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Abstract

In his famous book “Combinatory Analysis” MacMahon introduced Partition

Analysis as a computational method for solving problems in connection with lin-

ear homogeneous diophantine inequalities and equations, respectively. The object

of this paper is to introduce an entirely new application domain for MacMahon’s

operator technique. Namely, we show that Partition Analysis can be also used for

proving hypergeometric multisum identities. Our examples range from combina-

torial sums involving binomial coefficients, harmonic and derangement numbers

to multisums which arise in physics and which are related to the Knuth-Bender

theorem.
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1 Introduction

MacMahon devoted about hundred pages of his famous book [19, Vol. 2] to the study
of Partition Analysis, a computational method for solving problems in connection with
linear homogeneous diophantine inequalities and equations, respectively. Nevertheless,
with the exception of Stanley’s article [20], MacMahon’s method has remained dormant
until recently when M. Bousquet-Mélou and K. Eriksson [10] discovered their “Lecture
Hall Partition Theorem”, a beautiful refinement of Euler’s classic result [1, p. 5]. It
was exactly this achievement that brought Partition Analysis back on stage. Namely,
the first named author observed in [3] that this type of partition theorem is perfectly
tailored for MacMahon’s approach; see also [4].

In addition, it turned out that Partition Analysis is ideally suited for being sup-
plemented by modern computer algebra methods. We developed the computer algebra
package Omega which implements various aspects of MacMahon’s ideas. For an intro-
duction to basic facts of “Omega Calculus” and for a variety of applications see [6] and
[7].

In order to illustrate what Partition Analysis is about, we recall the definition of
MacMahon’s Omega operator Ω

≧
:

Definition 1.1. The operator Ω
≧
is defined by

Ω
≧

∞
∑

s1=−∞

· · ·

∞
∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsr

r :=
∞
∑

s1=0

· · ·

∞
∑

sr=0

As1,...,sr ,

where the domain of the terms As1,...,sr (e.g., functions of several complex variables, or
certain formal Laurent or power series) is such that the action is well-defined in some
suitable analytic or algebraic context. In the context of this paper convergence is no
issue at all because the operator Ω

≧
will only act on (multivariate) Laurent polynomials

C[λ1, . . . , λr, λ
−1
1 , . . . , λ−1

r ] over the complex numbers; the only exceptions are in Sections
3 and 4 where we must assume |λ| > 1.

The operator Ω
≧
can be viewed as a generalization of the constant term operator for

which MacMahon introduced the symbol Ω
=

. More precisely we have:

Definition 1.2. The operator Ω
=

is defined by

Ω
=

∞
∑

s1=−∞

· · ·

∞
∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsr

r := A0,...,0.
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Let a(λ1, . . . , λr) denote the multisum expression. For picking up coefficients we will
use the notation

〈λt1
1 · · ·λtr

r 〉 a(λ1, . . . , λr) := At1,...,tr .

In other words, we have

〈λt1
1 · · ·λtr

r 〉 a(λ1, . . . , λr) = Ω
=

a(λ1, . . . , λr)

λt1
1 · · ·λtr

r

.

As pointed out by MacMahon [19, Vol. II, VIII, p. 104] the Ω
=

operator is related to Ω
≧

by

Ω
=

F (λ) = Ω
≧
F (λ) + Ω

≧
F (1/λ)− F (1). (1.1)

On page 102 of his book [19, Vol. II, VIII] MacMahon gives a “short study” of The
operation Ω

≧
: “In connection with the inequality α1 ≥ α2 we have already found that

the sum
∑

xα1yα2 depends upon

Ω
≧

1

(1− λx)
(

1− y

λ

) =
1

(1− x)(1− x y)
.” (1.2)

Then MacMahon continues by adding eleven similar rules, all being “easily verifiable
results”. For instance,

Proof of (1.2). By geometric series expansion the left hand side equals

Ω
≧

∑

i,j≥0

λi−jxiyj = Ω
≧

∑

j,k≥0

λkxj+kyj,

where the summation parameter i has been replaced by i = j + k. But now Ω
≧
sets λ to

1 which completes the proof.

Next we come back to MacMahon’s remark concerning the sum
∑

xα1yα2 where
the summation parameters are nonnegative integers satisfying the inequality α1 ≥ α2.
Obviously this sum can be rewritten as

Ω
≧

∑

α1,α2≥0

λα1−α2xα1yα2 = Ω
≧

1

(1− λx)
(

1− y

λ

) ,
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and after applying rule (1.2) we arrive at a closed form representation. In other words,
the rule is used in order to eliminate the Ω

≧
-variable λ.

This elimination approach is the essence of MacMahon’s method. For all applications
of Partition Analysis to find in Section VIII of his book, he applied his catalogue of rules
in order to compute closed forms of generating functions by successive elimination of
those variables the Ω

≧
operator acts on. In [6] and [7] we show that this procedure can be

put into an algorithmic setting, i.e., the elimination can be done in an entirely automatic
fashion without any table-look up. Roughly spoken the application domain for this
algorithmic machinery concerns problems in connection with partitions or compositions
of numbers.

The application domain we consider in this paper is a different one. In enumeration
problems (e.g., lattice paths, analysis of algorithms, graph theory) one often meets mul-
tidimensional sums over hypergeometric summands with constraints on the summation
indices. In many of these cases the constraints are in form of Diophantine inequalities.
Thus the multisums may involve binomial coefficients. But also single sums involving
combinatorial numbers as, for instance, the derangement numbers Dn or the harmonic
numbers Hn, can be rewritten as double- or multisums over hypergeometric summands.
We list a few examples that are treated in the following sections:
Calkin’s identity [11],

n
∑

k=0

(

k
∑

j=0

(

n

j

)

)3

=
n

2
8n + 8n −

3n

4
2n
(

2n

n

)

, (1.3)

Callan’s identity [12], for derangement numbers (defined in equation (3.1))

k
∑

j=0

(

k

j

)

Dk+n−j = k!

min(n,k)
∑

j=0

(

k

j

)(

k + n− j

k

)

Dn−j, (1.4)

a harmonic number identity (defined in equation (4.1)) that must be well-known,

n
∑

k=0

(

k

m

)

(Hk −Hn−k) =

(

n+ 1

m+ 1

)

Hm, (1.5)

and an identity found by Essam and Guttmann [15]

∑

k1

∑

k1≤k2

k1 − k2
n+ 1

(

n+ 1

k1

)(

n+ 1

k2

)

=

(

2n+ 1

n

)

. (1.6)
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In the following sections we will show that MacMahon’s Partition Analyis can be
used to treat also problems of this kind. In order to do so, one essentially needs to
exploit elementary properties of the Ω

≧
operator. We remark that using Omega calculus

in this way for proving multisum identities seems to be entirely new. At least we have
not found any such example in MacMahon’s work.

However, because of (1.1) which relates the Ω
≧
operator to the constant term operator,

such type of application does not come as a complete surprise. For instance, a good
portion of Egorychev’s book [14] is devoted to the “method of coefficients”. This method
formally corresponds to using certain properties of the constant term operator in order to
lift a summation identity into a generating function algebra. Related to this technique is
what Wilf [22, Ch. 4.3] describes as the “Snake Oil” method for combinatorial identities.

As an elementary introduction to Omega calculus we prove the simple doublesum
identity

n
∑

k=0

k
∑

j=0

(

n

j

)

= 2n + n 2n−1. (1.7)

Proof. Denote by f(n) the doublesum in question and let F (x) =
∑∞

n=0 f(n)x
n be the

corresponding generating function. We rewrite F (x) in terms of the Ω
≧
operator,

F (x) =
∞
∑

n=0

n
∑

k=0

k
∑

j=0

(

n

j

)

xn

= Ω
≧

∑

n,k,j

λk−j

(

n+ k

j

)

xn+k

= Ω
≧

∑

n,k

(1 + λ−1)n+kλkxn+k

(by the Binomial Theorem)

= Ω
≧

1
(

1− x
(

1 + 1
λ

))

(1− xλ(1 + 1
λ
))

(by the geometric series)

=
1

(1− x)2
Ω
≧

1
(

1− x
1−x

λ−1
) (

1− x
1−x

λ
)
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=
1

(1− x)2
1

(

1− x
1−x

)

(

1−
(

x
1−x

)2
)

(by (1.2))

=
1

1− 2x
+

x

(1− 2x)2
.

From this the closed form evaluation of f(n) is immediate.

This way of using the Ω
≧
operator is very close to MacMahon’s Partition Analysis. The

examples presented below will show that the scope of possible ways to apply this operator
is much broader; sometimes certain properties of Ω

≧
even lead to surprising extra insight.

Despite the success of the method in these examples, we have to point out that
this usage of Ω

≧
manipulatorics is non-algorithmic. Today we already have computer

programs for the automatic treatment of hypergeometric multisums. For instance, the
WZ-engine of of Wilf and Zeilberger [23] has been fine-tuned by Wegschaider [21]. A
more general engine, based on Zeilberger’s “holonomic systems approach to special func-
tions” [24] has been designed by Chyzak [13]; its underlying mechanism is elimination via
Gröbner bases methods for non-commutative operator algebras. These computer algebra
packages are remarkably powerful for various applications. For instance, see Chyzak’s
computer proof [13] of Calkin’s identity (1.3), or the proofs supplied by Wegschaider’s
package [21] including a fully automatic proof of (1.6). But still one can observe certain
complexity limitations; more detailed remarks on this aspect are to find in Section 5.
Therefore manipulation methods like the Ω

≧
calculus that we are going to introduce still

remain valuable tools in practical problem solving. Another application concerns the
possibility that such methods might help to transform a problem into a form that finally
can be treated automatically by a computer program.

In Section 2 Omega calculus is applied to derive a new proof of Calkin’s identity
(1.3). It is interesting to observe that the method provides insight into a whole class of
such identities as, for instance, identity (1.7).

In Section 3 we treat identities involving derangement numbers Dn. Besides proving
Callan’s identity (1.4), Partition Analysis reveals its underlying structure and leads to
a more general result in a straightforward manner.

In Section 4 we show that harmonic number identities also fit into the scope of
Partition Analysis. A well-known summation is derived as a corollary from a more
general identity which we could not find in the standard literature.
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Finally in Section 5 we use Partition Analysis to evaluate the doublesum identity
(1.6) together with a triplesum companion. As explained by Essam and Guttman [15]
such identities arise in certain physical models. Moreover, it is remarkable that these
identities can be obtained as special cases of the Bender-Knuth conjecture which has
been proved by Gordon [17] and independently by Andrews [2].

2 Calkin’s Identity

The basis of the application of Partition Analysis in this section lies in the simple
observation that for n = 2 or 3,

Ω
≧
λDλ(λ

a1−a2 + λa2−a3 + · · ·+ λan−a1) = max(a1, a2, . . . , an)−min(a1, a2, . . . , an),(2.1)

where Dλ denotes differentiation with respect to λ.
Our object is to provide a new proof of Calkin’s intriguing identity [11]:

Theorem 2.1.
n
∑

k=0

(

k
∑

j=0

(

n

j

)

)3

=
n

2
8n + 8n −

3n

4
2n
(

2n

n

)

. (2.2)

Proof. We begin by defining

M(n) =
∑

k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

max(k1, k2, k3) (2.3)

and

m(n) =
∑

k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

min(k1, k2, k3) . (2.4)

Next we note that

n
∑

k=0

(

k
∑

j=0

(

n

j

)

)3

=
n
∑

k=0

∑

n≥k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

=
∑

n≥k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

) n
∑

k=max(k1,k2,k3)

1
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=
∑

n≥k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

(n−max(k1, k2, k3) + 1)

= (n+ 1)8n −M(n) . (2.5)

So to prove Calkin’s identity we only need to prove that

M(n) =
n

2
8n +

3n

4
2n
(

2n

n

)

. (2.6)

To achieve this we note that

M(n) =
∑

n≥k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

max(n− k1, n− k2, n− k3)

=
∑

n≥k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

(n−min(k1, k2, k3))

= n 8n −m(n) . (2.7)

In addition, using (2.1) we find that

M(n) − m(n)

=
∑

n≥k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

(max(k1, k2, k3)−min(k1, k2, k3))

= Ω
≧
λDλ

∑

n≥k1,k2,k3≥0

(

n

k1

)(

n

k2

)(

n

k3

)

(λk1−k2 + λk2−k3 + λk3−k1)

= 3 · 2n Ω
≧
λDλ(1 + λ)n(1 + λ−1)n

= −3 · 2nnΩ
≧
(1− λ)λ−n(1 + λ)2n−1

= −3 · 2nn

(

2n−1
∑

j=n

(

2n− 1

j

)

−

2n−1
∑

j=n−1

(

2n− 1

j

)

)

= 3 · 2nn

(

2n− 1

n− 1

)

=
3

2
2nn

(

2n

n

)

. (2.8)

Eliminating m(n) from these two identities, we find that

M(n) =
n8n

2
+

3

4
n 2n

(

2n

n

)

, (2.9)

which proves our theorem.
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Remark. When we computed M(n) − m(n) we met the problem of evaluating the
expression Ω

≧
(1− λ)λ−n(1 + λ−1)n. In Section 5 we will see that this is typical for such

kind of Ω
≧
applications; compare in particular Lemma 5.1.

Unfortunately our Partition Analysis representation of

max(a1, . . . , an)−min(a1, . . . , an)

is not valid for n > 3. Consequently, we cannot expect similarly nice results for

n
∑

k=0

(

k
∑

j=0

(

n

j

)

)m

when m > 3. Of course, the same method can be used to prove easily that

n
∑

k=0

(

k
∑

j=0

(

n

j

)

)2

=
n 4n

2
+ 4n −

n

2

(

2n

n

)

.

3 Derangement Numbers

The derangement numbers, Dn, are well-known in combinatorics. Dn is the number of
permutations of n letters without fixed points, and, in fact,

Dn = n!
n
∑

j=0

(−1)j

j!
. (3.1)

So we see immediately that

Dn = Ω
≥

n!λn

∞
∑

j=0

(−1)jλ−j

j!

= n! Ω
≧
λne−

1

λ . (3.2)

To illustrate the utility of Partition Analysis in treating derangement number prob-
lems, we shall consider an identity of David Callan [12]:

k
∑

j=0

(

k

j

)

Dk+n−j = k!

min(n,k)
∑

j=0

(

k

j

)(

k + n− j

k

)

Dn−j . (3.3)

Partition Analysis applied to each side of this identity leads us to a much stronger
and more surprising result.
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Theorem 3.1. For any N ≥ n− k,

∑

j≧0

(

k

j

)

(k + n− j)!

(k +N − j)!
Dk+N−j = (−1)n

n
∑

j=0

(−1)j
(

n

j

)

(j + k)! (3.4)

( = (−1)nk! 2F0(−n, k + 1; 1) ) .

Remark. The left-hand side of the above identity is the left-hand side of Callan’s
identity when N = n and the right-hand side of Callan’s identity when N = n − k.
Since the right-hand side of the above identity is independent of N , we see that Callan’
identity is a direct consequence of our theorem.

Lemma 3.1. For nonnegative integers n and k,

Dn
λλ

k+ne
1

λ =
k
∑

j=k−n

c(k, n, j)λje
1

λ , (3.5)

where

c(k, n, j) = (−1)k+j

(

n

k − j

)

(j + n)!

k!
. (3.6)

Proof. For n = 0 we see immediately that c(k, 0, k) = 1. For n = 1,

Dλλ
k+1e

1

λ = (k + 1)λke
1

λ − λk−1e
1

λ , (3.7)

so c(k, 1, k − 1) = −1 and c(k, 1, k) = k + 1. Hence our Lemma is true for n = 0 and 1.
We now proceed by mathematical induction.

Dn+1
λ λk+n+1e

1

λ = Dn
λ(Dλλ

k+n+1e
1

λ )

= Dn
λ((k + n+ 1)λk+ne

1

λ − λk+n−1e
1

λ )

= (k + n+ 1)
k
∑

j=k−n

c(k, n, j)λje
1

λ −

k−1
∑

j=k−1−n

c(k − 1, n, j)λje
1

λ(3.8)

For this last expression, in order to equal

k
∑

j=k−(n+1)

c(k, n+ 1, j)λje
1

λ , (3.9)

10



we must have

c(k, n+ 1, j) =







(k + n+ 1)c(k, n, k), if j = k,
(k + n+ 1)c(k, n, j)− c(k − 1, n, j), if k − n ≤ j < k,
−c(k − 1, n, k − 1− n), if j = k − n− 1.

(3.10)

It is a matter of simple algebra to show that (−1)k+j
(

n

k−j

)

(j + n)!/k! satisfies these
defining recurrences and initial conditions. This shows that

c(k, n, j) = (−1)k+j

(

n

k − j

)

(j + n)!

k!
(3.11)

and proves Lemma 3.1.

Proof of Theorem 3.1. First we note that

k!
k
∑

j=k−n

c(k, n, j) = (−1)k
k
∑

j=k−n

(−1)j
(

n

k − j

)

(j + n)!

= (−1)n
n
∑

j=0

(−1)j
(

n

j

)

(j + k)! , (3.12)

which is the right-hand side of the identity in our theorem.
Finally, using (3.2) and Lemma 3.1, for N ≧ n− k we obtain,

∑

j≧0

(

k

j

)

(k + n− j)!

(k +N − j)!
Dk+N−j

=
∑

j≧0

(

k

j

)

(k + n− j)!

(k +N − j)!
(k +N − j)! Ω

≧
λk+N−je−

1

λ

= k! Ω
≧
e−

1

λλN
∑

j≧0

(k + n− j)!

(k − j)! j!
λk−j

= k! Ω
≧
e−

1

λλNDn
λ

∞
∑

j≧0

λk+n−j

j!

= k! Ω
≧
e−

1

λλNDn
λλ

k+ne
1

λ

= k! Ω
≧
e−

1

λλN

k
∑

j=k−n

c(k, n, j)λje
1

λ

11



= k! Ω
≧

k
∑

j=k−n

c(k, n, j)λN+j

= k!
k
∑

j=k−n

c(k, n, j) (3.13)

because N ≧ n− k.
The discovery of this result was quite straightforward using Partition Analysis. Each

side of Callan’s identity was represented in Partition Analysis, and each side came out
to the final lines of the proof of our theorem first with N = n then with N = n − k.
Once that was observed, it was clear that any N ≧ n−k would produce the same result.
While Lemma 3.1 was found to be the necessary element in the proof, it was only upon
examination of the c(k, n, j) that we observed the closed form for them.

4 Harmonic Numbers

Previously [5] harmonic number identities have been reduced to binomial coefficient or
hypergeometric series identities by means of the operator identity

δ

(

x+ n

n

)

=
n
∑

j=1

1

j
= Hn , (4.1)

where
δ f(x) = f ′(0) . (4.2)

In terms of Partition Analysis we may write

Hn = Ω
≧
λn

∞
∑

j=1

λ−j

j

= −Ω
≧
λn log(1−

1

λ
) . (4.3)

We suspected that the previous treatment via operators would be replicated by
Partition Analysis. Again we were surprised. We chose as a test case the identity [18;
p. 14]

n
∑

k=0

(

k

m

)

Hk =

(

n+ 1

m+ 1

)(

Hn+1 −
1

m+ 1

)

(4.4)

Our attempt to prove this wound up proving instead:
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Theorem 4.1.
n
∑

k=0

(

k

m

)

(Hk −Hn−k) =

(

n+ 1

m+ 1

)

Hm . (4.5)

Proof. As suggested, we start with

n
∑

k=0

(

k

m

)

Hk = Ω
≧

∑

k≥0

λn−k

(

k

m

)

δ

(

x+ k

k

)

= δΩ
≧
λn
∑

k≥0

λ−k

(

x+ k

k −m

)(

x+m

m

)

= δΩ
≧
λn

(

x+m

m

)

∑

k≥0

λ−k−m

(

x+ k +m

k

)

= δΩ
≧
λn

(

x+m

m

)

λ−m(1− λ−1)−x−m−1

= Ω
≧
λn−m(−(1− λ−1)−m−1 log(1− λ−1) + (1− λ−1)−m−1Hm)

= Ω
≧

(

−

∞
∑

j=0

(

m+ j

j

)

λn−m−j log(1− λ−1) +
∞
∑

j=0

(

m+ j

j

)

λn−m−jHm

)

=
n−m
∑

j=0

(

m+ j

j

)

Hn−m−j +Hm

n−m
∑

j=0

(

m+ j

j

)

=
n
∑

k=0

(

k

m

)

Hn−k +Hm

(

n+ 1

m+ 1

)

, (4.6)

which proves our Theorem 4.1.

Corollary 4.1.
n
∑

k=0

(

k

m

)

Hn−k =

(

n+ 1

m+ 1

)

(Hn+1 −Hm+1) . (4.7)

Proof. This follows immediately from (4.4) and (4.5) once we note that

Hm +
1

m+ 1
= Hm+1 .
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5 An Example from Physics

In [15] Essam and Guttmann considered configurations of p vicious random walkers on a
multi-dimensional lattice. The problem of vicious walkers finds many physical applica-
tions, for instance, in the context of Brownian motion or of directed polymer networks.
For an introduction to fundamental results and examples, Essam and Guttmann refer
to Fisher [16]. In [15] they were able to express the generating functions for the number
of such configurations in terms of (generalized) hypergeometric functions.

In particular, they found a hypergeometric multisum expression for the number Sn(p)
of configurations that combinatorially can be described, e.g., as the number of “brushes
of mutually avoiding hairs” of length n. Namely,

Sn(p) =
∑

0≤q1≤···≤qp≤n

wn(q1, . . . , qp), (5.1)

where

wn(q1, . . . , qp) =
∏

1≤i<j≤p

(qj − qi + j − i)

p
∏

j=1

(n+ p− j)!

(qj + j − 1)! (n− qj + p− j)!
. (5.2)

In the trivial case p = 1 one has Sn(1) = 2n. The next cases are slightly more
involved, for instance, Sn(2) =

(

2n+1
n

)

and Sn(3) = 2n+1

n+2

(

2n+1
n

)

. But, as remarked by
Essam and Guttmann, “a clear pattern emerges”, which led them to conjecture that

Sn(p) = 2pn
p
∏

j=1

((j + 1)/2)n
(j)n

. (5.3)

Here we use the Pochhammer symbol (x)n = x(x+ 1) . . . (x+ n− 1).
This closed form representation indepently has been conjectured by Arrowsmith et al.

[8]. Finally, as described by Arrowsmith and Essam [9], it turned out, as an observation
of Krattenthaler, that (5.3) can be obtained from the Bender-Knuth conjecture for the
specialization q → 1. As mentioned above this conjecture is now a theorem, but the
proofs (e.g. Gordon [17] or Andrews [2]) are far from being trivial. Therefore our
motivation to look at this problem is guided by the question whether there are possible
ways to derive the multisum evaluations via elementary Ω

≧
-manipulatorics.

Actually the idea of applying Partition Analysis to the multisum in (5.1) is a very
natural one since the inequality constraints on the summation parameters qi just invite
to do so.
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5.1 The case p = 2

We reformulate the case p = 2 of (5.1) as follows:

Proposition 5.1. For any nonnegative integer n:

Sn(2) =
∑

k1

∑

k2≤k1

k1 − k2
n+ 1

(

n+ 1

k1

)(

n+ 1

k2

)

(5.4)

=

(

2n+ 1

n

)

. (5.5)

The doublesum representation (5.4) is immediate from (5.1). In order to compute
the evaluation (5.5) we introduce a lemma that serves as a standard tool in applications
of this kind. (Cf., for instance, the proof of (2.8).) It concerns a “difference property” of
the factor λ−1 which enables the reduction of an Ω

≧
expression to a simpler “coefficient-

of” operation designated by 〈 〉.

Lemma 5.1. Let f(λ) be a Laurent polynomial over the complex numbers, in short,
f(λ) ∈ C[λ, λ−1]. Then for any integer α:

Ω
≧
(λ− 1)λ−αf(λ) = 〈λα−1〉 f(λ). (5.6)

Proof. Let f(λ) =
∑

k fkλ
k then the left hand side of (5.6) equals

Ω
≧

∑

k

fkλ
k−α+1 − Ω

≧

∑

k

fkλ
k−α =

∑

k≥α−1

fk −
∑

k≥α

fk = fα−1.

Now we are able to evaluate the doublesum.
Proof of Proposition 5.1. Let Dλ denote the derivation operator with respect to λ. We
rewrite the doublesum in (5.4) as

Sn(2) =
1

n+ 1
Ω
≧

∑

k1,k2

λk1−k2(k1 − k2)

(

n+ 1

k1

)(

n+ 1

k2

)

=
1

n+ 1
Ω
≧
λDλ

∑

k1,k2

λk1−k2

(

n+ 1

k1

)(

n+ 1

k2

)

=
1

n+ 1
Ω
≧
λDλ(1 + λ)n+1

(

1 +
1

λ

)n+1
=

1

n+ 1
Ω
≧
λDλ

(1 + λ)2n+2

λn+1

15



=
1

n+ 1
Ω
≧

(2n+ 2)(1 + λ)2n+1λn+1 − (1 + λ)2n+2(n+ 1)λn

λ2n+1

= Ω
≧
(λ− 1)

(1 + λ)2n+1

λn+1
= 〈λn〉 (1 + λ)2n+1 =

(

2n+ 1

n

)

,

where in last line we used Lemma 5.1.

5.2 The case p = 3

Similar to the case p = 2 we can treat the case p = 3 of (5.1) which we state as follows:

Proposition 5.2. For any nonnegative integer n:

Sn(3) =
∑

k1

∑

k2≤k1

∑

k3≤k2

(k1 − k2)(k2 − k3)(k1 − k3)

(n+ 2)2(n+ 1)

(

n+ 2

k1

)(

n+ 2

k2

)(

n+ 2

k3

)

(5.7)

=
2n+1

n+ 2

(

2n+ 1

n

)

. (5.8)

Again the verification of equality (5.7) is immediate from the presentation (5.1). As the
next step we derive a Ω

≧
-presentation of the triple sum.

In the following we will often use λ and µ instead of the “standard” Ω
≧
-variables λ1

and λ2.

Lemma 5.2. For any nonnegative integer n:

Sn(3) = Ω
≧
(λµ− 1)(λ− µ2)(µ− λ2)

(1 + λ)n(λ+ µ)n(1 + µ)n

λn+2µn+2
. (5.9)

Proof. Let Di denote the derivation operator with respect to λi, i ∈ {1, 2, 3}. We rewrite
the triplesum in (5.7) as

Sn(3) =

= Ω
≧

∑

k1,k2,k3

λk1−k2
1 λk2−k3

2 λk1−k3
3

(k1 − k2)(k2 − k3)(k1 − k3)

(n+ 2)2(n+ 1)

(

n+ 2

k1

)(

n+ 2

k2

)(

n+ 2

k3

)

= Ω
≧
λ1λ2λ3D1D2D3

∑

k1,k2,k3

λk1−k2
1 λk2−k3

2 λk1−k3
3

(n+ 2)2(n+ 1)

(

n+ 2

k1

)(

n+ 2

k2

)(

n+ 2

k3

)

= Ω
≧
λ1λ2λ3D1D2D3(1 + λ1λ3)

n+2
(

1 +
λ2

λ1

)n+2(
1 +

1

λ2λ3

)n+2
/((n+ 2)2(n+ 1))
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= Ω
≧

(λ1λ2λ
2
3 − 1)(λ2 − λ2

1λ3)(λ1 − λ2
2λ3)

(λ1λ2λ3)2
(1 + λ1λ3)

n
(

1 +
λ2

λ1

)n(

1 +
1

λ2λ3

)n
.

If we now replace λ1λ3 by λ, and λ2λ3 by µ we obtain the expression in (5.9).

For the evaluation of the Ω
≧
-presentation we need a generalization of Lemma 5.1.

Lemma 5.3. Let f(λ, µ) ∈ C[λ, λ−1, µ, µ−1]. Then for any pair of integers α and β:

Ω
≧
(λµ− 1)λ−αµ−βf(λ, µ) =

〈λα−1µβ−1〉 f(λ, µ) +
∑

i≥α

〈λiµβ−1〉 f(λ, µ) +
∑

j≥β

〈λα−1µj〉 f(λ, µ). (5.10)

Proof. Let f(λ, µ) =
∑

i,j fi,jλ
iµj and let the Ω

≧
operator act on λ and µ. The left hand

side of (5.10) equals

Ω
≧

∑

i,j

fi,jλ
i−α+1µj−β+1 − Ω

≧

∑

i,j

fi,jλ
i−αµj−β =

∑

i≥α−1

∑

j≥β−1

fi,j −
∑

i≥α

∑

j≥β

fi,j = fα−1,β−1 +
∑

i≥α

fi,β−1 +
∑

j≥β

fα−1,j .

The following corollary is an immediate consequence.

Corollary 5.1. Let f(λ, µ) ∈ C[λ, λ−1, µ, µ−1] be symmetric, i.e., f(λ, µ) = f(µ, λ).
Then for any integer α:

Ω
≧
(λµ− 1)λ−αµ−αf(λ, µ) = 〈λα−1µα−1〉 f(λ, µ) + 2

∑

i≥α

〈λiµα−1〉 f(λ, µ).

Symmetric Laurent polynomials satisfy another useful property.

Lemma 5.4. Let f(λ, µ) ∈ C[λ, λ−1, µ, µ−1] be such that f(λ, µ) = f(µ, λ), then for
any univariate Laurent polynomial g:

Ω
≧
f(λ, µ)g(λ) = Ω

≧
f(λ, µ)g(µ).
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Proof. Let f(λ, µ) =
∑

i,j fi,jλ
iµj. The operator Ω

≧
is linear, hence it suffices to prove

the lemma for g(λ) = λ−α where α is an arbitrary integer:

Ω
≧
f(λ, µ)λ−α = Ω

≧

∑

i,j

fi,jλ
i−αµj =

∑

i≥α

∑

j

fi,j

=
∑

i≥α

∑

j

fj,i =
∑

i

∑

j≥α

fi,j = Ω
≧

∑

i,j

fi,jλ
iµj−α.

After this preparatory work which essentially exhibits some elementary properties of
the Ω

≧
operator, we state another lemma which is convenient to introduce for technical

reasons.

Lemma 5.5. For nonnegative integers α, β, a, b, and c:

〈λαµβ〉 (1 + λ)a(λ+ µ)b(1 + µ)c =
∑

i

(

a

i

)(

b

α− i

)(

c

α + β − b− i

)

. (5.11)

Proof. The left hand side of (5.11) equals

〈λαµβ〉
∑

i,j,k

(

a

i

)(

b

j

)(

c

k

)

λi+jµb−j+k.

Hence the lemma follows by rewriting the equations i + j = α and b − j + k = β as
j = α− i and k = β − b+ α− i.

Now we are in the position to prove Proposition 5.2.
Proof of Proposition 5.2. Let pn(λ, µ) = (1 + λ)n(λ+ µ)n(1 + µ)n. By Lemma 5.2,

Sn(3) = Ω
≧

(λµ− 1)(λ− µ2)(µ− λ2)

λn+2µn+2
pn(λ, µ)

= Ω
≧
(λµ− 1)λ−nµ−npn(λ, µ) + Ω

≧
(λµ− 1)λ−(n+1)µ−(n+1)pn(λ, µ)

− Ω
≧
(λµ− 1)λ−(n−1)µ−(n+2)pn(λ, µ)− Ω

≧
(λµ− 1)λ−(n+2)µ−(n−1)pn(λ, µ)

= Ω
≧
(λµ− 1)λ−nµ−npn(λ, µ) + Ω

≧
(λµ− 1)λ−(n+1)µ−(n+1)pn(λ, µ)

− 2Ω
≧
(λµ− 1)λ−(n−1)µ−(n+2)pn(λ, µ).
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The last equality is by Lemma 5.4. In the next step we apply Lemma 5.3 and Corollary
5.1, respectively, and obtain

Sn(3) = an + bn − 2 cn + 2(An + Bn − C(1)
n − C(2)

n )

where

an = 〈λn−1µn−1〉 pn(λ, µ), bn = 〈λnµn〉 pn(λ, µ), cn = 〈λn−2µn+1〉 pn(λ, µ),

An =
∑

i≥n

〈λiµn−1〉 pn(λ, µ), Bn =
∑

i≥n+1

〈λiµn〉 pn(λ, µ) and

C(1)
n =

∑

i≥n−1

〈λiµn+1〉 pn(λ, µ), C(2)
n =

∑

j≥n+2

〈λn−2µj〉 pn(λ, µ).

By Lemma 5.5, with a = b = c = n, we have,

an =
∑

i

(

n

i

)(

n

i+ 1

)(

n

i+ 2

)

, bn =
∑

i

(

n

i

)3

and cn = an.

Again by Lemma 5.5, with a = b = c = n, we have,

An =
∑

j≥n

∑

i

(

n

i

)(

n

j − i

)(

n

j − i− 1

)

, Bn =
∑

j≥n+1

∑

i

(

n

i

)(

n

j − i

)2

,

C(1)
n =

∑

j≥n−1

∑

i

(

n

i

)(

n

j − i

)(

n

j − i+ 1

)

= An and

C(2)
n =

∑

j≥n+2

∑

i

(

n

i

)(

n

i+ 2

)(

n

j − i− 2

)

.

Summarizing, the application of the Ω
≧
operator results in the reduction of the triplesum

problem into one involving a linear combination of single- and double-sums, namely

Sn(3) = bn − an + 2(Bn − C(2)
n ).

Finally we observe that

2Bn = 2n
(

2n

n

)

− bn (5.12)

and

2C(2)
n = 2n

(

2n

n− 2

)

− an, (5.13)
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which gives

Sn(3) = 2n
(

2n

n

)

− 2n
(

2n

n− 2

)

=
2n+1

n+ 2

(

2n+ 1

n

)

.

First we prove relation (5.12). To this end we evaluate a variation of the double-
sum representation for Bn. Namely, after dropping the condition on the summation
parameter j we obtain by Vandermonde’s formula,

∑

j

∑

i

(

n

i

)(

n

j − i

)2

=
∑

i

(

n

i

)

∑

j

(

n

j

)2

=

(

2n

n

)

∑

i

(

n

i

)

= 2n
(

2n

n

)

.

In addition, we observe that

∑

j≤n

∑

i

(

n

i

)(

n

j − i

)2

=
∑

j≥n

∑

i

(

n

i

)(

n

j − i

)2

. (5.14)

This is verified by applying to the left hand side the summation parameter transform
j → 2n− j, i.e.,

∑

j≤n

∑

i

(

n

i

)(

n

j − i

)2

=
∑

j≥n

∑

i

(

n

i

)(

n

2n− j − i

)2

.

Then after i → n− i we arrive at the right hand side of (5.14). Finally we combine all
this in order to obtain (5.12):

2n
(

2n

n

)

=
(

∑

j≤n

+
∑

j≥n+1

)

∑

i

(

n

i

)(

n

j − i

)2

=
∑

j≥n

∑

i

(

n

i

)(

n

j − i

)2

+ Bn = 2Bn + bn.

The proof of relation (5.13) is completely analogous. Dropping the condition on the
summation parameter j gives,

∑

j

∑

i

(

n

i

)(

n

i+ 2

)(

n

j − i− 2

)

=
∑

i

(

n

i

)(

n

i+ 2

)

∑

j

(

n

j

)

= 2n
(

2n

n− 2

)

,

where we used again Vandermonde’s formula. The analogue to identity (5.14) reads as

∑

j≤n+1

∑

i

(

n

i

)(

n

i+ 2

)(

n

j − i− 2

)

=
∑

j≥n+1

∑

i

(

n

i

)(

n

i+ 2

)(

n

j − i− 2

)

. (5.15)
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For the proof we apply j → 2n+ 2− j to the left hand side, i.e.,

∑

j≤n+1

∑

i

(

n

i

)(

n

i+ 2

)(

n

j − i− 2

)

=
∑

j≥n+1

∑

i

(

n

i

)(

n

i+ 2

)(

n

2n− j − i

)

.

Then after i → n − i − 2 we arrive at the right hand side of (5.15). Finally we obtain
(5.13) as follows:

2n
(

2n

n− 2

)

=
(

∑

j≤n+1

+
∑

j≥n+2

)

∑

i

(

n

i

)(

n

i+ 2

)(

n

j − i− 2

)

=
∑

j≥n+1

∑

i

(

n

i

)(

n

i+ 2

)(

n

j − i− 2

)

+ C(2)
n = 2C(2)

n + an.

This completes the proof of Proposition 5.2.

5.3 Remarks on the general case

Weschaider [21, Ch. 5.6] has derived quite different proofs for the Propositions 5.1 and
5.2. These proofs are based on his Mathematica package MULTISUM which is an imple-
mentation of Wegschaider’s algorithmic refinement of WZ-theory [23] for hypergeometric
multisums. Using the MULTISUM package together with human insight and interac-
tion, Wegschaider was able to derive elegant proofs for (5.5) and (5.8). In addition he
pointed out that in principle these identities can be proved in an entirely automatic
fashion by the computer. However, due to memory overflow he only was able to present
such a proof for (5.5).

This indicates that Ω
≧
-manipulation on multisums may be used also in order to reduce

complexity of computation. For instance, our Ω
≧
-proof of (5.8) reduces the triplesum

problem to a problem involving only single- and double-sums that then could be taken
as input for computer programs like MULTISUM.

Another aspect of Ω
≧
-manipulation is the flexibility of the method. For instance,

another lemma that might be useful in similar applications reads as follows:

Lemma 5.6. Let f(λ, µ) ∈ C[λ, λ−1, µ, µ−1] be such that f(λ, µ) = f(µ, λ). Then for
integers α, β, γ with α ≤ γ and β ≤ γ:

Ω
≧
(λαµβ − λβµα)λ−γµ−γf(λ, µ) = 0.
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Therefore in problems of the type

Ω
≧
p(λ, µ)f(λ, µ),

where p and f are Laurent polynomials, one could try to represent Ω
≧
p(λ, µ)f(λ, µ) as

a linear combination of summands involving as many terms as possible that are of the
same form as in the lemma. One can expect that in this context Gröbner bases methods
could be useful. We remark that if this technique is applied to the case of (5.8), one
essentially ends up with a proof of a similar type as above.

Finally we want to add that the Ω
≧
-method as described above can be used to prove

also the cases p = 4, p = 5, etc., of (5.1). However, so far we have not found a common
underlying pattern that proves all the cases in one stroke. If such a pattern would be
discovered, we have no doubt that the q-case could be done analogously. In other words,
this approach then would give a new alternative proof of the Knuth-Bender conjecture.
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