SIMULTANEOUS MAJ STATISTICS

Dongsu Kim and Dennis Stanton

Abstract

The generating function for words with several simultaneous maj weights is given. New maj-like Mahonian statistics result. Some applications to integer partitions are given.

1. Introduction.

The usual maj statistic [2] on words w is defined by adding the location of the descents of the word w,

$$
\operatorname{maj}(w)=\sum_{i: w_{i}>w_{i+1}} i .
$$

This definition presumes that the alphabet for the letters of w have been linearly ordered, for example $2>1>0$,

$$
\operatorname{maj}(1102201)=2+5=7=\operatorname{maj}_{210}(1102201)
$$

However a similar definition can be made assuming any linear ordering σ; here we take $1>2>0, \sigma=120$, and $2>0>1, \sigma=201$

$$
\operatorname{maj}_{120}(1102201)=2+5=7, \quad \operatorname{maj}_{201}(1102201)=5+6=11 .
$$

In this paper we consider the generating function for several such simultaneous maj statistics (see Corollary 1). A more general generating function is given (Theorem 3), and some applications to Mahonian statistics (Corollary 2) and integer partitions (Theorem 4) are stated.

We first give a 3 letter theorem, which motivates the general result (Theorem 3). Let $W(m, n, k)$ be the set of words of length $m+n+k$ with $m 0$'s, n 1's and $k 2$'s.

Theorem 1. For any non-negative integers m, n, and k we have

$$
\begin{array}{r}
\sum_{w \in W(m, n, k)} x^{\text {maj}_{120}(w)} y^{m a j_{201}(w)} z^{\text {maj}_{012}(w)}=x^{n+k} y^{k}\left[\begin{array}{c}
m+n+k-1 \\
m-1, n, k
\end{array}\right]_{x y z}+ \\
y^{k+m} z^{m}\left[\begin{array}{c}
m+n+k-1 \\
m, n-1, k
\end{array}\right]_{x y z}+z^{m+n} x^{n}\left[\begin{array}{c}
m+n+k-1 \\
m, n, k-1
\end{array}\right]_{x y z}
\end{array}
$$

The first author is partially supported by KOSEF: 971-0106-038-2.

Proof. We prove a stronger statement, that the three terms in Theorem 1 are the generating functions for the words in $W(m, n, k)$ ending in 0,1 , and 2 respectively.

We proceed by induction on $m+n+k$. If w ends in a 0 , the penultimate letter must be either 0,1 or 2 . Using induction we must verify that

$$
\begin{gathered}
x^{n+k} y^{k}\left[\begin{array}{c}
m+n+k-1 \\
m-1, n, k
\end{array}\right]_{x y z}=x^{n+k} y^{k}\left[\begin{array}{c}
m+n+k-2 \\
m-2, n, k
\end{array}\right]_{x y z}+ \\
x^{m+n+k-1} y^{m+k-1} z^{m-1}\left[\begin{array}{c}
m+n+k-2 \\
m-1, n-1, k
\end{array}\right]_{x y z}+ \\
(x y)^{m+n+k-1} z^{m+n-1} x^{n}\left[\begin{array}{c}
m+n+k-2 \\
m-1, n, k-1
\end{array}\right]_{x y z}
\end{gathered}
$$

which is the well-known recurrence formula [1] for the $x y z$-trinomial coefficient.

The other two cases are verified similarly.
It should be noted that if any two of x, y, z are set equal to 1 , then the usual maj generating function as a q-trinomial coefficient results.

2. A 7 -variable theorem.

Theorem 1 contains three free variables, x, y and z. In this section we generalize Theorem 1 to Theorem 2, which contains seven free variables. Then we indicate how to specialize Theorem 2 to obtain new explicit classes of Mahonian statistics on words of 0's, 1's, and 2's.

Suppose that the weights of the various possible ascents and descents in position $m+n+k-1$ of a word w of m 0's, $n 1$'s, and $k 2$'s are given by (wt10) $a_{0}^{m-1} a_{1}^{n} a_{2}^{k}$ for a descent 10 ,
(wt21) $b_{0}^{m} b_{1}^{n-1} b_{2}^{k}$ for a descent 21 ,
(wt20) $c_{0}^{m-1} c_{1}^{n} c_{2}^{k}$ for a descent 20 ,
(wt01) $d_{0}^{m} d_{1}^{n-1} d_{2}^{k}$ for an ascent 01,
(wt12) $e_{0}^{m} e_{1}^{n} e_{2}^{k-1}$ for an ascent 12,
(wt02) $f_{0}^{m} f_{1}^{n} f_{2}^{k-1}$ for an ascent 02.
Also suppose that the generating function for all such words w has the form

$$
\begin{array}{r}
p_{0}(n, k)\left[\begin{array}{c}
m+n+k-1 \\
m-1, n, k
\end{array}\right]_{B}+p_{1}(k, m)\left[\begin{array}{c}
m+n+k-1 \\
m, n-1, k
\end{array}\right]_{B} \\
+p_{2}(m, n)\left[\begin{array}{c}
m+n+k-1 \\
m, n, k-1
\end{array}\right]_{B} \tag{2.1}
\end{array}
$$

for some base B, and $p_{0}(n, k)=p_{01}^{n} p_{02}^{k}, p_{1}(k, m)=p_{11}^{k} p_{12}^{m}, p_{2}(m, n)=$ $p_{21}^{m} p_{22}^{n}$. We also assume that the three terms in (2.1) correspond to the w which end in 0,1 , and 2 respectively.

Thus we have 25 free variables

$$
\cup_{i=0}^{2}\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}, p_{i 1}, p_{i 2}\right\} \cup\{B\} .
$$

These 25 variables are related by the three equations which we require by induction

$$
p_{1}(k, m)\left[\begin{array}{c}
m+n+k-1 \\
m, n-1, k
\end{array}\right]_{B}=p_{1}(k, m)\left[\begin{array}{c}
m+n+k-2 \\
m, n-2, k
\end{array}\right]_{B}
$$

$$
\begin{align*}
& p_{0}(n, k)\left[\begin{array}{c}
m+n+k-1 \\
m-1, n, k
\end{array}\right]_{B}=p_{0}(n, k)\left[\begin{array}{c}
m+n+k-2 \\
m-2, n, k
\end{array}\right]_{B} \\
&+a_{0}^{m-1} a_{1}^{n} a_{2}^{k} p_{1}(k, m-1) {\left[\begin{array}{c}
m+n+k-2 \\
m-1, n-1, k
\end{array}\right]_{B} } \\
& \quad+c_{0}^{m-1} c_{1}^{n} c_{2}^{k} p_{2}(m-1, n)\left[\begin{array}{c}
m+n+k-2 \\
m-1, n, k-1
\end{array}\right]_{B} \tag{2.2a}
\end{align*}
$$

$$
+b_{0}^{m} b_{1}^{n-1} b_{2}^{k} p_{2}(m, n-1)\left[\begin{array}{c}
m+n+k-2 \\
m, n-1, k-1
\end{array}\right]_{B}
$$

$$
+d_{0}^{m} d_{1}^{n-1} d_{2}^{k} p_{0}(n-1, k)\left[\begin{array}{c}
m+n+k-2 \tag{2.2b}\\
m-1, n-1, k
\end{array}\right]_{B},
$$

$$
p_{2}(m, n)\left[\begin{array}{c}
m+n+k-1 \\
m, n, k-1
\end{array}\right]_{B}=p_{2}(m, n)\left[\begin{array}{c}
m+n+k-2 \\
m, n, k-2
\end{array}\right]_{B}
$$

$$
+f_{0}^{m} f_{1}^{n} f_{2}^{k-1} p_{0}(n, k-1)\left[\begin{array}{c}
m+n+k-2 \\
m-1, n, k-1
\end{array}\right]_{B}
$$

$$
+e_{0}^{m} e_{1}^{n} e_{2}^{k-1} p_{1}(k-1, m)\left[\begin{array}{c}
m+n+k-2 \\
m, n-1, k-1
\end{array}\right]_{B}
$$

We do not know the general solution to the equations (2.2a-c). However, we will give the general solution to ($2.2 \mathrm{a}-\mathrm{c}$) if we make another assumption. If we specify that the coefficient of the second term on the the right side of (2.2a) is B^{m-1} times the coefficient of the first term, and the coefficient of the third term is B^{m+n-1} times the coefficient of the first term, then the B-trinomial recurrence relation verifies (2.2a). These two equations are

$$
\begin{align*}
a_{0}^{m-1} a_{1}^{n} a_{2}^{k} p_{11}^{k} p_{12}^{m-1} & =B^{m-1} p_{01}^{n} p_{02}^{k}, \tag{2.3a}\\
c_{0}^{m-1} c_{1}^{n} c_{2}^{k} p_{21}^{m-1} p_{22}^{n} & =B^{m+n-1} p_{01}^{n} p_{02}^{k} .
\end{align*}
$$

Similarly, we assume the B-trinomial recurrence for (2.2b) and (2.2c), which become

$$
\begin{align*}
b_{0}^{m} b_{1}^{n-1} b_{2}^{k} p_{21}^{m} p_{22}^{n-1} & =B^{n-1} p_{11}^{k} p_{12}^{m}, \tag{2.3b}\\
d_{0}^{m} d_{1}^{n-1} d_{2}^{k} p_{01}^{n-1} p_{02}^{k} & =B^{n+k-1} p_{11}^{k} p_{12}^{m} .
\end{align*}
$$

and

$$
\begin{align*}
f_{0}^{m} f_{1}^{n} f_{2}^{k-1} p_{01}^{n} p_{02}^{k-1} & =B^{k-1} p_{21}^{m} p_{22}^{n}, \\
e_{0}^{m} e_{1}^{n} e_{2}^{k-1} p_{11}^{k-1} p_{12}^{m} & =B^{k+m-1} p_{21}^{m} p_{22}^{n} . \tag{2.3c}
\end{align*}
$$

Since these equations should hold for all m, n and k, each of these 6 equations contains 3 equations (one each in m, n, and k). Thus we have 18 equations in the 25 free variables, which are written in a matrix form, where the first column comes from the equations in (2.3a):

$$
\left(\begin{array}{ccc}
p_{12} a_{0} & p_{21} b_{0} & f_{0} \\
a_{1} & p_{22} b_{1} & p_{01} f_{1} \\
p_{11} a_{2} & b_{2} & p_{02} f_{2} \\
p_{21} c_{0} & d_{0} & p_{12} e_{0} \\
p_{22} c_{1} & p_{01} d_{1} & e_{1} \\
c_{2} & p_{02} d_{2} & p_{11} e_{2}
\end{array}\right)=\left(\begin{array}{ccc}
B & p_{12} & p_{21} \\
p_{01} & B & p_{22} \\
p_{02} & p_{11} & B \\
B & p_{12} & p_{21} B \\
p_{01} B & B & p_{22} \\
p_{02} & p_{11} B & B
\end{array}\right)
$$

One may find the general solution to these 18 equations, leaving 7 free variables

$$
\left\{a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, B\right\}
$$

The explicit solutions for the remaining 18 variables are given below. The weights (wt) become (W):
(W10) $a_{0}^{m-1} a_{1}^{n} a_{2}^{k} \quad$ for a descent 10 ,
(W21) $b_{0}^{m} b_{1}^{n-1} b_{2}^{k} \quad$ for a descent 21,
(W20) $\left(a_{0} b_{0}\right)^{m-1}\left(a_{1} b_{1}\right)^{n}\left(a_{2} b_{2}\right)^{k} \quad$ for a descent 20,
(W01) $\left(B / a_{0}\right)^{m}\left(B / a_{1}\right)^{n-1}\left(B / a_{2}\right)^{k} \quad$ for an ascent 01,
(W12) $\left(B / b_{0}\right)^{m}\left(B / b_{1}\right)^{n}\left(B / b_{2}\right)^{k-1} \quad$ for an ascent 12 ,
(W02) $\left(B / a_{0} b_{0}\right)^{m}\left(B / a_{1} b_{1}\right)^{n}\left(B / a_{2} b_{2}\right)^{k-1} \quad$ for an ascent 02 ,
and

$$
\begin{aligned}
p_{0}(n, k) & =a_{1}^{n}\left(a_{2} b_{2}\right)^{k}, \quad p_{1}(k, m)=b_{2}^{k}\left(B / a_{0}\right)^{m} \\
p_{2}(m, n) & =\left(B / a_{0} b_{0}\right)^{m}\left(B / b_{1}\right)^{n}
\end{aligned}
$$

Theorem 2. The generating function of all words $w \in W(m, n, k)$ with weights given by (W) is

$$
\begin{gathered}
a_{1}^{n}\left(a_{2} b_{2}\right)^{k}\left[\begin{array}{c}
m+n+k-1 \\
m-1, n, k
\end{array}\right]_{B}+b_{2}^{k}\left(B / a_{0}\right)^{m}\left[\begin{array}{c}
m+n+k-1 \\
m, n-1, k
\end{array}\right]_{B}+ \\
\left(B / a_{0} b_{0}\right)^{m}\left(B / b_{1}\right)^{n}\left[\begin{array}{c}
m+n+k-1 \\
m, n, k-1
\end{array}\right]_{B}
\end{gathered}
$$

Theorem 1 is the special case of Theorem 2 for which $B=x y z$, $a_{0}=a_{1}=a_{2}=x$, and $b_{0}=b_{1}=b_{2}=y$ hold.

There are 7 other versions of Theorem 2. These 8 theorems arise by independently replacing the pair of factors $\left(B^{m-1}, B^{m+n-1}\right)$ by $\left(B^{m+k-1}, B^{m-1}\right)$ in equation (2.3a), ($\left.B^{n-1}, B^{n+k-1}\right)$ by $\left(B^{n+m-1}, B^{n-1}\right)$ in equation (2.3b), and $\left(B^{k-1}, B^{k+m-1}\right)$ by $\left(B^{k+n-1}, B^{k-1}\right)$ in (2.3c). The B-trinomial recurrence still holds. For instance if we make a replacement in (2.3a),

$$
\begin{align*}
a_{0}^{m-1} a_{1}^{n} a_{2}^{k} p_{11}^{k} p_{12}^{m-1} & =B^{m+k-1} p_{01}^{n} p_{02}^{k}, \\
c_{0}^{m-1} c_{1}^{n} c_{2}^{k} p_{21}^{m-1} p_{22}^{n} & =B^{m-1} p_{01}^{n} p_{02}^{k},
\end{align*}
$$

then the explicit solutions to $\left(2.3 \mathrm{a}^{\prime}\right)$ and (2.3b-c) give the weight $\left(\mathrm{W}^{\prime}\right)$:
(W'10) $a_{0}^{m-1} a_{1}^{n} a_{2}^{k} \quad$ for a descent 10 ,
($\mathrm{W}^{\prime} 21$) $b_{0}^{m} b_{1}^{n-1} b_{2}^{k} \quad$ for a descent 21,
(W'20) $\left(a_{0} b_{0}\right)^{m-1}\left(a_{1} b_{1} / B\right)^{n}\left(a_{2} b_{2} / B\right)^{k} \quad$ for a descent 20,
(W'01) $\left(B / a_{0}\right)^{m}\left(B / a_{1}\right)^{n-1}\left(B^{2} / a_{2}\right)^{k} \quad$ for an ascent 01,
($\mathrm{W}^{\prime} 12$) $\left(B / b_{0}\right)^{m}\left(B / b_{1}\right)^{n}\left(B / b_{2}\right)^{k-1} \quad$ for an ascent 12 ,
$\left(\mathrm{W}^{\prime} 02\right)\left(B / a_{0} b_{0}\right)^{m}\left(B / a_{1} b_{1}\right)^{n}\left(B^{2} / a_{2} b_{2}\right)^{k-1} \quad$ for an ascent 02 ,
and the corresponding theorem is the following:
Theorem 2'. The generating function of all words $w \in W(m, n, k)$ with weights given by (W^{\prime}) is

$$
\begin{gathered}
a_{1}^{n}\left(a_{2} b_{2} / B\right)^{k}\left[\begin{array}{c}
m+n+k-1 \\
m-1, n, k
\end{array}\right]_{B}+b_{2}^{k}\left(B / a_{0}\right)^{m}\left[\begin{array}{c}
m+n+k-1 \\
m, n-1, k
\end{array}\right]_{B}+ \\
\left(B / a_{0} b_{0}\right)^{m}\left(B / b_{1}\right)^{n}\left[\begin{array}{c}
m+n+k-1 \\
m, n, k-1
\end{array}\right]_{B}
\end{gathered}
$$

We do not state the remaining 6 variations here.
We can find Mahonian statistics by requiring that the generating function in Theorem 2 is the B-trinomial via the B-trinomial recurrence. There are six choices for this recurrence, one for each ordering of the 3 terms. So Theorem 2 gives a total of 6 possible Mahonian statistics, one of which ($m a j_{012}$), is found by setting $a_{0}=a_{1}=a_{2}=b_{0}=b_{1}=b_{2}=1$. Theorem 2^{\prime} also gives a total of 6 possible Mahonian statistics, one of which is found by setting $a_{0}=a_{1}=b_{0}=b_{1}=b_{2}=1, a_{2}=B$. Similarly there are 6 possible Mahonian statistics for each of other 6 versions of Theorem 2, for a total of $6 \times 8=48$. Six of them are the six possible $m a j_{\sigma}$ statistics, the remaining 42 come in 7 classes of six each, and they are all variations on maj. Each class of size 6 consists of a maj variation, and 5 others which correspond to 5 non-trivial reorderings of $\{0,1,2\}$ of that maj variation. We give below one member of each class, eight in total.

We start with an example from Theorem 2^{\prime}. If we set $a_{0}=a_{1}=b_{0}=$ $b_{1}=b_{2}=1, a_{2}=B$ in Theorem 2^{\prime}, the weight $\left(\mathrm{W}^{\prime}\right)$ reduces to
$\left(\mathrm{W}^{\prime} 10\right) B^{k} \quad$ for a descent 10 ,
($\mathrm{W}^{\prime} 21$) 1 for a descent 21,
$\left(\mathrm{W}^{\prime} 20\right) B^{-n} \quad$ for a descent 20 ,
$\left(\mathrm{W}^{\prime} 01\right) B^{m+n+k-1}$ for an ascent 01,
(W'12) $B^{m+n+k-1}$ for an ascent 12,
($\mathrm{W}^{\prime} 02$) $B^{m+n+k-1}$ for an ascent 02.

Note that the above weight $\left(\mathrm{W}^{\prime}\right)$ is a perturbation of maj_{012} involving the descents 10 and 20 . We write it as $m a j_{012}+s_{0}$, where s_{0} is defined in the following way. We define s_{0} by giving the non-zero values at adjacent letters. One then adds these values to find s_{0}. It is assumed that if w is truncated after the adjacent letters, w has $m 0$'s, $n 1$'s, and $k 2$'s.
$s_{0}(w)$:
(1) k for an adjacent 10 ,
(2) $-n$ for an adjacent 20 .

For example,

$$
s_{0}(22012110201)=-0+3-3=0 .
$$

It turns out (we do not write down the details here) that the eight statistics (including $m a j_{012}$) can be defined by three independent perturbations of $\operatorname{maj}_{012}: s_{0}, s_{1}$, and s_{2}. For any subset $A \subset\{0,1,2\}$ put

$$
s_{A}(w)=\sum_{i \in A} s_{i}(w)
$$

Then the eight Mahonian statistics are $m a j_{012}+s_{A}$. In fact the set A indicates which replacements are made in (2.3a-c). For instance the above $\left(\mathrm{W}^{\prime}\right)$ is $m a j_{012}+s_{\{0\}}$ and if we make replacements, say in (2.3b) and (2.3c), then the corresponding statistics will be $m a j_{012}+s_{\{1,2\}}$, and so on. We define s_{1}, s_{2} analogously by giving the non-zero values at adjacent letters. One then adds these values to find the statistic. It is assumed that if w is truncated after the adjacent letters, w has m 's, n 1's, and $k 2$'s. $s_{1}(w):$
(1) m for an adjacent 21,
(2) $-k$ for an adjacent 01 . $s_{2}(w):$
(1) n for an adjacent 02,
(2) $-m$ for an adjacent 12 .

For example,

$$
s_{1}(22012110201)=-2+1-4=-5, \quad s_{2}(22012110201)=-1+3=2 .
$$

Below is a table evaluating $\operatorname{maj}_{012}, s_{0}, s_{1}$, and s_{2} at the 6 permutations of 012. Note that the $m a j_{012}$ generating function is $1+2 B+2 B^{2}+B^{3}$, which is also the generating function for $m a j_{012}+s_{A}$, for any subset $A \subset\{0,1,2\}$.

word	maj $_{012}$	s_{0}	s_{1}	s_{2}
012	3	0	0	-1
021	1	0	1	0
102	2	0	0	1
120	1	-1	0	0
201	2	0	-1	0
210	0	1	0	0

We repeat that all 48 Mahonian statistics may be found from these 8 by permuting the letters 0,1 , and 2 . In this case $m a j_{012}$ becomes $m a j_{\sigma}$, and each s_{i} is found by applying σ to 0,1 , and 2 in the definition of s_{i}.

3. N letters.

In this section we briefly generalize Theorem 2 to words with N letters in Theorem 3. We state the N letter version of Theorem 1 in Corollary 1. There are $N!2^{N}$ Mahonian statistics, which come in 2^{N} families each of size N !. We explicitly give the corresponding 2^{N} Mahonian statistics in Corollary 2.

Let $W\left(a_{0}, a_{1}, \cdots, a_{N-1}\right)$ be the set of all words w with $a_{i} i$'s, $0 \leq i \leq$ $N-1$.

If the words w have N letters instead of 3 letters, then each adjacent pair $i j, i \neq j$, could be weighted by N variables, instead of 3 variables. Also the coefficients $p_{i}, 0 \leq i \leq N-1$ would have $N-1$ variables. Together with the base B, we have a total of $N\left(N^{2}-N\right)+N(N-1)+1=N^{3}-N+1$ variables. Each of the N recurrences required by induction gives $N(N-1)$ equations in these variables. So $N(N-1)+1$ variables will be free in the multivariable version of Theorem 2.

In order to fully describe the resulting theorem, some care must be taken with notation.

The $N(N-1)+1$ free variables may be taken to be the base B along with the N weights of the adjacent pairs $(i+1) i$, for $i=0, \cdots, N-2$, for which we use the variables

$$
\left(x_{i 0}, x_{i 1}, \cdots, x_{i N-1}\right), \quad 0 \leq i \leq N-2 .
$$

Suppose that w ends in an adjacent pair $i j, i \neq j$, and that there are n_{k} k 's preceding the last letter j of w. The weight of the pair $i j$ is given by

$$
\begin{array}{ll}
\prod_{k=0}^{N-1}\left(\prod_{l=j}^{i-1} x_{l k}\right)^{n_{k}} & \text { if } j<i, \tag{4.2}\\
\prod_{k=0}^{N-1}\left(B / \prod_{l=i}^{j-1} x_{l k}\right)^{n_{k}} & \text { if } i<j .
\end{array}
$$

As usual, we multiply the weights of adjacent pairs to find the weight of the word w.

Theorem 3. The generating function of all words $w \in W\left(a_{0}, a_{1}, \cdots, a_{N-1}\right)$ with weights given by (4.2) is

$$
\sum_{i=0}^{N-1} p_{i}\left(a_{0}, a_{1}, \cdots, a_{N-1}\right)\left[\begin{array}{c}
a_{0}+\cdots+a_{N-1}-1 \\
a_{0}, \cdots, a_{i}-1, \cdots, a_{N-1}
\end{array}\right]_{B}
$$

where

$$
p_{i}\left(a_{0}, a_{1}, \cdots, a_{N-1}\right)=\left(\prod_{l=0}^{i-1}\left(B / \prod_{k=1}^{i-l} x_{i-k, l}\right)^{a_{l}}\right)\left(\prod_{l=i+1}^{N-1}\left(\prod_{k=0}^{l-i-1} x_{i+k, l}\right)^{a_{l}}\right) .
$$

Note that p_{i} in Theorem 3 is independent of a_{i}.
The multivariable version of Theorem 1 occurs if

$$
x_{i 0}=x_{i 1}=\cdots=x_{i N-1}=x_{i}, \quad 0 \leq i \leq N-2,
$$

and $B=x_{0} x_{1} \cdots x_{N-1}$. Then the weights (4.2) become

$$
\begin{array}{ll}
\left(x_{j} \cdots x_{i-1}\right)^{n_{0}+\cdots+n_{N-1}} & \text { if } j<i, \\
\left(x_{0} \cdots x_{i-1} x_{j} \cdots x_{N-1}\right)^{n_{0}+\cdots+n_{N-1}} & \text { if } i<j,
\end{array}
$$

and the next corollary holds.
Corollary 1. We have

$$
\begin{aligned}
& \sum_{w \in W\left(a_{0}, \cdots, a_{N-1}\right)} \prod_{i=0}^{N-1} x_{i}^{\operatorname{maj}_{i+1 \cdots(N-1) 01 \cdots i}(w)}= \\
& \sum_{i=0}^{N-1} p_{i}\left(a_{0}, a_{1}, \cdots, a_{N-1}\right)\left[\begin{array}{c}
a_{0}+\cdots+a_{N-1}-1 \\
a_{0}, \cdots, a_{i}-1, \cdots, a_{N-1}
\end{array}\right]_{x_{0} \cdots x_{N-1}}
\end{aligned}
$$

where
$p_{i}\left(a_{0}, a_{1}, \cdots, a_{N-1}\right)=\left(\prod_{l=0}^{i-1}\left(x_{0} \cdots x_{l-1} x_{i} \cdots x_{N-1}\right)^{a_{l}}\right)\left(\prod_{l=i+1}^{N-1}\left(x_{i} \cdots x_{l-1}\right)^{a_{l}}\right)$.
We next give the 2^{N} Mahonian statistics which follow from Theorem 3. Again they may be classified by perturbations of $m a j_{01 \cdots N-1}$. For any subset $A \subset\{0,1, \cdots, N-1\}$, define

$$
s_{A}(w)=\sum_{i \in A} s_{i}(w) .
$$

The individual statistics $s_{i}(w)$ only depend upon the subwords of w ending in i, as in $\S 2$. For any given $i \in w$, suppose that i is preceded by $n_{j} j$'s, $0 \leq j \leq N-1$. Extend the definition of n_{j} to be periodic $\bmod N: n_{j+N}=n_{j}$ for all j. If the letter preceding i is $i+k$, the contribution to $s_{i}(w)$ is positive on the circular interval $[i+k+1, i-1]$ and negative on the circular interval $[i+1, i+k-1]$,

$$
\begin{equation*}
\left(n_{i+k+1}+n_{i+k+2}+\cdots+n_{(i-1)}\right)-\left(n_{i+1}+n_{i+2}+\cdots+n_{i+k-1}\right) . \tag{3.1}
\end{equation*}
$$

We add the contributions of (3.1) over all $i \in w$ to find $s_{i}(w)$. There is no contribution if $k=0$; that is, for a repeated $i i$. For example,
$s_{1}(41241012411312301)=0+(-1)+(-3)+(1-2)+(4-2)+(-8)=-11$.

Corollary 2. For any set $A \subset\{0,1, \cdots, N-1\}$, the statistic maj$j_{01 \cdots N-1}+$ s_{A} is Mahonian on $W\left(a_{0}, a_{1}, \cdots, a_{N-1}\right)$.

These Mahonian statistics are examples of splittable statistics [3].
One may also allow weights on the adjacent letters 00 , 11, and 22 for a more general version of Theorem 3.
4. Applications to partitions.

In this section we apply Theorem 1 and Theorem 3 to integer partitions. The special case $k=0, z=1, x=y=q$ of Theorem 1 is

$$
\sum_{w \in W(m, n, 0)} q^{\operatorname{maj}_{10}(w)+\operatorname{maj}_{01}(w)}=\left[\begin{array}{c}
m+n \tag{4.1}\\
m
\end{array}\right]_{q^{2}} \frac{q^{m}+q^{n}}{1+q^{m+n}}:=f(m, n, q) .
$$

MacMahon [4, p. 139] previously gave (4.1).
The following generating function (using standard notation found in [1]) follows from (4.1),

$$
\begin{equation*}
\sum_{m, n \geq 0} f(m, n, q) \frac{(x q)^{m}(y q)^{n}}{(q ; q)_{m+n}}=\frac{\left(x y q^{2} ; q^{2}\right)_{\infty}}{(x q, y q ; q)_{\infty}} \tag{4.2}
\end{equation*}
$$

One way to see (4.2) is to consider the generating function for pairs of partitions (λ, μ) with distinct parts, weighted by

$$
x^{\# \text { of parts of } \lambda} y^{\# \text { of parts of } \mu} q^{|\lambda|+|\mu|}
$$

which is

$$
\prod_{k=1}^{\infty}\left(1+\frac{x q^{k}}{1-x q^{k}}+\frac{y q^{k}}{1-y q^{k}}\right)=\frac{\left(x y q^{2} ; q^{2}\right)_{\infty}}{(x q, y q ; q)_{\infty}}
$$

To prove (4.1), we must find a weight preserving bijection ϕ from the set of such (λ, μ), \# parts of $\lambda=m$, \# parts of $\mu=n$, to the set of ordered pairs (w, γ), where $w \in W(m, n, 0)$, and γ is a partition with $m+n$ parts.

To define w, order the $m+n$ parts of $\lambda \cup \mu$ into a partition θ, and let $w_{i}=0$ if $\theta_{i} \in \lambda, w_{i}=1$ if $\theta_{i} \in \mu$. This is well defined since the parts of λ and μ are distinct. To define γ, let t_{i} be the number of descents or ascents to the right of position i in the word w. Then we let $\gamma=\theta-t$. For example if

$$
\lambda=7742, \quad \mu=88661,
$$

then

$$
\theta=887766421, \quad w=110011001, \quad t=443322110, \quad \gamma=444444311
$$

This correspondence is the desired bijection ϕ.
The natural analog of ϕ on triples (λ, μ, θ) without pairwise common parts produces a word $w \in W(m, n, k)$ and a partition γ. The q-statistic on
the word w again counts all ascents and descents of w by their positions. However, in Theorem 1, we see that the six possible ascents/descents in w are weighted differently by position:

01 by $y z$,
02 by z,
10 by x,
12 by $x z$,
20 by $x y$,
21 by y.
So if we choose $x=q^{a}, y=q^{b}, z=q^{c}$, an occurrence of 01 in positions j and $j+1$ of w contributes a weight of $q^{j(b+c)}$. This in turn implies that the bijection ϕ must be modified so that the part in λ corresponding to w_{j} must be at least $b+c$ larger than the part in μ corresponding to w_{j+1}. We need six different inequalities for the six possible juxtapositions of parts. Let $\phi_{a, b, c}$ be the modified bijection.

For example, if $m=k=2, n=1, a=2, b=c=1$, then the juxtaposed parts sizes must differ by

$$
\begin{aligned}
& 2 \text { for } \lambda \mu, \\
& 1 \text { for } \lambda \theta, \\
& 2 \text { for } \mu \lambda, \\
& 3 \text { for } \mu \theta, \\
& 3 \text { for } \theta \lambda, \\
& 1 \text { for } \theta \mu .
\end{aligned}
$$

The three possible triples (λ, μ, θ) whose weight is q^{12} are given below, along with result of the bijection $\phi_{2,1,1}$:

$$
\begin{aligned}
& (22,6,11) \rightarrow(10022,31111), \\
& (32,5,11) \rightarrow(10022,22111), \\
& (43,1,22) \rightarrow(00221,21111) .
\end{aligned}
$$

Corollary 3. Let a, b and c be positive integers. The generating function for all triples of partitions (λ, μ, θ) without pairwise common parts, such that λ has m parts, μ has n parts, and θ has k parts, and any adjacent parts in the partition $\lambda \cup \mu \cup \theta$ of type
(1) $\lambda \mu$ differ by $b+c$,
(2) $\lambda \theta$ differ by c,
(3) $\mu \lambda$ differ by a,
(4) $\mu \theta$ differ by $a+c$,
(5) $\theta \lambda$ differ by $a+b$,
(6) $\theta \mu$ differ $b y b$,
is given by

$$
\left.\begin{array}{l}
\frac{q^{m+n+k}}{(q ; q)_{m+n+k}}\left(q^{a(n+k)+b k}\left[\begin{array}{c}
m+n+k-1 \\
m-1, n, k
\end{array}\right]_{q^{a+b+c}}+\right. \\
q^{b(m+k)+c m}\left[\begin{array}{c}
m+n+k-1 \\
m, n-1, k
\end{array}\right]_{q^{a+b+c}}+q^{c(n+m)+a n}\left[\begin{array}{c}
m+n+k-1 \\
m, n, k-1
\end{array}\right]_{q^{a+b+c}}
\end{array}\right) .
$$

In Theorem 3, if all $x_{i}=q$, the following theorem results. All subscripts are taken $\bmod N$.

Theorem 4. The generating function for all N-tuples of integer partitions $\left(\lambda_{1}, \cdots, \lambda_{N}\right)$ without pairwise common parts, such that
(a) λ_{i} has a_{i} parts, $1 \leq i \leq N$,
(b) if the partition $\lambda_{1} \cup \lambda_{2} \cup \cdots \cup \lambda_{N}$ has adjacent parts bc, for $b \in \lambda_{i}$ and $c \in \lambda_{j}$, then $b-c \geq(i-j) \bmod N$,
is given by

$$
\frac{q^{f}}{(q ; q)_{f}}\left[\begin{array}{c}
a_{1}+\cdots+a_{N} \\
a_{1}, \cdots, a_{N}
\end{array}\right]_{q^{N}} \frac{\sum_{i=1}^{N} q^{e_{i}}}{\sum_{i=0}^{N-1} q^{i f}},
$$

where $f=a_{1}+a_{2}+\cdots+a_{N}$, and $e_{i}=a_{i}+2 a_{i+1}+\cdots+(N-1) a_{i+N-2}$.

5. Remarks.

MacMahon [5, §30] defined a statistic related to maj, denoted here by $M A J$, which weights each descent by the amount of the descent. For example,

$$
M A J(20211201)=2 * 1+1 * 3+2 * 6=17
$$

because the descent 20 in positions 1,6 are weighted by $2-0=2$, while the descent 21 in position 3 is weighted by $2-1=1$. Let $M I N$ denote the analogous statistic using the ascents. Then MacMahon alludes [5, §40] to the following theorem for words with three letters.

Theorem 5. For any non-negative integers m, n, and k we have

$$
\begin{aligned}
& \sum_{w \in W(m, n, k)} x^{M A J(w)} y^{M I N(w)}=x^{n+2 k}\left[\begin{array}{c}
m+n+k-1 \\
n
\end{array}\right]_{x y}\left[\begin{array}{c}
m+k-1 \\
m-1
\end{array}\right]_{(x y)^{2}} \\
& +y^{m-k}\left[\begin{array}{c}
m+n+k-1 \\
n-1
\end{array}\right]_{x y}\left[\begin{array}{c}
m+k \\
m
\end{array}\right]_{(x y)^{2}} \frac{(x y)^{2 k}+(x y)^{m+k}}{1+(x y)^{m+k}} \\
& \quad+y^{2 m+n}\left[\begin{array}{c}
m+n+k-1 \\
n
\end{array}\right]_{x y}\left[\begin{array}{c}
m+k-1 \\
m
\end{array}\right]_{(x y)^{2}}
\end{aligned}
$$

If $x=y, y=1$ or $x=1$, the three terms in Theorem 5 sum to a single product (see $[5, \S 38, \S 40]$). The proof of Theorem 5 is identical to the proof of Theorem 1. We do not know a multivariable version of Theorem 5 .

References

1. G. Andrews, The Theory of Partitions, Addison-Wesley, Reading, 1976.
2. D. Foata and M.-P. Schützenberger, Major index and inversion number of permutations, Math. Nachr. 83 (1978), 143-158.
3. J. Galovich and D. White, Recursive statistics on words, Disc. Math. 157 (1996), 169-191.
4. P. MacMahon, Combinatory Analysis (3rd, ed.), Chelsea, New York, 1984.
5. \qquad , The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math. 35 (1913), 281-322.

Department of Mathematics, KAISt, Taejon 305-701, Korea
School of Mathematics, University of Minnesota, Minneapolis, MN 55455
E-mail address: dskim@math.kaist.ac.kr stanton@math.umn.edu

