THREE CLASSICAL RESULTS ON
REPRESENTATIONS OF A NUMBER

MicHAEL D. HIRSCHHORN

Introduction

Three classical results concern the number of representations of the pos-
itive integer n in the form z? + 3y? with =,y € Z, the form (2% + z)/2 +
3(y? +y)/2 with x,y € Z* and the form 22 + zy + y? with z,y € Z.

Indeed, if s(n), t(n) and u(n) respectively denote the three numbers, then

(1) s(n) = z(dl,g(n) _ d2,3(n)) n 4(d4,12(n) _ ds,m(n)),

(2) t(?’b) = d173(2n —|— 1) — d273(2n —|— 1)
and
(3) u(n) = 6(di3(n) ~ das(n)).

where d,.,,(n) is the number of divisors d of n with d = r (mod m).

(1) is equivalent to the g-series identity

3n+1 3n+2
m2+3n2 _ q q
Z q _1+22(1_q3n+1_1_q3n+2)

mneZ n>0
12n+4 12n+8
q q

4 4 —
(4) - n§>0: (1 gt 1 q12n+8>
or to

3n+1 3n+2

2 2 q q
(5) Z qm+3n :1"'22( 3n+l 3+2)’
m,ne’ nso M~ (=g’ L4 (=1)mg’
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(2) is equivalent to the g-series identity

3n 3n+2
(m?+m)/2+3(n?+n)/2 _ q 4
(6) > a = (1 Ot T 1 — gonb

m,nezZt n>0

and (3) is equivalent to the g-series identity

3n+1 3n+2
2pmntn? _ q q
(7) D g _1+6Z(1_q3n+1_1_q3n+2)'

m,ne” n>0

Both (5) and (6) appear in Ramanujan’s second Notebook [12, p.239], and
Berndt [2, pp.223-224 and p.116] shows how they follow from Ramanujan’s
191 summation [12, p.196], [2, p.32]. (7) appears in Berndt and Rankin [5,
p.196] and a proof is given by Berndt [3]. The reader is referred also to [6],
[7], [9] and [4] for related developments and generalisations, and to [1] and
[10] for applications in statistical mechanics.

It seems that Dirichlet (1840) may have known (1), since he gives [8,

p.463] the corresponding results for the forms z2 + y? and x? + 232, and
continues “And so on in similar fashion.” (“Et ainsi de suite.”)
However, Lorenz (1871) [11, p.420] states both (4) and (1), and in reference
to (1) says (my translation) “From this equation one can deduce a theorem
which must be considered new in the theory of numbers because it cannot
immediately be deduced from known theorems:

If a number N contains prime factors pi,ps, --- of the form 3m + 1
with exponents aq,ao, --- and if the prime factors of the form 3m + 2
appear to nothing but even powers, the number of solutions of the equation
m? 4 3n? = N is given by

pn =2(a1 + 1)(az+1)...

if N is odd and by

PN = 6(&1 + 1)(&2 + 1)
if N is even. If, on the contrary, N contains a prime factor of the form
3m + 2 to an odd power, one has py = 0.”

Lorenz also [11, p.424] states (7), and a proof is provided by his reviewer/
translator Valentiner [11, p.430].

So perhaps credit rests with Lorenz.

We shall give proofs of (4), (6) and (7) which demonstrate that all three
results are intimately related.
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2. Proof of the result involving s(n)

Let a(q) denote the left hand side of (7). Then

2 2
(8) a(g) +2a(q*) =3 ) ¢~
k,IEZ
For,
2 2 2 2 2 2
a(q) _ Z qm +mn+n + Z qm +mn+n + Z qm +mn-+n
m odd m odd m even
n even n odd n odd

2 2
+ Z qm +mn+n )

m even
n even

In the first sum, let £ = m + g, [ = g (and conversely, m =k —1, n = 2l),

in the second sum, k = m 2_ n, = ; n (conversely m = k+1, n =1—k),
in the third sum, k = % +n, = % (conversely m =2l, n=Fk — )
m-—-n m-+n

and in the fourth sum, k£ = , L= (conversely m =k +1, n =
l—k),

and we find

2 2 2 2
(9) alg)=3 Y, T+ D P

2 2

k#l (mod 2) k=l (mod 2)
Also,
(10)
2 2 2 2 2 2
a(q4) _ Z q4m +4mn+4n® _ Z qm +mn+n® _ Z qk +31 7
m,ne” m,n even k=l (mod 2)

as with the fourth sum above. (8) follows from (9) and (10). (4) follows
from (7) and (8).

3. Proof of the result involving ¢(n)
We can write (4)

6n—+1

q = 1— qiznt2 1 _ gi2n+10
k€L n>0

12n+4

12n+8
+6 Z : 12 - :
1— q n+4 1 — q12n+8
n>0
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If we extract the even powers of ¢ we obtain

12n+4 12n+8
k24317 _ q q
(11) Z q _1+6Z<1_q12n+4_1_q12n—|—8>'
k=l (mod 2) n>0

(Note, incidentally, that (7) follows from (10) and (11), and that (11) follows
from (7) and (10)!)
From (11) we deduce

(12)
3n+1 3n+2
k24312 k2 +k+31%2431 _ q q
Zq +4q Z q _1+62<1_q3n+1_1_q3n+2)'
k,l€Z k,leZ+ n>0
If we subtract (4) from (12) we find
(13)
3n+1 3n+2

k2 4+k+31%2430 _ q q

4q Z q _42(1_q3n+1_1_q3n+2>
k,lez+ n>0

12n+4 12n+38
4 Z q . 4q
1 — gl2ntd 1 gl2n+s8
n>0

B 4 Z q6n+1 B q6n+5
o 1— q12n+2 1— q12n+10 :
n>0

Finally, if we divide (13) by 4¢ and replace ¢*> by ¢ we obtain (6).

4. Proof of the result involving u(n)

We begin by showing that

o 2 (@)%
(14) Z W™ nqm +mn+n® _
m,ne’
where w3 =1, w # 1.

Let CT, {3} a"fn(q)} denote fo(g), the “Constant Term” of the Lau-
rent series in a. Then

2 2 2, 2, 2
E wmfnqm +mn+n® _ § wmfnq(m +n“+p<)/2
m,nc€z m+n+p=0

00 00 0o
= CT, {Z Cmemqm?/Q Z anw—nqn2/2 Z apqp2/2}
—0o0 —o0 —o0
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= CT,{ [ +awg" 2)1+a 'w 1g"2)(1 - ¢").
n>1

JI0+aw™ g™ 2) (1 + a w2 (1 - g").
n>1

JIa+am 2 +a g™ 2)1 - q")

n>1

=CT,{ [[(1+a %) +a 3> 5)(1 — ¢")°

n>1

3
_ (qS)oo .CT, H(l +a3q3n—%)(1 +a—3q3n—%)(1 o an)

(@)oo n>1

- ‘CT“{ ) q/}
(9)2,
(@)oo

as claimed.
Now the left hand side of (14) can be written

2 2 2 2
Z qm +mn+n +w § : qm +mn+n
m—n=0 (mod 3) m—n=1 (mod 3)

+ w—l Z qm2 +mn—+n? ]

m—n=—1 (mod 3)

m-—n m+ 2n

In the first sum, let k = 3 [ = 3 (conversely m =2k 4+ 1, n =
[ —k),

in the second sum, k = m——n—17 = mtin—1 (conversely m = 2k +
l+1, n=1—k) and ’

in the third sum, k = ”_Tm_l - % (m = I—k, n = 2k+1+1),

and the left hand side of (14) is seen to be

2 2 2 2
Z PELE L Z g BN 3k 43141
k,€EZ k,EZ

2 3
_|_w—1 Z qSk +3k14+31°4+3k+31+1

k,lEZ
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= a(q®) — qc(¢®),

where
c(q) _ Z qm +mn+n +m+n'
m,ne”
Thus (14) becomes
(9)3
15 a(q®) — qe(q®) = it
(15) (¢) — qc(q”) ()

Now, it is a celebrated identity of Jacobi that

(16) ()3 =Y (=1)"(2n + 1)g" /2,

We split this sum according to the residue modulo 3 of n. For n = 0
(mod 3), we write 3n (n > 0), for n =1 (mod 3), we write 3n+ 1 (n > 0),
and for n = —1 (mod 3) we write —3n — 1 (n < —1), and the right hand
side of (16) becomes

Z(_l)n(Gn + 1)q(9n2+3n)/2 _ Z(—l)"(Gn + 3)q(9n2+9n+2)/2

n>0 n>0
= D (1) (6n = 1)g /2
n<—1
e 2
=) (=1)"(6n + 1)g¥ T3M/2 —34(¢")3..

So (15) becomes

A7) a(@®) - ae(®) = — {Z(—l)”(fin +1)gPGr /2 3Q(q9)§o} :

It follows that

1 oo

(18) olg) = 7y (1) (Bn 4 g
and -
c(q) = 3(q )5
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Now (18) becomes

1 d - n_6n4+1_(3n%+n)/2
a(lq) = — | — —1)"a q
@ == 7 Y B
_ 1 i a H(l _ a6q3n—1)(1 _ a—6q3n—2)(1 _ an)
(@) | da n>1 »
1
_ H<1 _ a6q3n—1)(1 _ a—6q3n—2)(1 q3n)><
(q)oo n>1
a—6q3’n 2 CL6q?>n—1
1+6
XLt T; (1 —aSgpn2 1 a6q3n—1> B

(Q)oo n>1
3n+1 3n+2
_ q q
=1 +62 (1 — g3t ] _q3n+2>
n>0
which is (7).
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