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Introduction

Three classical results concern the number of representations of the pos-
itive integer n in the form x2 + 3y2 with x, y ∈ Z, the form (x2 + x)/2 +
3(y2 + y)/2 with x, y ∈ Z

+ and the form x2 + xy + y2 with x, y ∈ Z.

Indeed, if s(n), t(n) and u(n) respectively denote the three numbers, then

(1) s(n) = 2
(

d1,3(n)− d2,3(n)
)

+ 4
(

d4,12(n)− d8,12(n)
)

,

(2) t(n) = d1,3(2n+ 1)− d2,3(2n+ 1)

and

(3) u(n) = 6
(

d1,3(n)− d2,3(n)
)

.

where dr,m(n) is the number of divisors d of n with d ≡ r (mod m).

(1) is equivalent to the q-series identity

∑

m,n∈Z

qm
2+3n2

= 1 + 2
∑

n≥0

(

q3n+1

1− q3n+1
−

q3n+2

1− q3n+2

)

+ 4
∑

n≥0

(

q12n+4

1− q12n+4
−

q12n+8

1− q12n+8

)

(4)

or to

(5)
∑

m,n∈Z

qm
2+3n2

= 1 + 2
∑

n≥0

(

q3n+1

1− (−1)nq3n+1
−

q3n+2

1 + (−1)nq3n+2

)

,
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(2) is equivalent to the q-series identity

(6)
∑

m,n∈Z+

q(m
2+m)/2+3(n2+n)/2 =

∑

n≥0

(

q3n

1− q6n+1
−

q3n+2

1− q6n+5

)

and (3) is equivalent to the q-series identity

(7)
∑

m,n∈Z

qm
2+mn+n2

= 1 + 6
∑

n≥0

(

q3n+1

1− q3n+1
−

q3n+2

1− q3n+2

)

.

Both (5) and (6) appear in Ramanujan’s second Notebook [12, p.239], and
Berndt [2, pp.223-224 and p.116] shows how they follow from Ramanujan’s

1ψ1 summation [12, p.196], [2, p.32]. (7) appears in Berndt and Rankin [5,
p.196] and a proof is given by Berndt [3]. The reader is referred also to [6],
[7], [9] and [4] for related developments and generalisations, and to [1] and
[10] for applications in statistical mechanics.

It seems that Dirichlet (1840) may have known (1), since he gives [8,
p.463] the corresponding results for the forms x2 + y2 and x2 + 2y2, and
continues “And so on in similar fashion.” (“Et ainsi de suite.”)

However, Lorenz (1871) [11, p.420] states both (4) and (1), and in reference
to (1) says (my translation) “From this equation one can deduce a theorem
which must be considered new in the theory of numbers because it cannot
immediately be deduced from known theorems:

If a number N contains prime factors p1, p2, · · · of the form 3m + 1
with exponents a1, a2, · · · and if the prime factors of the form 3m + 2
appear to nothing but even powers, the number of solutions of the equation
m2 + 3n2 = N is given by

ρN = 2(a1 + 1)(a2 + 1) . . .

if N is odd and by
ρN = 6(a1 + 1)(a2 + 1) . . .

if N is even. If, on the contrary, N contains a prime factor of the form
3m+ 2 to an odd power, one has ρN = 0.”

Lorenz also [11, p.424] states (7), and a proof is provided by his reviewer/
translator Valentiner [11, p.430].

So perhaps credit rests with Lorenz.

We shall give proofs of (4), (6) and (7) which demonstrate that all three
results are intimately related.
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2. Proof of the result involving s(n)

Let a(q) denote the left hand side of (7). Then

(8) a(q) + 2a(q4) = 3
∑

k,l∈Z

qk
2+3l2 .

For,

a(q) =
∑

m odd
n even

qm
2+mn+n2

+
∑

m odd
n odd

qm
2+mn+n2

+
∑

m even
n odd

qm
2+mn+n2

+
∑

m even
n even

qm
2+mn+n2

.

In the first sum, let k = m+
n

2
, l =

n

2
(and conversely, m = k− l, n = 2l),

in the second sum, k =
m− n

2
, l =

m+ n

2
(converselym = k+l, n = l−k),

in the third sum, k =
m

2
+ n, l =

m

2
(conversely m = 2l, n = k − l)

and in the fourth sum, k =
m− n

2
, l =

m+ n

2
(conversely m = k + l, n =

l − k),
and we find

(9) a(q) = 3
∑

k 6≡l (mod 2)

qk
2+3l2 +

∑

k≡l (mod 2)

qk
2+3l2 .

Also,
(10)

a(q4) =
∑

m,n∈Z

q4m
2+4mn+4n2

=
∑

m,n even

qm
2+mn+n2

=
∑

k≡l (mod 2)

qk
2+3l2 ,

as with the fourth sum above. (8) follows from (9) and (10). (4) follows
from (7) and (8).

3. Proof of the result involving t(n)

We can write (4)

∑

k,l∈Z

qk
2+3l2 = 1 + 2

∑

n≥0

(

q6n+1

1− q12n+2
−

q6n+5

1− q12n+10

)

+ 6
∑

n≥0

(

q12n+4

1− q12n+4
−

q12n+8

1− q12n+8

)

.
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If we extract the even powers of q we obtain

(11)
∑

k≡l (mod 2)

qk
2+3l2 = 1 + 6

∑

n≥0

(

q12n+4

1− q12n+4
−

q12n+8

1− q12n+8

)

.

(Note, incidentally, that (7) follows from (10) and (11), and that (11) follows
from (7) and (10)!)

From (11) we deduce
(12)
∑

k,l∈Z

qk
2+3l2 +4q

∑

k,l∈Z+

qk
2+k+3l2+3l = 1+ 6

∑

n≥0

(

q3n+1

1− q3n+1
−

q3n+2

1− q3n+2

)

.

If we subtract (4) from (12) we find

4q
∑

k,l∈Z+

qk
2+k+3l2+3l = 4

∑

n≥0

(

q3n+1

1− q3n+1
−

q3n+2

1− q3n+2

)

(13)

− 4
∑

n≥0

(

q12n+4

1− q12n+4
−

q12n+8

1− q12n+8

)

= 4
∑

n≥0

(

q6n+1

1− q12n+2
−

q6n+5

1− q12n+10

)

.

Finally, if we divide (13) by 4q and replace q2 by q we obtain (6).

4. Proof of the result involving u(n)

We begin by showing that

(14)
∑

m,n∈Z

ωm−nqm
2+mn+n2

=
(q)3∞
(q3)∞

where ω3 = 1, ω 6= 1.

Let CTa

{
∑∞

−∞ anfn(q)
}

denote f0(q), the “Constant Term” of the Lau-
rent series in a. Then

∑

m,n∈Z

ωm−nqm
2+mn+n2

=
∑

m+n+p=0

ωm−nq(m
2+n2+p2)/2

= CTa

{

∞
∑

−∞

amωmqm
2/2

∞
∑

−∞

anω−nqn
2/2

∞
∑

−∞

apqp
2/2

}
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= CTa







∏

n≥1

(1 + aωqn−
1
2 )(1 + a−1ω−1qn−

1
2 )(1− qn).

.
∏

n≥1

(1 + aω−1qn−
1
2 )(1 + a−1ωqn−

1
2 )(1− qn).

.
∏

n≥1

(1 + aqn−
1
2 )(1 + a−1qn−

1
2 )(1− qn)







= CTa







∏

n≥1

(1 + a3q3n−
3
2 )(1 + a−3q3n−

3
2 )(1− qn)3







=
(q)3∞
(q3)∞

.CTa







∏

n≥1

(1 + a3q3n−
3
2 )(1 + a−3q3n−

3
2 )(1− q3n)







=
(q)3∞
(q3)∞

.CTa

{

∞
∑

−∞

a3nq3n
2/2

}

=
(q)3∞
(q3)∞

,

as claimed.

Now the left hand side of (14) can be written

∑

m−n≡0 (mod 3)

qm
2+mn+n2

+ ω
∑

m−n≡1 (mod 3)

qm
2+mn+n2

+ ω−1
∑

m−n≡−1 (mod 3)

qm
2+mn+n2

.

In the first sum, let k =
m− n

3
, l =

m+ 2n

3
(conversely m = 2k + l, n =

l − k),

in the second sum, k =
m− n− 1

3
, l =

m+ 2n− 1

3
(conversely m = 2k +

l + 1, n = l − k) and

in the third sum, k =
n−m− 1

3
, l =

n+ 2m− 1

3
(m = l−k, n = 2k+l+1),

and the left hand side of (14) is seen to be

∑

k,l∈Z

q3k
2+3kl+3l2 + ω

∑

k,l∈Z

q3k
2+3kl+3l2+3k+3l+1

+ ω−1
∑

k,l∈Z

q3k
2+3kl+3l3+3k+3l+1
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= a(q3)− qc(q3),

where

c(q) =
∑

m,n∈Z

qm
2+mn+n2+m+n.

Thus (14) becomes

(15) a(q3)− qc(q3) =
(q)3∞
(q3)∞

.

Now, it is a celebrated identity of Jacobi that

(16) (q)3∞ =
∑

n≥0

(−1)n(2n+ 1)q(n
2+n)/2.

We split this sum according to the residue modulo 3 of n. For n ≡ 0
(mod 3), we write 3n (n ≥ 0), for n ≡ 1 (mod 3), we write 3n+ 1 (n ≥ 0),
and for n ≡ −1 (mod 3) we write −3n − 1 (n ≤ −1), and the right hand
side of (16) becomes

∑

n≥0

(−1)n(6n+ 1)q(9n
2+3n)/2 −

∑

n≥0

(−1)n(6n+ 3)q(9n
2+9n+2)/2

−
∑

n≤−1

(−1)n(−6n− 1)q(9n
2+3n)/2

=

∞
∑

−∞

(−1)n(6n+ 1)q(9n
2+3n)/2 − 3q(q9)3∞.

So (15) becomes

(17) a(q3)− qc(q3) =
1

(q3)∞

{

∞
∑

−∞

(−1)n(6n+ 1)q3(3n
2+n)/2 − 3q(q9)3∞

}

.

It follows that

(18) a(q) =
1

(q)∞

∞
∑

−∞

(−1)n(6n+ 1)q(3n
2+n)/2

and

c(q) = 3
(q3)3∞
(q)∞

.
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Now (18) becomes

a(q) =
1

(q)∞

[

d

da

∞
∑

−∞

(−1)na6n+1q(3n
2+n)/2

]

a=1

=
1

(q)∞





d

da







a
∏

n≥1

(1− a6q3n−1)(1− a−6q3n−2)(1− q3n)











a=1

=
1

(q)∞





∏

n≥1

(1− a6q3n−1)(1− a−6q3n−2)(1− q3n)×

×







1 + 6
∑

n≥1

(

a−6q3n−2

1− a−6q3n−2
−

a6q3n−1

1− a6q3n−1

)











a=1

=
1

(q)∞
(q)∞







1 + 6
∑

n≥1

(

q3n−2

1− q3n−2
−

q3n−1

1− q3n−1

)







= 1 + 6
∑

n≥0

(

q3n+1

1− q3n+1
−

q3n+2

1− q3n+2

)

which is (7).
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