
A q-PRODUCT TUTORIAL
FOR A

q-SERIES MAPLE PACKAGE
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Abstract. This is a tutorial for using a new q-series Maple pack-
age. The package includes facilities for conversion between q-series
and q-products and finding algebraic relations between q-series.
Andrews found an algorithm for converting a q-series into a prod-
uct. We provide an implementation. As an application we are
able to effectively find finite q-product factorisations when they
exist thus answering a question of Andrews. We provide other
applications involving factorisations into theta-functions and eta-
products.
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1. Introduction

In the study of q-series one is quite often interested in identifying
generating functions as infinite products. The classic example is the
Rogers-Ramanujan identity

∞∑
n=0

qn
2

(q; q)n
=
∞∏
n=1

1

(1− q5n−1)(1− q5n−4)
.

Here we have used the notation in (2.2). It can be shown that the
left-side of this identity is the generating function for partitions whose
parts differ by at least two. The identity is equivalent to saying the
number of such partitions of n is equinumerous with partitions of n
into parts congruent to ±1 (mod 5).

The main goals of the package are to provide facility for handling
the following problems.

1. Conversion of a given q-series into an “infinite” product.
2. Factorization of a given rational function into a finite q-product

if one exists.
3. Find algebraic relations (if they exist) among the q-series in a

given list.

A q-product has the form

N∏
j=1

(1− qj)bj ,(1.1)

where the bj are integers.
In [4, §10.7], George Andrews also considered Problems 1 and 2,

and asked for an easily accessible implementation. We provide im-
plementations as well as considering factorisations into theta-products
and eta-products. The package provides some basic functions for com-
puting q-series expansions of eta functions, theta functions, Gaussian
polynomials and q-products. It also has a function for sifting out coeffi-
cients of a q-series. It also has the basic infinite product identities: the
triple product identity, the quintuple product identity and Winquist’s
identity.

1.1. Installation instructions. The qseries package can be down-
loaded via the WWW. First use your favorite browser to access the
URL:
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http://www.math.ufl.edu/∼frank/qmaple.html then follow the di-
rections on that page. There are two versions: one for UNIX and one
for WINDOWS.

2. Basic functions

We describe the basic functions in the package which are used to
build q-series.

2.1. Finite q-products.

2.1.1. Rising q-factorial. aqprod(a,q,n) returns the product

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).(2.2)

We also use the notation

(a; q)∞ =
∞∏
n=1

(1− aqn−1).

2.1.2. Gaussian polynomials. When 0 ≤ m ≤ n, qbin(q,m,n) returns
the Gaussian polynomial (or q-binomial coefficient)[

n

m

]
q

=
(q)n

(q)m(q)n−m
,

otherwise it returns 0.

2.2. Infinite products.

2.2.1. Dedekind eta products. Suppose <τ > 0, and q = exp(2πiτ).
The Dedekind eta function [27, p. 121] is defined by

η(τ) = exp(πiτ/12)
∞∏
n=1

(1− exp(2πinτ))

= q1/24

∞∏
n=1

(1− qn).

etaq(q,k,T) returns the q-series expansion (up to qT ) of the eta prod-
uct

∞∏
n=1

(1− qkn).

This corresponds to the eta function η(kτ) except for a power of q.
Eta products occur frequently in the study of q-series. For example,
the generating function for p(n), the number of partitions of n, can be
written as

∞∑
n=0

p(n)qn =
1∏∞

n=1(1− qn)
.
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See [1, pp. 3–4]. The generating function for the number of partitions
of n that are p-cores [19], ap(n), can be written

∞∑
n=0

ap(n)qn =
∞∏
n=1

(1− qpn)p

(1− qn)
.

Recently, Granville and Ono [21] were able to prove a long-standing
conjecture in group representation theory using elementary and function-
theoretic properties of the eta product above.

2.2.2. Theta functions. Jacobi [24, Vol I, pp. 497–538] defined four
theta functions θi(z, q), i = 1, 2, 3, 4. See also [42, Ch. XXI]. Each
theta function can be written in terms of the others using a simple
change of variables. For this reason, it is common to define

θ(z, q) :=
∞∑

n=−∞

znqn
2

.

theta(z,q,T) returns the truncated theta-series

T∑
i=−T

ziqi
2

.

The case z = 1 of Jacobi’s theta functions occurs quite frequently. We
define

θ2(q) :=
∞∑

n=−∞

q(n+1)2/2

θ3(q) :=
∞∑

n=−∞

qn
2

θ4(q) :=
∞∑

n=−∞

(−1)nqn
2

theta2(q,t), theta3(q,t), theta4(q,t) (resp.) returns the q-series
expansion to order O

(
qT
)

of θ2(q), θ3(q), θ4(q) respectively. Let a, and
b be positive integers and suppose |q| < 1. Infinite products of the form

(qa; qb)∞(qb−a; qb)∞

occur quite frequently in the theory of partitions and q-series. For ex-
ample the right side of the Rogers-Ramanujan identity is the reciprocal
of the product with (a, b) = (1, 5). In (3.4) we will see how the function
jacprodmake can be used to identify such products.
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3. Product Conversion

In [1, p. 233], [4, §10.7] there is a very nice and useful algorithm for
converting a q-series into an infinite product. Any given q-series may
be written formally as an infinite product

1 +
∞∑
n=1

bnq
n =

∞∏
n=1

(1− qn)−an .

Here we assume the bn are integers. By taking the logarithmic deriva-
tive of both sides we can obtain the recurrence

nbn =
n∑
j=1

bn−j
∑
d|j

dad.

Letting an = 1 we obtain the well-known special case

np(n) =
n∑
j=1

p(n− j)σ(j).

We can also easily construct a recurrence for the an from the recurrence
above.

The function prodmake is an implementation of Andrews’ algorithm.
Other related functions are etamake and jacprodmake.

3.1. prodmake. prodmake(f,q,T) converts the q-series f into an infi-
nite product that agrees with f to O(qT ). Let’s take a look at the left
side of the Rogers-Ramanujan identity.

> with(qseries):

> x:=1:

> for n from 1 to 8 do

x := x + q∧(n*n)/aqprod(q,q,n):

od:

> x := series(x,q,50);

x := 1 + q + q2 + q3 + 2 q4 + 2 q5 + 3 q6 + 3 q7 + 4 q8 + 5 q9 + 6 q10

+7 q11 + 9 q12 + 10 q13 + 12 q14 + 14 q15 + 17 q16 + 19 q17 + 23 q18

+26 q19 + 31 q20 + 35 q21 + 41 q22 + 46 q23 + 54 q24 + 61 q25 + 70

q26 + 79 q27 + 91 q28 + 102 q29 + 117 q30 + 131 q31 + 149 q32 + 167

q33 + 189 q34 + 211 q35 + 239 q36 + 266 q37 + 299 q38 + 333 q39 +

374 q40 + 415 q41 + 465 q42 + 515 q43 + 575 q44 + 637 q45 + 709 q46

+783 q47 + 871 q48 + 961 q49 + O(q50)

> prodmake(x,q,40);

1/
(
(1− q)(1− q4)(1− q6)(1− q9)(1− q11)(1− q14)(1− q16)(1− q19)

(1− q21)(1− q24)(1− q26)(1− q29)(1− q31)(1− q34)(1− q36)(1− q39)
)
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We have rediscovered the right side of the Rogers-Ramanujan identity!

Exercise 1. Find (and prove) a product form for the q-series

∞∑
n=0

qn
2

(q; q)2n

.

The identity you find is originally due to Rogers [34](p.330).
See also Andrews [2](pp.38–39) for a list of some related pa-
pers.

3.2. qfactor. The function qfactor is a version of prodmake.
qfactor(f,T) attempts to write a rational function f in q as a q-
product, i.e., as a product of terms of the form (1 − qi). The second
argument T is optional. It specifies an an upper bound for the expo-
nents of q that occur in the product. If T is not specified it is given a
default value of 4d+3 where d is the maximum of the degree in q of the
numerator and denominator. The algorithm is quite simple. First the
function is factored as usual, and then it uses prodmake to do further
factorisation into q-products. Thus even if only part of the function
can be written as a q-product qfactor is able to find it.

As an example we consider some rational functions T (r, h) intro-
duced by Andrews [4](p.14) to explain Rogers’s [34] first proof of the
Rogers-Ramanujan identities. The T (r, n) are defined recursively as
follows:

T (r, 0) = 1,(3.3)

T (r, 1) = 0,(3.4)

T (r,N) = −
∑

1≤2j≤N

[
r + 2j
j

]
T (r + 2j, N − 2j).(3.5)

> T:=proc(r,j)

> option remember;

> local x,k;

> x:=0;

> if j=0 or j=1 then

> RETURN((j-1)∧2):

> else

> for k from 1 to floor(j/2) do

> x:=x-qbin(q,k,r+2*k)*T(r+2*k,j-2*k);

> od:

> RETURN(expand(x));

> fi:
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> end:

> t8:=T(8,8);

t8 := 3 q9 + 21 q16 + 36 q25 + 9 q36 + q6 + q7 + 2 q8 + 5 q10 + 6 q11

+ 9 q12 + 11 q13 + 15 q14 + 17 q15 + 33 q28 + 34 q27 + 37 q26

+ 38 q24 + 36 q23 + 37 q22 + 34 q21 + 33 q20 + 29 q19 + 28 q18

+ 23 q17 + 5 q38 + 6 q37 + 11 q35 + 15 q34 + 17 q33 + 21 q32

+ 23 q31 + 28 q30 + 29 q29 + 3 q39 + q42 + q41 + 2 q40

> factor(t8);

q6
(
q4 + q3 + q2 + q + 1

) (
q4 − q3 + q2 − q + 1

)(
q10 + q9 + q8 + q7 + q6 + q5 + q4 + q3 + q2 + q + 1

) (
q4 + 1

)(
q6 + q3 + 1

) (
q8 + 1

)
> qfactor(t8,20);

(1− q9) (1− q10) (1− q11) (1− q16) q6

(1− q) (1− q2) (1− q3) (1− q4)

Observe how we used factor to factor t8 into cyclotomic polynomials.
However, qfactor was able to factor t8 as a q-product. We see that

T (8, 8) =
(q9; q)3(1− q16)q6

(q; q)4

.

Exercise 2. Use qfactor to factorize T (r, n) for different
values of r and n. Then write T (r, n) (defined above) as a
q-product for general r and n.

For our next example we examine the sum
∞∑

k=−∞

(−1)kqk(3k+1)/2

[
b+ c
c+ k

] [
c+ a
a+ k

] [
a+ b
b+ k

]
.

> dixson:=proc(a,b,c,q)

> local x,k,y;

> x:=0: y:=min(a,b,c):

> for k from -y to y do

> x:=x+(-1)∧k*q∧(k*(3*k+1)/2)*

> qbin(q,c+k,b+c)*qbin(q,a+k,c+a)*qbin(q,b+k,a+b);

> od:

> RETURN(x):

> end:
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> dx := expand(dixson(5,5,5,q)):

> qfactor(dx,20);

(1− q6) (1− q7) (1− q8) (1− q9) (1− q10) (1− q11) (1− q12)

(1− q13) (1− q14) (1− q15)/((1− q)2 (1− q2)2 (1− q3)2 (1− q4)2

(1− q5)2)

We find that
∞∑

k=−∞

(−1)kqk(3k+1)/2

[
10

5 + k

]3

=
(q6; q)10

(q; q)2
5

.(3.6)

Exercise 3. Write the sum
∞∑

k=−∞

(−1)kqk(3k+1)/2

[
2a
a+ k

]3

as a q-product for general integral a. The identity you obtain
is a special case of [4](Eq.(4.24), p.38).

3.3. etamake. Recall from (2.2.1) that etaq is the function to use for
computing q-expansions of eta products. If one wants to apply the the-
ory of modular forms to q-series it is quite useful to determine whether
a given q-series is a product of eta functions. The function in the pack-
age for doing this conversion is etamake. etamake(f,q,T) will write
the given q-series f as a product of eta functions which agrees with f
up to qT . As an example, let’s see how we can write the theta functions
as eta products.

> theta2(q,100)/q∧(1/4);

2 q132 + 2 q110 + 2 q90 + 2 q72 + 2 q56 + 2 q42 + 2 q30 + 2 q20 + 2 q12 + 2 q6

+ 2 q2 + 2 + q156

> etamake(",q,100);

2
η( 4 τ )2

q1/4 η( 2 τ )

> theta3(q,100);

2 q121 + 2 q100 + 2 q81 + 2 q64 + 2 q49 + 2 q36 + 2 q25 + 2 q16 + 2 q9 + 2 q4

+ 2 q + 1

> etamake(",q,100);

η( 2 τ )5

η( 4 τ )2 η( τ )2
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> theta4(q,100);

−2 q121 + 2 q100 − 2 q81 + 2 q64 − 2 q49 + 2 q36 − 2 q25 + 2 q16 − 2 q9 + 2 q4

− 2 q + 1

> etamake(",q,100);

η( τ )2

η( 2 τ )

We are led to the well-known identities:

θ2(q) = 2
η(4τ)2

η(2τ)
,

θ3(q) =
η(2τ)5

η(4τ)2η(τ)2
,

θ4(q) =
η(τ)2

η(2τ)
.

The idea of the algorithm is quite simple. Given a q-series f (say with
leading coefficient 1) one just keeps recursively multiplying by powers
of the right eta function until the desired terms agree. For example,
suppose we are given a q-series

f = 1 + cqk + · · · .

Then the next step is to multiply by etaq(q,k,T)∧(-c).

Exercise 4. Define the q-series

a(q) :=
∞∑

n=−∞

∞∑
m=−∞

qn
2+nm+m2

b(q) :=
∞∑

n=−∞

∞∑
m=−∞

ωn−mqn
2+nm+m2

c(q) :=
∞∑

n=−∞

∞∑
m=−∞

q(n+1/3)2+(n+1/3)(m+1/3)+(m+1/3)2

where ω = exp(2πi/3). Two of the three functions above can
be written as eta products. Can you find them?
Hint : It would be wise to define

> omega := RootOf(z∧2 + z + 1 = 0);

See [12] for the answer and much more.
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3.4. jacprodmake. In (2.2.2) we observed that the right side of the
Rogers-Ramanujan identity could be written in terms of a Jacobi prod-
uct. The function jacprodmake converts a q-series into a Jacobi-type
product if one exists. Given a q-series f , jacprodmake(f,q,T) at-
tempts to convert f into a product of theta functions that agrees with
f to order O(qT ). Each theta-function has the form JAC(a, b,∞),
where a, b are integers and 0 ≤ a < b. If 0 < a, then JAC(a, b,∞)
corresponds to the theta-product

(qa; qb)∞(qb−a; qb)∞(qb; qb)∞.

We call this a theta product because it is θ(−q(b−2a)/2, qb/2). The
jacprodmake function is really a variant of prodmake. It involves using
prodmake to compute the sequence of exponents and then searching for
periodicity.

If a = 0, then JAC(0, b,∞) corresponds to the eta-product

(qb; qb)∞.

We note that this product can also be thought of as a theta-product
since it can be written

(qb; qb)∞ = (qb; q3b)∞(q2b; q3b)∞(q3b; q3b)∞.

Let’s re-examine the Rogers-Ramanujan identity.

> with(qseries):

> x:=1:

> for n from 1 to 8 do

> x:=x+q∧(n*n)/aqprod(q,q,n):

> od:

> x:=series(x,q,50):

> y:=jacprodmake(x,q,40);

y :=
JAC (0, 5,∞)

JAC (1, 5,∞)

> z:=jac2prod(y);

z :=
1

(q, q5)∞(q4, q5)∞

Note that we were able to observe that the left side of the Rogers-
Ramanujan identity (at least up through q40) can be written as a
quotient of theta functions. We used the function jac2prod, to sim-
plify the result and get it into a more recognizable form. The func-
tion jac2prod(jacexpr) converts a product of theta functions into
q-product form; i.e., as a product of functions of the form (qa; qb)∞.
Here jacexpr is a product (or quotient) of terms JAC(i, j,∞), where
i, j are integers and 0 ≤ i < j.
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A related function is jac2series. This converts a Jacobi-type prod-
uct into a form better for computing its q-series. It simply replaces each
Jacobi-type product with its corresponding theta-series.

> with(qseries):

> x:=0:

> for n from 0 to 10 do

x := x + q∧(n*(n+1)/2)*aqprod(-q,q,n)/aqprod(q,q,2*n+1):

od:

> x:=series(x,q,50):

> jacprodmake(x,q,50);

JAC(0, 14, ∞)6
/

(JAC(1, 14, ∞)2 JAC(3, 14, ∞) JAC(4, 14, ∞)

JAC(5, 14, ∞) JAC(6, 14, ∞)

√
JAC(7, 14, ∞)

JAC(0, 14, ∞)
)

> jac2series(",500);

(q364 − q210 + q98 − q28 + 1− q14 + q70 − q168 + q308 − q490)6
/

((

−q621 + q496 − q385 + q288 − q205 + q136 − q81 + q40 − q13 + 1− q
+ q16 − q45 + q88 − q145 + q216 − q301 + q400 − q513)2(−q603 + q480

− q371 + q276 − q195 + q128 − q75 + q36 − q11 + 1− q3 + q20 − q51

+ q96 − q155 + q228 − q315 + q416 − q531)(−q594 + q472 − q364 + q270

− q190 + q124 − q72 + q34 − q10 + 1− q4 + q22 − q54 + q100 − q160

+ q234 − q322 + q424 − q540)(−q585 + q464 − q357 + q264 − q185 + q120

− q69 + q32 − q9 + 1− q5 + q24 − q57 + q104 − q165 + q240 − q329

+ q432 − q549)(−q576 + q456 − q350 + q258 − q180 + q116 − q66 + q30

− q8 + 1− q6 + q26 − q60 + q108 − q170 + q246 − q336 + q440 − q558)

((−2 q567 + 2 q448 − 2 q343 + 2 q252 − 2 q175 + 2 q112 − 2 q63 + 2 q28

− 2 q7 + 1)/(

q364 − q210 + q98 − q28 + 1− q14 + q70 − q168 + q308 − q490))1/2)

It seems that the q-series∑
n≥0

(−q; q)nqn(n+1)/2

(q; q)2n+1

can be written as Jacobi-type product. Assuming that this is the case
we used jac2series to write this q-series in terms of theta-series at
least up to q500. This should provide an efficient method for computing
the q-series expansion and also for computing the function at particular
values of q.
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Exercise 5. Use jacprodmake and jac2series to compute
the q-series expansion of∑

n≥0

(−q; q)nqn(3n+1)/2

(q; q)2n+1

up to q1000, assuming it is Jacobi-type product. Can you iden-
tify the infinite product? This function occurs in Slater’s list
[36](Eq.(46), p.156).

4. The Search for Relations

The functions for finding relations between q-series are findhom,
findhomcombo, findnonhom, findnonhomcombo, and findpoly.

4.1. findhom. If the q-series one is concerned with are modular forms
of a particular weight, then theoretically these functions will satisfy
homogeneous polynomial relations. See [18, p. 263], [9] for more details
and examples. The function findhom(L,q,n,topshift) returns a set
of potential homogeneous relations of order n among the q-series in the
list L. The value of topshift is usually taken to be zero. However
if it appears that spurious relations are being generated then a higher
value of topshift should be taken.

The idea is to convert this into a linear algebra problem. This pro-
gram generates a list of monomials of degree n of the functions in the
given list of q-series L. The q-expansion (up to a certain point) of each
monomial is found and converted into a row vector of a matrix. The
set of relations is then found by computing the kernel of the transpose
of this matrix. As an example, we now consider relations between the
theta functions θ3(q), θ4(q), θ3(q2), and θ4(q2).

> with(qseries):

> findhom([theta3(q,100),theta4(q,100),theta3(q∧2,100),

theta4(q∧2,100)],q,1,0);

# of terms , 25

-----RELATIONS-----of order---, 1

{{}}
> findhom([theta3(q,100),theta4(q,100),theta3(q∧2,100),

theta4(q∧2,100)],q,2,0);

# of terms , 31

-----RELATIONS-----of order---, 2{
X1

2 +X2
2 − 2X3

2,−X1X2 +X4
2
}
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From the session above we see that there is no linear relation between
the functions θ3(q), θ4(q), θ3(q2) and θ4(q2). However, it appears that
there are two quadratic relations:

θ3(q2) =

(
θ2

3(q) + θ2
4(q)

2

)1/2

and

θ4(q2) =
(
θ2

3(q)θ2
4(q)

)1/2
.

This is Gauss’ parametrization of the arithmetic-geometric mean iter-
ation. See [13, Ch. 2] for details.

Exercise 6. Define a(q), b(q) and c(q) as in Exercise 2.
Find homogeneous relations between the functions a(q), b(q),
c(q), a(q3), b(q3), c(q3). In particular, try to get a(q3) and
b(q3) in terms of a(q), b(q). See [12] for more details. These
results lead to a cubic analog of the AGM due to Jon and Peter
Borwein [10], [11].

4.2. findhomcombo. The function findhomcombo is a variant of
findhom. Suppose f is a q-series and L is a list of q-series.
findhomcombo(f,L,q, n,topshift,etaoption) tries to express f as a
homogeneous polynomial in the members of L. If etaoption=yes then
each monomial in the combination is “converted” into an eta-product
using etamake.

We illustrate this function with certain Eisenstein series. For p an
odd prime define

χ(m) =

(
m

p

)
(the Legendre symbol).

Suppose k is an integer, k ≥ 2, and (p− 1)/2 ≡ k (mod 2). Define the
Eisenstein series

Up,k(q) :=
∞∑
m=1

∞∑
n=1

χ(m)nk−1qmn.

Then Up,k is a modular form of weight k and character χ for the con-
gruence subgroup Γ0(p). See [28], [20] for more details. The classical
result is the following identity found by Ramanujan [32, Eq. (1.52), p.
354]:

U5,2 =
η(5τ)5

η(τ)
.

Kolberg [28] has found many relations between such Eisenstein series
and certain eta products. The eta function η(τ) is a modular form of
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weight 1
2

[27, p. 121]. Hence the modular forms

B1 :=
η(5τ)5

η(τ)
, B2 :=

η(τ)5

η(5τ)

are modular forms of weight (5−1)
2

= 2. In fact, it can be shown that

they are modular forms on Γ0(5) with character
( ·

5

)
. We might there-

fore expect that U5,6 can be written as a homogeneous cubic polynomial
in B1, B2. We write a short maple program to compute the Eisenstein
series Up,k.

> with(numtheory):

> UE:=proc(q,k,p,trunk)

> local x,m,n:

> x:=0:

> for m from 1 to trunk do

> for n from 1 to trunk/m do

> x:=x + L(m,p)*n∧(k-1)*q∧(m*n):

> od:

> od:

> end:

The function UE(q,k,p,trunk) returns the q-expansion of Up,k up

through qtrunk. We note that L(m,p) returns the Legendre symbol(
m

p

)
. We are now ready to study U5,6.

> with(qseries):

> f := UE(q,6,5,50):

> B1 := etaq(q,1,50)∧5/etaq(q,5,50):

> B2 := q*etaq(q,5,50)∧5/etaq(q,1,50):

> findhomcombo(f,[B1,B2],q,3,0,yes);

# of terms , 25

-----possible linear combinations of degree------, 3{
η(5 τ)3η(τ)9 + 40 η(5 τ)9η(τ)3 + 335

η(5 τ)15

η(τ)3

}
{
X1

2X2 + 40X1X2
2 + 335X2

3
}

It would appear that

U5,6 = η(5 τ)3η(τ)9 + 40 η(5 τ)9η(τ)3 + 335
η(5 τ)15

η(τ)3
.

The proof is a straightforward exercise using the theory of modular
forms.
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Exercise 7. Define the following eta products:

C1 :=
η(7τ)7

η(τ)
, C2 := η(τ)3 η(7τ)3, C3 :=

η(τ)7

η(7τ)
.

What is the weight of these modular forms?

Write U7,3 in terms of C1, C2, C3.

The identity that you should find was originally due to Ra-
manujan. Also see Fine [15, p. 159] and [19, Eq. (5.4)].

If you are ambitious find U7,9 in terms of C1, C2, C3.

4.3. findnonhom. In section 4.1 we introduced the function findhom

to find homogeneous relations between q-series. The nonhomogeneous
analog is findnonhom.

The syntax of findnonhom is the same as findhom. Typically (but
not necessarily) findhom is used to find relations between modular
forms of a certain weight. To find relations between modular functions
we would use findnonhom. We consider an example involving theta
functions.

> with(qseries):

> F := q -> theta3(q,500)/theta3(q∧5,100):

> U := 2*q*theta(q∧10,q∧25,5)/theta3(q∧25,20);

U :=

2 q (q575 + q360 + q195 + q80 + q15 + 1 + q35 + q120 + q255 + q440 + q675)

2 q625 + 2 q400 + 2 q225 + 2 q100 + 2 q25 + 1

> EQNS := findnonhom([F(q),F(q∧5),U],q,3,20);

# of terms , 61

-----RELATIONS-----of order---, 3

EQNS :=
{
−1−X1X2X3 +X2

2 +X3
2 +X3

}
> ANS:=EQNS[1];

ANS := −1−X1X2X3 +X2
2 +X3

2 +X3

> CHECK := subs(X[1]=F(q),X[2]=F(q∧5),X[3]=U,ANS):

> series(CHECK,q,500);

O
(
q500
)



16 FRANK GARVAN

We define

F (q) :=
θ3(q)

θ3(q5)
,

and

U(q) := 2

∞∑
n=−∞

q25n2+10n+1

θ3(q25)
.

We note that U(q) and F (q) are modular functions since they are ratios
of theta series. From the session above we see that it appears that

1 + F (q)F (q5)U(q) = F (q5)
2

+ U(q)2 + U(q).

Observe how we were able to verify this equation to high order. When
findnonhom returns a set of relations the variable X has been declared
global. This is so we can manipulate the relations. It this way we were
able to assign ANS to the relation found and then use subs and series

to check it to order O (q500).

4.4. findnonhomcombo. The syntax of findnonhomcombo is the same
as findhomcombo. We consider an example involving eta functions.
First we define

ξ :=
η(49 τ)

η(τ)
,

and

T :=

(
η(7 τ)

η(τ)

)4

,

Using the theory of modular functions it can be shown that one must
be able to write T 2 in terms of T and powers of ξ. We now use
findnonhomcombo to get T 2 in terms of ξ and T .

> xi:=q∧2*etaq(q,49,100)/etaq(q,1,100):

> T:=q*(etaq(q,7,100)/etaq(q,1,100))∧4:

> findnonhomcombo(T∧2,[T,xi],q,7,-15);

# of terms , 42

matrix is , 37, x, 42

-----possible linear combinations of degree------, 7{
147X2

5 + 343X2
7 + 343X2

6 +X2 + 49X2
4 + 49X1X2

3 + 7X1X2

+21X2
3 + 7X2

2 + 35X1X2
2
}

Then it seems that

T 2 =
(
35 ξ2 + 49 ξ3 + 7 ξ

)
T

+ 343 ξ7 + 343 ξ6 + 147 ξ5 + 49 ξ4 + 21 ξ3 + 7 ξ2 + ξ.
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This is the modular equation used by Watson[41] to prove Ramanujan’s
partition congruences for powers of 7. Also see [5] and [26], and see
[16] for an elementary treatment.

Exercise 8. Define

ξ :=
η(25 τ)

η(τ)
,

and

T :=

(
η(5 τ)

η(τ)

)6

.

Use findnonhomcombo to express T as a polynomial in ξ of
degree 5. The modular equation you find was used by Watson
to prove Ramanujan’s partition congruences for powers of 5.
See [23] for an elementary treatment.

Exercise 9. Define a(q) and c(q) as in Exercise 2. Define

x(q) :=
c(q)3

a(q)3 ,

and the classical Eisenstein series (usually called E3; see [35, p.
93])

N(q) := 1− 504
∞∑
n=1

n5qn

1− qn
.

Use findnonhomcombo to express N(q) in terms of a(q) and
x(q).

HINT : N(q) is a modular form of weight 6 and a(q) and c(q)
are modular forms of weight 1. See [8] for this result and many
others.

4.5. findpoly. The function findpoly is used to find a polynomial
relation between two given q-series with degrees specified.
findpoly(x,y,q,deg1,deg2,check) returns a possible polynomial

in X, Y (with corresponding degrees deg1, deg2) which is satisfied by
the q-series x and y.

If check is assigned then the relation is checked to O
(
qcheck

)
.

We illustrate this function with an example involving theta functions
and the function a(q) and c(q) encountered in Exercises 2 and 7. It
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can be shown that

a(q) = θ3(q)θ3(q3) + θ2(q)θ2(q3).

See [12] for details. This equation provides a better way of computing
the q-series expansion of a(q) than the definition. In Exercise 2 you
would have found that

c(q) = 3
η3(3 τ)

η(τ)
.

See [12] for a proof. Define

y :=
c3

a3
,

and

x :=

(
θ2(q)

θ2(q3)

)2

+

(
θ3(q)

θ3(q3)

)2

.

We use findpoly to find a polynomial relation between x and y.

> with(qseries):

> x1 := radsimp(theta2(q,100)∧2/theta2(q∧3,40)∧2):

> x2 := theta3(q,100)∧2/theta3(q∧3,40)∧2:

> x := x1+x2:

> c := q*etaq(q,3,100)∧9/etaq(q,1,100)∧3:

> a := radsimp(theta3(q,100)*theta3(q∧3,40)+theta2(q,100)

*theta2(q∧3,40)):

> c := 3*q∧(1/3)*etaq(q,3,100)∧3/etaq(q,1,100):

> y := radsimp(c∧3/a∧3):

> P1:=findpoly(x,y,q,3,1,60);

WARNING: X,Y are global.

dims , 8, 18

The polynomial is

(X + 6)3 Y − 27 (X + 2)2

Checking to order, 60

O
(
q59
)

P1 := (X + 6)3 Y − 27 (X + 2)2

It seems that x and y satisfy the equation

p(x, y) = (x+ 6)3 y − 27(x+ 2)2 = 0.

Therefore it would seem that

c3

a3
= 27

(x+ 2)2

(x+ 6)3 .

See [8, pp. 4237–4240] for more details.
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Exercise 10. Define

m :=

(
θ3(q)

θ3(q3)

)2

.

Use polyfind to find y = c3

a3 as a rational function in m. The
answer is Eq.(12.8) in [8].

5. Sifting coefficients

Suppose we are given a q-series

A(q) =
∞∑
n=0

anq
n.

Occasionally it will turn out the generating function

∞∑
n=0

amn+rq
n

will have a very nice form. A famous example for p(n) is due to Ra-
manujan:

∞∑
n=0

p(5n+ 4)qn = 5
∞∏
n=1

(1− q5n)6

(1− qn)5
.

See [1, Cor. 10.6]. In fact, G.H. Hardy and Major MacMahon [31, p.
xxxv] both agreed that this is Ramanujan’s most beautiful identity.

Suppose s is the q-series∑
aiq

i + O(qT )

then sift(s,q,n,k,T) returns the q-series∑
ani+kq

i + O(qT/n).

We illustrate this function with another example from the theory of
partitions. Let pd(n) denote the number of partitions of n into distinct
parts. Then it is well known that

∞∑
n=0

pd(n)qn =
∞∏
n=1

(1 + qn) =
∞∏
n=1

(1− q2n)

(1− qn)
.

We now examine the generating function of pd(5n+ 1) in maple.

> PD:=series(etaq(q,2,200)/etaq(q,1,200),q,200):
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> sift(PD,q,5,1,199);

1 + 4 q + 5010688 q26 + 53250 q15 + 668 q7 + 12 q2 + 165 q5

+ 12076 q12 + 1087744 q22 + 109420549 q35 + 76 q4 + 32 q3

+ 340 q6 + 1260 q8 + 2304 q9 + 4097 q10 + 7108 q11 + 20132 q13

+ 32992 q14 + 84756 q16 + 133184 q17 + 206848 q18 + 317788 q19

+ 728260 q21 + 20792120 q30 + 2368800 q24 + 483330 q20

+ 1611388 q23 + 3457027 q25 + 7215644 q27 + 10327156 q28

+ 14694244 q29 + 29264960 q31 + 40982540 q32 + 57114844 q33

+ 79229676 q34 + 150473568 q36 + 206084096 q37

+ 281138048 q38 + 382075868 q39

> PD1:=":

> etamake(PD1,q,38);

η( 5 τ )3 η( 2 τ )2

q5/24 η( 10 τ ) η( τ )4

So it would seem that
∞∑
n=0

pd(5n+ 1)qn =
∞∏
n=1

(1− q5n)3(1− q2n)2

(1− q10n)(1− qn)4
.

This result was found originally by Rødseth [33].

Exercise 11. Rødseth also found the generating functions
for pd(5n+ r) for r = 0, 1, 2, 3 and 4. For each r use sift and
jacprodmake to identify these generating functions as infinite
products.

6. Product Identities

At present, the package contains the Triple Product identity, the
Quintuple Product identity and Winquist’s identity. These are the
most commonly used of the Macdonald identities [30], [37], [38]. The
Macdonald identities are the analogs of the Weyl denominator for affine
roots systems. Hopefully, a later version of this package will include
these more general identities.

6.1. The Triple Product Identity. The triple product identity is
∞∑

n=−∞

(−1)nznqn(n−1)/2 =
∞∏
n=1

(1− zqn−1)(1− qn/z)(1− qn),(6.7)

where z 6= 0 and |q| < 1. The Triple Product Identity is originally due
to Jacobi [24, Vol I]. The first combinatorial proof of the triple product
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identity is due to Sylvester [39]. Recently, Andrews [3] and Lewis
[29] have found nice combinatorial proofs. The triple product occurs
frequently in the theory of partitions. For instance, most proofs of
the Rogers-Ramanujan identity crucially depend on the triple product
identity.
tripleprod(z,q,T) returns the q-series expansion to order O(qT )

of Jacobi’s triple product (6.7). This expansion is found by simply
truncating the right side of (6.7).

> tripleprod(z,q,10);

q21

z6
− q

15

z5
+
q10

z4
− q

6

z3
+
q3

z2
− q
z

+ 1− z+ z2q− z3q3 + z4q6− z5q10 + z6q15

> tripleprod(q,q∧3,10);

q57 − q40 + q26 − q15 + q7 − q2 + 1− q + q5 − q12 + q22 − q35 + q51

The last calculation is an illustration of Euler’s Pentagonal Number
Theorem [1, Cor. 1.7 p.11]:

∞∏
n=1

(1− qn) =
∞∏
n=1

(1− q3n−1)(1− q3n−2)(1− q3n) =
∞∑

n=−∞

(−1)nqn(3n−1)/2.

(6.8)

6.2. The Quintuple Product Identity. The following identity is
the Quintuple Product Identity:

(−z, q)∞(−q
z
, q)∞(z2q, q2)∞(

q

z2
, q2)∞(q, q)∞(6.9)

=
∞∑

m=−∞

(
(−z)−3m − (−z)3m−1) qm(3m+1)

2 .

Here |q| < 1 and z 6= 0. This identity is the BC1 case of the Macdonald
identities [30]. The quintuple product identity is usually attributed to
Watson [40]. However it can be found in Ramanujan’s lost notebook
[32, p. 207]. Also see [7] for more history and some proofs.

The function quinprod(z,q,T) returns the quintuple product iden-
tity in different forms:

(i) If T is a positive integer it returns the q-expansion of the right
side of (6.9) to order O(qT ).

(ii) If T = prodid then quinprod(z,q,prodid) returns the quintuple
product identity in product form.

(iii) If T = seriesid then quinprod(z,q,seriesid) returns the quin-
tuple product identity in series form.
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> quinprod(z,q,prodid);

(−z, q)∞ (−q
z
, q)∞ (z2 q, q2)∞ (

q

z2
, q2)∞ (q, q)∞ =

(
q2

z3
, q3)∞ (q z3, q3)∞ (q3, q3)∞ + z (

q

z3
, q3)∞ (q2 z3, q3)∞ (q3, q3)∞

> quinprod(z,q,seriesid);

(−z, q)∞ (−q
z
, q)∞ (z2 q, q2)∞ (

q

z2
, q2)∞ (q, q)∞ =

∞∑
m=−∞

((−z)(−3m) − (−z)(3m−1)) q(1/2m (3m+1))

> quinprod(z,q,3);

(z12 +
1

z11
) q22 + (−z9 − 1

z8
) q12 + (z6 +

1

z5
) q5 + (−z3 − 1

z2
) q + 1 + z

+ (− 1

z3
− z4) q2 + (

1

z6
+ z7) q7 + (− 1

z9
− z10) q15 + (

1

z12
+ z13) q26

Let’s examine a more interesting application. Euler’s infinite product
may be dissected according to the residue of the exponent of q mod 5:

∞∏
n=1

(1− qn) = E0(q) + qE1(q5) + q2E2(q5) + q3E3(q5) + q4E2(q5).

By (6.8) we see that E3 = E4 = 0 since n(3n − 1)/2 ≡ 0, 1 or 2 mod
5. Let’s see if we can identify E0.

> with(qseries):

> EULER:=etaq(q,1,500):

> E0:=sift(EULER,q,5,0,499);

E0 := 1 + q − q3 − q7 − q8 − q14 + q20 + q29 + q31 + q42 − q52 − q66

− q69 − q85 + q99

> jacprodmake(E0,q,50);

JAC( 2, 5,∞ ) JAC( 0, 5,∞ )

JAC( 1, 5,∞ )

> jac2prod(");

( q5, q5 )∞ ( q2, q5 )∞ ( q3, q5 )∞
( q, q5 )∞ ( q4, q5 )∞

> quinprod(q,q∧5,20):

> series(",q,100);

1+q−q3−q7−q8−q14+q20+q29+q31+q42−q52−q66−q69−q85+O
(
q99
)
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From our maple session it appears that

E0 =
(q5; q5)∞(q2; q5)∞(q3; q5)∞

(q; q5)∞(q4; q5)∞
,(6.10)

and that this product can be gotten by replacing q by q5 and z by q in
the product side of the quintuple product identity (6.9).

Exercise 12. (i) Use the quintuple product identity (6.9)
and Euler’s pentagonal number theorem to prove (6.10) above.

(ii) Use maple to identify and prove product expressions for
E1 and E2.

(iii) This time see if you can repeat (i), (ii) but split the
exponent mod 7.

(iv) Can you generalize these results to arbitrary modulus?

Atkin and Swinnerton-Dyer found a generalization. See Lemma
6 in [6].

6.3. Winquist’s Identity. Back in 1969, Lasse Winquist [43] discov-
ered a remarkable identity

(a; q)∞(q/a; q)∞(b; q)∞(q/b; q)∞(ab; q)∞(q/(ab); q)∞(a/b; q)∞

(6.11)

(b/(aq); q)∞(q; q)2
∞

=
∞∑
n=0

∞∑
m=−∞

(−1)n+j((a−3n − a3n+3)(b−3m − b3m+1)

+ (a−3m+1 − a3m+2)(b3n+2 − b−3n−1))q3n(n+1)/2+m(3m+1)/2.

By dividing both sides by (1 − a)(1 − b) and letting a, b → 1 he was

able to express the product
∞∏
n=1

(1− qn)10 as a double series and prove

Ramanujan’s partition congruence

p(11n+ 6) ≡ 0 (mod 11).

This was probably the first truly elementary proof of Ramanujan’s
congruence modulo 11. The interested reader should see Dyson’s article
[14] for some fascinating history on identities for powers of the Dedekind
eta function and how they led to the Macdonald identities. A new
proof of Winquist’s identity has been found recently by S.-Y. Kang
[25]. Mike Hirschhorn [22] has found a four-parameter generalization
of Winquist’s identity.
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The function winquist(a,b,q,T) returns the q-expansion of the
right side of (6.11) to order O(qT ).

We close with an example. For 1 < k < 33 define

Q(k) =
∞∏
n=1

(1− qk)(1− q33−k)(1− q33).

Now define the following functions:

A0 = Q(15), A3 = Q(12), A7 = Q(6), A8 = Q(3), A9 = Q(9);

B0 = Q(16)− q2Q(5),

B1 = Q(14)− qQ(8),

B2 = Q(13)− q3Q(2),

B4 = Q(7) + qQ(4),

B7 = Q(10) + q3Q(1).

These functions occur in Theorem 6.7 of [17] as well as the function
A0B2 − q2A9B4.

> with(qseries):

> Q:=n->tripleprod(q∧n,q∧33,10):

> A0:=Q(15): A3:=Q(12): A7:=Q(6):

> A8:=Q(3): A9:=Q(9):

> B2:=Q(13)-q∧3*Q(2): B4:=Q(7)+q*Q(4):

> IDG:=series( ( A0*B2-q∧2*A9*B4),q,200):

> series(IDG,q,10);

1− q2 − 2 q3 + q5 + q7 + q9 +O
(
q11
)

> jacprodmake(IDG,q,50);

JAC( 2, 11,∞ ) JAC( 3, 11,∞ )2 JAC( 5, 11,∞ )

JAC( 0, 11,∞ )3

> jac2prod(");

( q2, q11 )∞ ( q9, q11 )∞ ( q11, q11 )∞ ( q3, q11 )∞
2

( q8, q11 )∞
2

( q5, q11 )∞

( q6, q11 )∞

> series(winquist(q∧5,q∧3,q∧11,10),q,20);

1− q2 − 2 q3 + q5 + q7 + O( q9 )

> series(IDG-winquist(q∧5,q∧3,q∧11,10),q,60);

O( q49)
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From our maple session it seems that

A0B2 − q2A9B4 = (q2; q11)∞(q9; q11)∞(q11; q11)∞(q3; q11)2
∞(q8; q11)2

∞

(6.12)

(q5; q11)∞(q6; q11)∞,

and that this product appears in Winquist’s identity on replacing q by
q11 and letting a = q5 and b = q3.

Exercise 13. (i) Prove (6.12) by using the triple prod-
uct identity (6.7) to write the right side of Winquist’s identity
(6.11) as a sum of two products.

(ii) In a similar manner find and prove a product form for

A0B0 − q3A7B4.
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of Lecture Notes in Math., pages 27–31. Springer, Berlin, 1990.

[11] J. M. Borwein and P. B. Borwein. A cubic counterpart of Jacobi’s identity and
the AGM. Trans. Amer. Math. Soc., 323(2):691–701, 1991.

[12] J. M. Borwein, P. B. Borwein, and F. G. Garvan. Some cubic modular identities
of Ramanujan. Trans. Amer. Math. Soc., 343(1):35–47, 1994.



26 FRANK GARVAN

[13] Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM. Canadian Math-
ematical Society Series of Monographs and Advanced Texts. John Wiley &
Sons Inc., New York, 1987. A study in analytic number theory and computa-
tional complexity, A Wiley-Interscience Publication.

[14] Freeman J. Dyson. Missed opportunities. Bull. Amer. Math. Soc., 78:635–652,
1972.

[15] N. J. Fine. On a system of modular functions connected with the Ramanujan
identities. Tohoku Math. J. (2), 8:149–164, 1956.

[16] F. G. Garvan. A simple proof of Watson’s partition congruences for powers of
7. J. Austral. Math. Soc. Ser. A, 36(3):316–334, 1984.

[17] F. G. Garvan. New combinatorial interpretations of Ramanujan’s partition
congruences mod 5, 7 and 11. Trans. Amer. Math. Soc., 305(1):47–77, 1988.

[18] Frank Garvan. Cubic modular identities of Ramanujan, hypergeometric func-
tions and analogues of the arithmetic-geometric mean iteration. In The
Rademacher legacy to mathematics (University Park, PA, 1992), volume 166
of Contemp. Math., pages 245–264. Amer. Math. Soc., Providence, RI, 1994.

[19] Frank Garvan, Dongsu Kim, and Dennis Stanton. Cranks and t-cores. Invent.
Math., 101(1):1–17, 1990.

[20] Frank G. Garvan. Some congruences for partitions that are p-cores. Proc. Lon-
don Math. Soc. (3), 66(3):449–478, 1993.

[21] Andrew Granville and Ken Ono. Defect zero p-blocks for finite simple groups.
Trans. Amer. Math. Soc., 348(1):331–347, 1996.

[22] Michael D. Hirschhorn. A generalisation of Winquist’s identity and a conjecture
of Ramanujan. J. Indian Math. Soc. (N.S.), 51:49–55 (1988), 1987.

[23] Michael D. Hirschhorn and David C. Hunt. A simple proof of the Ramanujan
conjecture for powers of 5. J. Reine Angew. Math., 326:1–17, 1981.

[24] C. G. J. Jacobi. Gesammelte Werke. Bände I–VIII. Chelsea Publishing Co.,
New York, 1969. Herausgegeben auf Veranlassung der Königlich Preussischen
Akademie der Wissenschaften. Zweite Ausgabe.

[25] Soon-Yi Kang. A new proof of Winquist’s identity. J. Combin. Theory Ser. A,
78(2):313–318, 1997.

[26] Marvin I. Knopp. Modular functions in analytic number theory. Markham Pub-
lishing Co., Chicago, Ill., 1970.

[27] Neal Koblitz. Introduction to elliptic curves and modular forms, volume 97 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition,
1993.

[28] O. Kolberg. Note on the Eisenstein series of γ0 (p). Arbok Univ. Bergen Mat.-
Natur. Ser., 1968(6):20 pp. (1969), 1968.

[29] R. P. Lewis. A combinatorial proof of the triple product identity. Amer. Math.
Monthly, 91(7):420–423, 1984.

[30] I. G. Macdonald. Affine root systems and Dedekind’s η-function. Invent. Math.,
15:91–143, 1972.

[31] S. Ramanujan. Collected papers of Srinivasa Ramanujan. Chelsea Publishing
Co., New York, 1962. Edited with notes by G. H. Hardy, P. V. Sesu Aiyar and
B. M. Wilson.

[32] Srinivasa Ramanujan. The lost notebook and other unpublished papers.
Springer-Verlag, Berlin, 1988. With an introduction by George E. Andrews.

[33] Øystein Rødseth. Dissections of the generating functions of q(n) and q0(n).
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