THREE CLASSICAL RESULTS ON REPRESENTATIONS OF A NUMBER

Michael D. Hirschhorn

Introduction

Three classical results concern the number of representations of the positive integer n in the form $x^{2}+3 y^{2}$ with $x, y \in \mathbb{Z}$, the form $\left(x^{2}+x\right) / 2+$ $3\left(y^{2}+y\right) / 2$ with $x, y \in \mathbb{Z}^{+}$and the form $x^{2}+x y+y^{2}$ with $x, y \in \mathbb{Z}$.
Indeed, if $s(n), t(n)$ and $u(n)$ respectively denote the three numbers, then

$$
\begin{equation*}
s(n)=2\left(d_{1,3}(n)-d_{2,3}(n)\right)+4\left(d_{4,12}(n)-d_{8,12}(n)\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
t(n)=d_{1,3}(2 n+1)-d_{2,3}(2 n+1) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
u(n)=6\left(d_{1,3}(n)-d_{2,3}(n)\right) . \tag{3}
\end{equation*}
$$

where $d_{r, m}(n)$ is the number of divisors d of n with $d \equiv r(\bmod m)$.
(1) is equivalent to the q-series identity

$$
\begin{align*}
& \sum_{m, n \in \mathbb{Z}} q^{m^{2}+3 n^{2}}=1+2 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1-q^{3 n+1}}-\frac{q^{3 n+2}}{1-q^{3 n+2}}\right) \\
& \quad+4 \sum_{n \geq 0}\left(\frac{q^{12 n+4}}{1-q^{12 n+4}}-\frac{q^{12 n+8}}{1-q^{12 n+8}}\right) \tag{4}
\end{align*}
$$

or to

$$
\begin{equation*}
\sum_{m, n \in \mathbb{Z}} q^{m^{2}+3 n^{2}}=1+2 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1-(-1)^{n} q^{3 n+1}}-\frac{q^{3 n+2}}{1+(-1)^{n} q^{3 n+2}}\right) \tag{5}
\end{equation*}
$$

(2) is equivalent to the q-series identity

$$
\begin{equation*}
\sum_{m, n \in \mathbb{Z}^{+}} q^{\left(m^{2}+m\right) / 2+3\left(n^{2}+n\right) / 2}=\sum_{n \geq 0}\left(\frac{q^{3 n}}{1-q^{6 n+1}}-\frac{q^{3 n+2}}{1-q^{6 n+5}}\right) \tag{6}
\end{equation*}
$$

and (3) is equivalent to the q-series identity

$$
\begin{equation*}
\sum_{m, n \in \mathbb{Z}} q^{m^{2}+m n+n^{2}}=1+6 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1-q^{3 n+1}}-\frac{q^{3 n+2}}{1-q^{3 n+2}}\right) \tag{7}
\end{equation*}
$$

Both (5) and (6) appear in Ramanujan's second Notebook [12, p.239], and Berndt [2, pp.223-224 and p.116] shows how they follow from Ramanujan's ${ }_{1} \psi_{1}$ summation [12, p.196], [2, p.32]. (7) appears in Berndt and Rankin [5, p.196] and a proof is given by Berndt [3]. The reader is referred also to [6], [7], [9] and [4] for related developments and generalisations, and to [1] and [10] for applications in statistical mechanics.

It seems that Dirichlet (1840) may have known (1), since he gives [8, p.463] the corresponding results for the forms $x^{2}+y^{2}$ and $x^{2}+2 y^{2}$, and continues "And so on in similar fashion." ("Et ainsi de suite.")
However, Lorenz (1871) [11, p.420] states both (4) and (1), and in reference to (1) says (my translation) "From this equation one can deduce a theorem which must be considered new in the theory of numbers because it cannot immediately be deduced from known theorems:

If a number N contains prime factors p_{1}, p_{2}, \cdots of the form $3 m+1$ with exponents a_{1}, a_{2}, \cdots and if the prime factors of the form $3 m+2$ appear to nothing but even powers, the number of solutions of the equation $m^{2}+3 n^{2}=N$ is given by

$$
\rho_{N}=2\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots
$$

if N is odd and by

$$
\rho_{N}=6\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots
$$

if N is even. If, on the contrary, N contains a prime factor of the form $3 m+2$ to an odd power, one has $\rho_{N}=0$."
Lorenz also [11, p.424] states (7), and a proof is provided by his reviewer/ translator Valentiner [11, p.430].
So perhaps credit rests with Lorenz.
We shall give proofs of (4), (6) and (7) which demonstrate that all three results are intimately related.

2. Proof of the result involving $s(n)$

Let $a(q)$ denote the left hand side of (7). Then

$$
\begin{equation*}
a(q)+2 a\left(q^{4}\right)=3 \sum_{k, l \in \mathbb{Z}} q^{k^{2}+3 l^{2}} \tag{8}
\end{equation*}
$$

For,

$$
\begin{aligned}
a(q)=\sum_{\substack{m \text { odd } \\
n \text { even }}} q^{m^{2}+m n+n^{2}}+\sum_{\substack{m \text { odd } \\
n \text { odd }}} q^{m^{2}+m n+n^{2}}+ & \sum_{\substack{m \text { even } \\
n \text { odd }}} q^{m^{2}+m n+n^{2}} \\
& +\sum_{\substack{m \text { even } \\
n \text { even }}} q^{m^{2}+m n+n^{2}} .
\end{aligned}
$$

In the first sum, let $k=m+\frac{n}{2}, l=\frac{n}{2}$ (and conversely, $m=k-l, n=2 l$), in the second sum, $k=\frac{m-n}{2}, l=\frac{m+n}{2}$ (conversely $m=k+l, n=l-k$), in the third sum, $k=\frac{m}{2}+n, l=\frac{m}{2}$ (conversely $m=2 l, n=k-l$) and in the fourth sum, $k=\frac{m-n}{2}, l=\frac{m+n}{2}$ (conversely $m=k+l, n=$ $l-k$),
and we find

$$
\begin{equation*}
a(q)=3 \sum_{k \not \equiv l} q^{\bmod 2)} q^{k^{2}+3 l^{2}}+\sum_{k \equiv l} q^{\bmod 2)} q^{k^{2}+3 l^{2}} . \tag{9}
\end{equation*}
$$

Also,

$$
\begin{equation*}
a\left(q^{4}\right)=\sum_{m, n \in \mathbb{Z}} q^{4 m^{2}+4 m n+4 n^{2}}=\sum_{m, n \text { even }} q^{m^{2}+m n+n^{2}}=\sum_{k \equiv l(\bmod 2)} q^{k^{2}+3 l^{2}} \tag{10}
\end{equation*}
$$

as with the fourth sum above. (8) follows from (9) and (10). (4) follows from (7) and (8).

3. Proof of the result involving $t(n)$

We can write (4)

$$
\begin{aligned}
& \sum_{k, l \in \mathbb{Z}} q^{k^{2}+3 l^{2}}=1+2 \sum_{n \geq 0}\left(\frac{q^{6 n+1}}{1-q^{12 n+2}}-\frac{q^{6 n+5}}{1-q^{12 n+10}}\right) \\
& \quad+6 \sum_{n \geq 0}\left(\frac{q^{12 n+4}}{1-q^{12 n+4}}-\frac{q^{12 n+8}}{1-q^{12 n+8}}\right)
\end{aligned}
$$

If we extract the even powers of q we obtain

$$
\begin{equation*}
\sum_{k \equiv l(\bmod 2)} q^{k^{2}+3 l^{2}}=1+6 \sum_{n \geq 0}\left(\frac{q^{12 n+4}}{1-q^{12 n+4}}-\frac{q^{12 n+8}}{1-q^{12 n+8}}\right) . \tag{11}
\end{equation*}
$$

(Note, incidentally, that (7) follows from (10) and (11), and that (11) follows from (7) and (10)!)
From (11) we deduce

$$
\begin{equation*}
\sum_{k, l \in \mathbb{Z}} q^{k^{2}+3 l^{2}}+4 q \sum_{k, l \in \mathbb{Z}^{+}} q^{k^{2}+k+3 l^{2}+3 l}=1+6 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1-q^{3 n+1}}-\frac{q^{3 n+2}}{1-q^{3 n+2}}\right) . \tag{12}
\end{equation*}
$$

If we subtract (4) from (12) we find

$$
\begin{align*}
& 4 q \sum_{k, l \in \mathbb{Z}^{+}} q^{k^{2}+k+3 l^{2}+3 l}=4 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1-q^{3 n+1}}-\frac{q^{3 n+2}}{1-q^{3 n+2}}\right) \tag{13}\\
&-4 \sum_{n \geq 0}\left(\frac{q^{12 n+4}}{1-q^{12 n+4}}-\frac{q^{12 n+8}}{1-q^{12 n+8}}\right) \\
&=4 \sum_{n \geq 0}\left(\frac{q^{6 n+1}}{1-q^{12 n+2}}-\frac{q^{6 n+5}}{1-q^{12 n+10}}\right) .
\end{align*}
$$

Finally, if we divide (13) by $4 q$ and replace q^{2} by q we obtain (6).

4. Proof of the result involving $u(n)$

We begin by showing that

$$
\begin{equation*}
\sum_{m, n \in \mathbb{Z}} \omega^{m-n} q^{m^{2}+m n+n^{2}}=\frac{(q)_{\infty}^{3}}{\left(q^{3}\right)_{\infty}} \tag{14}
\end{equation*}
$$

where $\omega^{3}=1, \omega \neq 1$.
Let $\mathbf{C T}_{a}\left\{\sum_{-\infty}^{\infty} a^{n} f_{n}(q)\right\}$ denote $f_{0}(q)$, the "Constant Term" of the Laurent series in a. Then

$$
\begin{aligned}
& \sum_{m, n \in \mathbb{Z}} \omega^{m-n} q^{m^{2}+m n+n^{2}}=\sum_{m+n+p=0} \omega^{m-n} q^{\left(m^{2}+n^{2}+p^{2}\right) / 2} \\
& \quad=\mathbf{C T}_{a}\left\{\sum_{-\infty}^{\infty} a^{m} \omega^{m} q^{m^{2} / 2} \sum_{-\infty}^{\infty} a^{n} \omega^{-n} q^{n^{2} / 2} \sum_{-\infty}^{\infty} a^{p} q^{p^{2} / 2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
&=\mathbf{C T}_{a}\left\{\prod_{n \geq 1}\left(1+a \omega q^{n-\frac{1}{2}}\right)\left(1+a^{-1} \omega^{-1} q^{n-\frac{1}{2}}\right)\left(1-q^{n}\right)\right. \\
& \cdot \prod_{n \geq 1}\left(1+a \omega^{-1} q^{n-\frac{1}{2}}\right)\left(1+a^{-1} \omega q^{n-\frac{1}{2}}\right)\left(1-q^{n}\right) . \\
& \cdot\left.\prod_{n \geq 1}\left(1+a q^{n-\frac{1}{2}}\right)\left(1+a^{-1} q^{n-\frac{1}{2}}\right)\left(1-q^{n}\right)\right\} \\
&=\mathbf{C T}_{a}\left\{\prod_{n \geq 1}\left(1+a^{3} q^{3 n-\frac{3}{2}}\right)\left(1+a^{-3} q^{3 n-\frac{3}{2}}\right)\left(1-q^{n}\right)^{3}\right\} \\
&=\frac{(q)_{\infty}^{3}}{\left(q^{3}\right)_{\infty}} \cdot \mathbf{C T}_{a}\left\{\prod_{n \geq 1}\left(1+a^{3} q^{3 n-\frac{3}{2}}\right)\left(1+a^{-3} q^{3 n-\frac{3}{2}}\right)\left(1-q^{3 n}\right)\right\} \\
&=\frac{(q)_{\infty}^{3}}{\left(q^{3}\right)_{\infty}} \cdot \mathbf{C T}_{a}\left\{\sum_{-\infty}^{\infty} a^{3 n} q^{3 n^{2} / 2}\right\} \\
&=\frac{(q)_{\infty}^{3}}{\left(q^{3}\right)_{\infty}},
\end{aligned}
$$

as claimed.
Now the left hand side of (14) can be written

$$
\begin{aligned}
\sum_{m-n \equiv 0(\bmod 3)} q^{m^{2}+m n+n^{2}}+\omega & \sum_{m-n \equiv 1(\bmod 3)} q^{m^{2}+m n+n^{2}} \\
& +\omega^{-1} \sum_{m-n \equiv-1(\bmod 3)} q^{m^{2}+m n+n^{2}}
\end{aligned}
$$

In the first sum, let $k=\frac{m-n}{3}, l=\frac{m+2 n}{3}$ (conversely $m=2 k+l, n=$ $l-k$),
in the second sum, $k=\frac{m-n-1}{3}, l=\frac{m+2 n-1}{3}$ (conversely $m=2 k+$ $l+1, n=l-k)$ and
in the third sum, $k=\frac{n-m-1}{3}, l=\frac{n+2 m-1}{3}(m=l-k, n=2 k+l+1)$, and the left hand side of (14) is seen to be

$$
\begin{aligned}
\sum_{k, l \in \mathbb{Z}} q^{3 k^{2}+3 k l+3 l^{2}}+\omega & \sum_{k, l \in \mathbb{Z}} q^{3 k^{2}+3 k l+3 l^{2}+3 k+3 l+1} \\
& +\omega^{-1} \sum_{k, l \in \mathbb{Z}} q^{3 k^{2}+3 k l+3 l^{3}+3 k+3 l+1}
\end{aligned}
$$

$$
=a\left(q^{3}\right)-q c\left(q^{3}\right)
$$

where

$$
c(q)=\sum_{m, n \in \mathbb{Z}} q^{m^{2}+m n+n^{2}+m+n} .
$$

Thus (14) becomes

$$
\begin{equation*}
a\left(q^{3}\right)-q c\left(q^{3}\right)=\frac{(q)_{\infty}^{3}}{\left(q^{3}\right)_{\infty}} \tag{15}
\end{equation*}
$$

Now, it is a celebrated identity of Jacobi that

$$
\begin{equation*}
(q)_{\infty}^{3}=\sum_{n \geq 0}(-1)^{n}(2 n+1) q^{\left(n^{2}+n\right) / 2} \tag{16}
\end{equation*}
$$

We split this sum according to the residue modulo 3 of n. For $n \equiv 0$ $(\bmod 3)$, we write $3 n(n \geq 0)$, for $n \equiv 1(\bmod 3)$, we write $3 n+1(n \geq 0)$, and for $n \equiv-1(\bmod 3)$ we write $-3 n-1(n \leq-1)$, and the right hand side of (16) becomes

$$
\begin{aligned}
\sum_{n \geq 0}(-1)^{n}(6 n+1) q^{\left(9 n^{2}+3 n\right) / 2} & -\sum_{n \geq 0}(-1)^{n}(6 n+3) q^{\left(9 n^{2}+9 n+2\right) / 2} \\
& -\sum_{n \leq-1}(-1)^{n}(-6 n-1) q^{\left(9 n^{2}+3 n\right) / 2} \\
& =\sum_{-\infty}^{\infty}(-1)^{n}(6 n+1) q^{\left(9 n^{2}+3 n\right) / 2}-3 q\left(q^{9}\right)_{\infty}^{3}
\end{aligned}
$$

So (15) becomes

$$
\begin{equation*}
a\left(q^{3}\right)-q c\left(q^{3}\right)=\frac{1}{\left(q^{3}\right)_{\infty}}\left\{\sum_{-\infty}^{\infty}(-1)^{n}(6 n+1) q^{3\left(3 n^{2}+n\right) / 2}-3 q\left(q^{9}\right)_{\infty}^{3}\right\} . \tag{17}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
a(q)=\frac{1}{(q)_{\infty}} \sum_{-\infty}^{\infty}(-1)^{n}(6 n+1) q^{\left(3 n^{2}+n\right) / 2} \tag{18}
\end{equation*}
$$

and

$$
c(q)=3 \frac{\left(q^{3}\right)_{\infty}^{3}}{(q)_{\infty}}
$$

Now (18) becomes

$$
\begin{aligned}
& a(q)=\frac{1}{(q)_{\infty}} {\left[\frac{d}{d a} \sum_{-\infty}^{\infty}(-1)^{n} a^{6 n+1} q^{\left(3 n^{2}+n\right) / 2}\right]_{a=1} } \\
&=\frac{1}{(q)_{\infty}} {\left[\frac{d}{d a}\left\{a \prod_{n \geq 1}\left(1-a^{6} q^{3 n-1}\right)\left(1-a^{-6} q^{3 n-2}\right)\left(1-q^{3 n}\right)\right\}\right]_{a=1} } \\
&=\frac{1}{(q)_{\infty}} {\left[\prod_{n \geq 1}\left(1-a^{6} q^{3 n-1}\right)\left(1-a^{-6} q^{3 n-2}\right)\left(1-q^{3 n}\right) \times\right.} \\
&\left.\times\left\{1+6 \sum_{n \geq 1}\left(\frac{a^{-6} q^{3 n-2}}{1-a^{-6} q^{3 n-2}}-\frac{a^{6} q^{3 n-1}}{1-a^{6} q^{3 n-1}}\right)\right\}\right]_{a=1} \\
&=\frac{1}{(q)_{\infty}}(q)_{\infty}\left\{1+6 \sum_{n \geq 1}\left(\frac{q^{3 n-2}}{1-q^{3 n-2}}-\frac{q^{3 n-1}}{1-q^{3 n-1}}\right)\right\} \\
&=1+6 \sum_{n \geq 0}\left(\frac{q^{3 n+1}}{1-q^{3 n+1}}-\frac{q^{3 n+2}}{1-q^{3 n+2}}\right)
\end{aligned}
$$

which is (7).

References

[1] R. J. Baxter, Some hyperelliptic function identities that occur in the chiral Potts model, J. Phys. A. Math. Gen. 31 (1998), 6806-6818.
[2] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
[3] B. C. Berndt, On a certain theta-function in a letter of Ramanujan from Fitzroy House, Ganita 43 (1992), 33-43.
[4] B. C. Berndt, S. Bhargava and F. G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc., 347 (1995), 4163-4244.
[5] B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, History of Mathematics, Vol. 9, Amer. Math. Soc., London Math. Soc., 1995.
[6] J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), 691-701.
[7] J. M. Borwein, P. B. Borwein and F. G. Garvan, Some cubic modular identities of Ramanujan, Trans. Amer. Math. Soc., 343 (1994), 35-47.
[8] G. Lejeune Dirichlet, Mathematische Werke, Chelsea, New York, 1969.
[9] M. D. Hirschhorn, F. G. Garvan and J. M. Borwein, Cubic analogues of the Jacobian theta function $\theta(z, q)$, Can. J. Math., 45 (1993), 673-694.
[10] M. D. Hirschhorn, Proofs of some hyperelliptic function identities, Bull. Austral. Math. Soc., 58 (1998), 465-468.
[11] L. Lorenz, Oeuvres Scientifiques, Revues et annotées par H. Valentiner, Tome second, la Fondation Carlsberg, Librarie Lehmann \& Stage, Copenhague, 1904.
[12] S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

