (u∨ v) are both factors of w beginning by t and ending by v. They must
coincide, since t and v are unrepeated in w.
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More generally, if α0, α1, . . . , αn ∈ F (w) and, for any i = 0, 1, . . . , n − 1,
Suff(αi)∩Pref(αi+1) contains an element which is an unrepeated factor of w,
then one can consider the word α0 ∨ α1 ∨ · · · ∨ αn, in which the parentheses
are omitted since its value is independent from the order with which the
operations are performed.

Let us now introduce a sequence Γw = (α0, α1, . . . , αn) of elements of
Mw ∪ {hw, kw} giving a covering of w. We shall call Γw also the covering
sequence of w.

In the first step, we set α0 = hw.
Now suppose that we have determined the element αi ∈ Mw ∪ {hw}

(i ≥ 0). Let u be the shortest suffix of αi which is unrepeated in w and write
u = at with a ∈ A and t repeated in w. One can uniquely write w = λatµ,
with λ, µ ∈ A∗.

If tµ is a repeated factor of w, then, since atµ is unrepeated in w, one
has atµ = kw. In this case, we set αi+1 = kw and this is the last element of
the sequence. Otherwise, we set αi+1 = ar, where r is the shortest prefix of
tµ which is unrepeated in w. In this latter case, one has r = sb, with b ∈ A
and s is a repeated factor of w, while as is unrepeated in w, since it contains
the prefix u = at. Thus, αi+1 ∈Mw.

In other words, each element of the sequence Γw, excepted the first one, is
obtained by taking the shortest suffix of the previous one which is unrepeated
in w and extending it in w until one finds either a superbox or kw.

Example 5 Let w be the word abccbabcab. The previous procedure gener-
ates the covering sequence of w

abcc, ccb, cba, babca, cab.

One has hw = abcc and kw = cab.

Proposition 16 Let w be a word and Γw = (α0, α1, . . . , αn) be the covering
sequence of w. Then one has

w = α0 ∨ α1 ∨ · · · ∨ αn (4)

and
Mw = {α1, α2, . . . , αn−1}. (5)

Proof. By the definition of Γw, for any i = 0, 1, . . . , n − 1, there is an unre-
peated factor t of w such that t ∈ Suff(αi)∩Pref(αi+1). Thus, by an iterated
application of Lemma 2, one gets that the right hand side of Eq. (4) is a
factor of w. Since it contains both hw and kw it must be necessarily equal to
the entire w, so that Eq. (4) is proved.
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Consequently, any factor of w either is a factor of an element of Γw or
contains a word αi ∧ αi+1 as an internal factor, for some i = 0, 1, . . . , n− 1.
Since the words αi ∧ αi+1 are unrepeated, they cannot occur as internal
factors of a superbox and, therefore, any superbox is necessarily a factor of
an element of Γw. In view of Proposition 10, one easily derives Eq. (5).

In the sequel, we shall denote Mw ∪ {hw, kw} by M′
w. Proposition

16 ensures that the elements of M′
w are exactly the elements of Γw and,

therefore, M′
w is a covering of w. Let us observe that, in general, the set

of maximal boxes Bw of the word w is not a covering. For instance, in the
case of the word w = abcdebcd, one has Bw = {ab, de, ebcd} which is not a
covering of w.

Next proposition shows that, once we know the initial box hw of a word
w and the set M′

w, we can effectively order the elements of M′
w to obtain

Γw.

Proposition 17 Let w be a word and Γw = (α0, α1, . . . , αn) be the covering
sequence of w. Set δi = |αi ∧ αi+1|, 0 ≤ i ≤ n − 1. Then αi+1 is the only
element β ∈M′

w \ {αi} such that |αi ∧ β| ≥ δi.

Proof. Suppose β ∈M′
w \ {αi} and |αi∧β| ≥ δi. Let u be the shortest suffix

of αi which is unrepeated in w. By the definition of Γw, u is a prefix of αi+1,
so that, by Lemma 2, |u| = |αi ∧ αi+1| = δi ≤ |αi ∧ β|. One derives that
u occurs in β. But, by the way the procedure for the construction of the
covering sequence is carried out, the only elements of Γw in which u occurs
are αi and αi+1, so that β = αi+1.

To reconstruct a word w, knowing hw and M′
w, first one has to arrange

the elements of M′
w to obtain Γw and then use Eq. (4). The first operation

is realized by observing that the first element of Γw is hw and that each non-
terminal element αi of Γw is followed by the element β ∈ M′

w \ {αi} such
that the overlap of αi with β has maximal length.

An unrepeated factor of w is called minimal if any of its proper factors
is repeated. Let us denote by Uw the set of the minimal unrepeated factors
of w.

Proposition 18 Let w be a word and Γw = (α0, α1, . . . , αn) be the covering
sequence of w. Then one has

Uw = {α0 ∧ α1, α1 ∧ α2, . . . , αn−1 ∧ αn}.
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Proof. By construction, the maximal overlap of an element αi with the
consecutive αi+1, 0 ≤ i ≤ n− 1, is a minimal unrepeated factor of w.

Conversely, let u ∈ Uw. We can write uniquely w = λuµ, with λ, µ ∈ A∗.
Since u is minimal unrepeated, one has u = rb, with b ∈ A and r is a repeated
factor of w. Thus w = λrbµ. If λr is repeated, since λrb is unrepeated, then
λrb = hw. Otherwise, consider the shortest unrepeated suffix of λr; we can
write it as as, with a ∈ A and s is a repeated factor. Thus, in this case, since
sb is unrepeated, asb ∈ Mw. Hence, in any case, u can be extended on the
left in w in an element of Γw, say αi, with 0 ≤ i ≤ n− 1. Moreover, u is the
shortest suffix of αi unrepeated in w, so that it is also a prefix of αi+1. By
Lemma 2, one has u = αi ∧ αi+1.

The following ‘uniqueness’ result was proved in [3]:

Proposition 19 Let w ∈ A∗. Then w is the unique word of minimal length
which begins by hw, ends by kw and contains the elements of Mw as factors.

In conclusion of this section, we mention that some general theorems
relating Nerode’s equivalence of the language of the factors of a word and
the theory presented in the previous sections are proved in [3].

7 A box theorem for languages

By language on the alphabet A we mean any non-empty subset L of A∗. A
language is called factorial if L = F (L). The notions of extendable factor,
special factor and box can be naturally extended to languages, as follows.

A factor u of a language L is said to be right (resp. left) extendable in
L if there exists a letter a ∈ A such that ua ∈ F (L) (resp. au ∈ F (L)). We
shall denote by UL the set of all factors of L which cannot be extended on
the left in L, i.e.

UL = {u ∈ F (L) | Au ∩ F (L) = ∅}.

In a symmetrical way, VL will denote the set of all factors of L which cannot
be extended on the right in L, i.e.

VL = {u ∈ F (L) | uA ∩ F (L) = ∅}.

We shall denote by U0
L (resp. V 0

L ) the set of the elements of UL (resp. VL)
which are minimal with respect to the prefix (resp. suffix) order. One has:

U0
L = UL \ ULA+, V 0

L = VL \ A+VL.
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Let L be a language over the alphabet A. A word s of A∗ is called a
right (resp. left) special factor of L if there exist x, y ∈ A, x 6= y, such that
sx, sy ∈ F (L) (resp. xs, ys ∈ F (L)). A word of A∗ which is a right and left
special factor of L is called a bispecial factor of L.

We introduce the set BL of the proper boxes of L. A proper box α of L
is a factor of L of the kind α = asb with a, b ∈ A and s a bispecial factor
of L. Any element of U0

L (resp. V 0
L ) is called an initial (resp. terminal) box.

By box, without specification, we mean indifferently an initial, a terminal or
a proper box.

Let L,M be two languages over the alphabet A such that F (L) 6= F (M).
A separating factor of L and M is any word in the symmetric difference
(F (L) \ F (M)) ∪ (F (M) \ F (L)). A minimal separating factor of L and M
is a separating factor of minimal length.

The following lemma, whose proof is in [4], is the key result which allows
us to prove a box theorem for languages.

Lemma 3 Let L,M ⊆ A∗ be two languages such that F (L) 6= F (M) and let
u be a minimal separating factor of L and M . Set p = max{2, |u|}. If the
following conditions are satisfied

1) U0
L ∩ Ap−1 = U0

M ∩ Ap−1, V 0
L ∩ Ap−1 = V 0

M ∩ Ap−1

2) BL ∩ Ap ⊆ F (M), BM ∩ Ap ⊆ F (L),

then Card(alph(L)),Card(alph(M)) ≤ 1.

Theorem 5 Let L and M be languages on the alphabet A. If the following
conditions are satisfied:

1) U0
L = U0

M , V 0
L = V 0

M

2) BL ⊆ F (M), BM ⊆ F (L),

then either F (L) = a∗, F (M) = b∗, with a, b ∈ A and a 6= b, or F (L) =
F (M).

Proof. We shall prove that if F (L) 6= F (M), then F (L) = a∗, F (M) = b∗,
with a, b ∈ A and a 6= b.

By Lemma 3, one has Card(alph(L)),Card(alph(M)) ≤ 1. In such a case,
either V 0

L 6= ∅ and F (L) = F (V 0
L ) or V 0

L = ∅ and L is an infinite language;
similarly, one has that either V 0

M 6= ∅ and F (M) = F (V 0
M) or V 0

M = ∅ and M
is an infinite language. Thus, if V 0

L = V 0
M 6= ∅, one would have

F (L) = F (V 0
L ) = F (V 0

M) = F (M),
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which is a contradiction. The only remaining possibility is that V 0
L = V 0

M = ∅
and L ⊆ a∗ and M ⊆ b∗ are infinite languages, with a 6= b.

Let us observe that the preceeding theorem is, in fact, a box theorem for
factorial languages (with the only exception of a trivial case). However, by
using boardmarkers for the words of the language L, a box theorem for lan-
guages can be easily derived. More precisely, let us consider a new alphabet
A0 = A ∪ {#}, where # 6∈ A. For any language L ⊆ A∗, we introduce the
language

L̂ = #L#.

The following theorem holds [4].

Theorem 6 Let L and M be languages on the alphabet A such that

BL̂ ⊆ F (M̂), BM̂ ⊆ F (L̂).

Then L = M .

An infinite word f (from left to right) on the alphabet A is any map
f : N+ → A. We shall set for any i ≥ 1, fi = f(i) and write

f = f1f2 · · · fn · · · .

A word u ∈ A∗ is a factor of f if u = ε or there exist integers i, j such
that 1 ≤ i ≤ j and u = fi · · · fj. The set of all factors of f is denoted by
F (f). A factor u of an infinite word f is called respectively right special, left
special, bispecial if it is a right special, left special, bispecial factor of F (f).
For an infinite word f we shall write Bf , U

0
f and V 0

f instead of BF (f), U
0
F (f)

and V 0
F (f).

An infinite word f is periodic of period p if for any i ≥ 1 one has fi = fi+p.

As an application of Theorem 5, we shall give a new proof of the ‘unique-
ness theorem’ for periodic functions of Fine and Wilf [11], in the discrete
case. We recall that this theorem can be stated as follows.

Theorem 7 Let f and g be two infinite periodic words of periods p and q,
respectively. Let d = gcd(p, q). If

f1f2 · · · fp+q−d = g1g2 · · · gp+q−d,

then f = g.
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Proof. If p = q the result is trivial. Thus, we can always suppose p < q.
Let us first consider the case that

gcd(p, q) = 1.

Set w = f1f2 · · · fp+q−1 = g1g2 · · · gp+q−1. By the periodicity of f and g and
the fact that |w| = p+ q − 1 ≥ 2p− 1, one has

f ∼p w ∼p g. (6)

Since the finite word w has period p, then as proved in [6], one has

Rw + 1 ≤ p. (7)

By (6), f , g and w have the same right special factors up to the length p−1.
In particular, they have no right special factor of length Rw. Consequently,
the length of a proper box of f or g is at most Rw + 1. By Eqs. (6) and (7)
one derives

Bf ⊆ F (g), Bg ⊆ F (f).

Moreover, one has U0
f = U0

g = ∅ by the periodicity of f and g, and V 0
f =

V 0
g = ∅ because f and g are infinite words (from left to right). Thus by

Theorem 5 it follows either F (f) = a∗, F (g) = b∗, with a, b ∈ A and a 6= b,
or

F (f) = F (g).

The first case cannot occur in our case. Thus, from the previous equality,
since f has period p, it follows that also g has period p. Since f and g have
the same initial segment of length p, one derives f = g.

Let us now suppose that d > 1. For any r = 1, 2, . . . , d, consider the
infinite words

frfr+dfr+2d · · · fr+nd · · · ,

grgr+dgr+2d · · · gr+nd · · · .

They have respectively periods p
d

and q
d
. Moreover they have the same initial

segment of length p+q
d
− 1 so that, by the preceding result, they are equal. It

follows that f = g.

In conclusion, we mention that the notion of ‘special factor’ can be ex-
tended in a natural way to the case of sets of bidimensional words (pictures),
taking into account right, left, up, and down extensions of subpictures. In
this way, one can generalize in a suitable way the notion of box. A box
theorem for picture languages, extending Theorem 6, is proved in [4].
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[4] A. Carpi and A. de Luca, Repetitions and Boxes in Words and Pictures,
Preprint 98/44, Dipartimento di Matematica dell’Università di Roma
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