
A Macsyma∗Implementation of Zeilberger’s Fast
Algorithm†

Fabrizio Caruso

November 15, 2000

Abstract

We present the first implementation within the Macsyma computer
algebra system of Zeilberger’s fast algorithm for the definite summation
problem for a very large class of sequences; i.e. given a hypergeometric
sequence F (n, k), we want to represent f(n) =

∑n
k=0 F (n, k) in a “simpler”

form. We do this by finding a linear recurrence for the summand F (n, k),
from which we can obtain a homogeneous k−free recurrence for f(n). The
solution of this recurrence is left as a post-processing, and it will give the
“simpler” form we were looking for.

Zeilberger’s fast algorithm exploits a specialized version of Gosper’s
algorithm for the indefinite summation problem; i.e. given a hypergeo-
metric sequence t(k), the problem of finding another sequence T (k) such
that t(k) = ∆kT (k) = T (k + 1)− T (k). The implementation of this algo-
rithm has also been carried out in Macsyma, and its details are also briefly
described in this paper.

1 Introduction

We present the first implementation within the Macsyma computer algebra sys-
tem of Zeilberger’s fast algorithm [13], [14] for the definite summation problem
for the large class of proper hypergeometric sequences [12]. This means that
given a double-indexed sequence F (n, k), we want to rewrite the definite sum
f(n) =

∑n
k=0 F (n, k) in a form free of quantifier

∑
. We do this by finding a

special k−free linear recurrence with polynomial coefficients for the summand
F (n, k), which, under the condition of natural boundary for F (n, k), can be ex-
tended into a k−free homogeneous linear recurrence with polynomial coefficients.
The desired linear recurrence for the summand has the form:

∑m
i=0 ai(n)F (n +

∗Comp. algebra system dev. by Macsyma Inc., version 419
†Supported by the SFB grant F1305 of the Austrian FWF

1



i, k) = G(n, k+ 1)−G(n, k), where the ai(n) are polynomials in n free of k. The
search for this recurrence is done by guessing the order m of the left hand side
of this recurrence and then trying to find the corresponding G(n, k) of the right
hand side by means of a specialized Gosper algorithm [5] (We note that a priori
upper bounds for m can be given; however they turn out to be too large and
therefore not useful from the practical point of view).

Gosper’s algorithm for the indefinite summation problem solves the hypergeo-
metric telescoping problem, i.e. given a hypergeometric sequence t(k), it decides
whether there is a hypergeometric sequence T (k) such that t(k) = ∆kT (k) =
T (k + 1)− T (k), and if it exists, it finds it by rewriting this problem as a linear
recurrence in which the unknown is a polynomial which determines T (k). For a
simple and thorough description of these algorithms see [6], [10]. For alternative
approaches and a detailed explanation of the connection between these strategies
see, for instance, chapter 23 in [4] or [7], [1].

However the standard Gosper’s algorithm, which is already implemented in
Macsyma, cannot be used in Zeilberger’s algorithm because it does not take
into account that there are some polynomial parameters. Therefore a specialized
parameterized version of this algorithm, in which unknown parameters ai’s are
taken into account, has been implemented and it is used by our implementation
of Zeilberger’s algorithm to compute the right hand side of the desired recurrence.

This package [2] can be downloaded from the home page
http://www.risc.uni-linz.ac.at/research/combinat/risc/ and will also be
soon available on the macsyma home page http://www.macsyma.com.

At the same home page a Mathematica implementation of this algorithm,
which considers the more general q-case [9], as well as the Paule-Schorn imple-
mentation [8] for the ordinary case, can be found.

2 The Implementation

In this section we report on some of the details of the implementation.
The implementation of this algorithm has been done in the internal LISP-like

language of the Macsyma computer algebra system.
It has been implemented in Macsyma in a straightforward way and no signif-

icant changes have been made in the classical algorithms.
This version of Zeilberger’s algorithm works in the proper hypergeometric

case. We remark that there are implementations that could work at least in
principle in a slightly larger class of sequences (holonomic hypergeometric se-
quences, see [3]). Our choice makes the implementation simpler and allows us to
use our implementation of Gosper’s algorithm for the proper hypergeometric case.

2



2.0.1 Timings

We present some timings obtained by testing the function parGosper on increas-
ing powers of the binomial coefficients in which no loop on the order of the
recurrence is run (we know it in advance). In these tests the Paule-Schorn Math-
ematica implementation [8] and our Macsyma implementation are compared.
These implementations have been run on an SGI Octane with 2 gigabytes of ram
and two 250 Mhz RISC processors (although much less memory was necessary
for running the program on these examples).

Results Note:Timings are in seconds

power order Paule/Schorn Mathematica Macsyma diff. ratio
3 2 0.36s 3.31s 9.19
4 2 0.92s 3.95s 4.29
5 3 4.47s 37.11s 8.30
6 3 16.98s 121.64s 7.16

Average ratio : 7.23

2.0.2 What can be done to improve this implementation

An analysis on the distribution of the computation time shows that in the “heavy
cases” (binomial coefficient to the fifth and sixth powers) the bottle neck is the
computation of the solution of the linear systems of equations that is required to
solve the recurrence equation (Gosper’s equation).

Therefore future optimized versions should use a special purpose linear solver
that takes advantage of the specific structure of the system.

3 Manual

3.1 Loading the files

The entire package can be downloaded from the RISC Combinatorics home page
at the following u.r.l. http://www.risc.uni-linz.ac.at/research/combinat/risc/
The user will find the following files:

algUtil.macsyma

shiftQuotient.macsyma

poly2quint.macsyma

makeGosperForm.macsyma

GosperEq.macsyma

Gosper.macsyma

3



Zeilberger.macsyma

LOADZeilberger.macsyma

testZeilberger.macsyma

testGosper.macsyma

The entire package can be loaded into memory by simply loading the file LOAD-
Zeilberger.macsyma; this file will take care of loading the other components
except the files containing some examples on which the system has been tested,
namely (testZeilberger.macsyma, testGosper.macsyma).

3.2 The Commands

Zeilberger’s algorithm (Zeilberger) as well as a parametrized version of Gosper’s
algorithm (parGosper) have been implemented in two versions: a verbose version,
which allows the user to choose different levels of verbosity, and a non-verbose
version [2], which should provide a bit of better performance.

3.2.1 Verbosity Levels

The levels of verbosity are selected by the user just adding a suffix to the command
name (parGosper, Zeilberger) or by passing a parameter in the generic verbose
version of the algorithm.

These are the levels of verbosity that have been implemented: Summary,
Verbose, VeryVerbose, Debugging, LinSys.

Examples

GosperVerbose(f,k) invokes Gosper’s algorithm in verbose mode

ZeilbergerVeryVerbose(f,k,n) invokes Zeilberger’s algorithm in the very ver-
bose mode

3.2.2 Functions’ Calls

• Zeilberger(F, k, n)

Given a double-indexed proper hypergeometric sequence F (n, k), it com-
putes by Zeilberger’s algorithm a recurrence equation for F of the form:∑m

i=0 ai(n)F (n + i, k) = ∆k(Cert(n, k)F (n, k)), where the ai’s are polyno-
mials free of k and Cert (“rational certificate”) is a rational function in n
and k. The output will be a print-out of the recurrence and the explicit
expressions for the polynomial parameters ai and the “rational certificate”
Cert(n, k). Cert(n, k).

• ZeilbergerVerboseOpt(F, k, n, verbosity)

As Zeilberger but the level of verbosity is passed as a parameter.

4



• parGosper(F, k, n, ord)

Given a double-indexed proper hypergeometric sequence, it computes, when
it exists, a recurrence equation of order ord for F of the form:∑ord

i=0 ai(n)F (n + i, k) = ∆k(R(n, k)F (n, k)), where ai’s are polynomials
and Cert(n, k) is a rational function (the certificate), and it yields a se-
quence [Cert(n, k), [a0, . . . , aord]]; if no such recurrence exists them it yields
[0, [dummy-value, . . . , dummy-value]].

• parGosperVerboseOpt(F, k, n, ord, verbosity)

As parGosper but the level of verbosity is passed as a parameter.

3.2.3 Settings

No much settings and fine-tuning is necessary to use this package. The only
setting is done through the environment variables MAX ORD that sets an a pri-
ori bound on the order of the recurrence that Zeilberger’s algorithm iteratively
tries to find by applying parGosper with increasing order. The default value of
MAX ORD is 3.

3.3 Examples

Let us take a look at some examples, that can be found in the file
testZeilberger.macsyma.

Example (Binomial Theorem)

To evaluate
∑n

i=0

(
n
k

)
xk we can use Zeilberger, or parGosper and use the fact

the we know that we expect a first order recurrence:

(prompt) parGosper(binomial(n,k)x^k,k,n,1);

output: {
− k

n− k + 1
, {− (x+ 1) , 1}

}

Where − k
−n−k+1

is the rational certificate Cert(n, k), and −(x + 1) and 1 are
respectivelly the polynomial coefficients a0 and a1 of the linear recurrence such
that a0(n)

(
n
k

)
+ a1(n)

(
n+1
k

)
= ∆k(Cert(n, k)

(
n
k

)
).

5



Example (Special case of the Apéry-Schmidt-Strehl identity 1)

(prompt) Zeilberger(binomial(2*k,k)*binomial(n,k)^2,k,n);

output:

a[0]f(n, k) + a[1]f(n+ 1, k) + a[2]f(n+ 2, k) = ∆k(Cert(n, k)f(n, k))

where

Cert(n, k) = − k
3(n+ 1)2(4n− 3k + 8)

(n− k + 1)2(n− k + 2)2

and
a[0](n) = 9(n+ 1)2

a[1](n) = −(10n2 + 30n+ 23)
a[2](n) = (n+ 2)2

Example (Binomial coefficient to the fourth power)

(prompt) Zeilberger(binomial(n,k)^4,k,n);

output:

a[0]f(n, k) + a[1]f(n+ 1, k) + a[2]f(n+ 2, k) = ∆k(Cert(n, k)f(n, k))

where

f(n, k) =

(
n

k

)4

and

Cert(n, k) = −

k4(n+ 1)(74n6 − 260kn5 + 725n5 + 374k2n4 − 2056kn4 + 2885n4−
276k3n3 − 6420kn3 + 6045n3 + 104k4n2 − 1244k3n2 + 5298k2n2−

9892kn2 + 7030n2 − 16k5n+ 298k4n− 1884k3 + 5322k2n− 7520kn+
4300n− 20k5 + 210k4 − 900k3 + 1980k2 − 2256k + 1080

(n− k + 1)4(n− k + 2)4

and
a[0](n) = −4(n+ 1)(4n+ 3)(4n+ 5)
a[1](n) = −2(2n+ 3)(3n2 + 9n+ 7)
a[2](n) = (n+ 2)3

1See [11] for more information on this identity

6



Acknowledgements I want to thank Professor Peter Paule for his useful sug-
gestions.

7



References

[1] Abramov, S.A. Rational solutions of linear differential and difference equations
with polynomial coefficients, Proc. ISSAC ’95, ACM Press (1995), 285-289.

[2] Caruso, F. A Macsyma Implementation of Zeilberger’s Fast Algorithm, SFB-
Report No. 99-16, RISC, J.K. University, Linz, Austria (1999).

[3] Chyzak, F. Fonctions holonomes en calcul formel, Thèse universitaire no. TU
0531, INRIA. Defended on May 27 (1998).

[4] Gerhard, J., von zur Gathen, J. Modern Computer Algebra Cambridge Uni-
versity Press (1999), 617-622.

[5] Gosper, R.W. Decision procedure for indefinite hypergeometric summation,
Proceedings of the National Academy of Sciences of USA, 75 (1978), 40-42.

[6] Graham, R., Knuth, D. E., Patashnik, O. Concrete Mathematics - A Foun-
dation for Computer Science, Addison Wesley (1994).

[7] Paule, P. Greatest factorial factorization and symbolic summation, J. Symbolic
Computation, 20 (1995), 235-268.

[8] Paule, P., Schorn, M. A Mathematica Version of Zeilberger’s Algorithm for
Proving Binomial Coefficient Identities, J. Symbolic Computation, 20 (1995),
673-698.

[9] Paule, P., and Riese, A. A Mathematica q-Analogue of Zeilberger’s Algorithm
Based on an Algebraically Motivated Approach to q-Hypergeometric Telescoping,
Special Functions, q-Series and Related Topics, Fields Institute Communications,
14 (1997), 179-210.

[10] Petkovšek, M., Wilf, H., Zeilberger, D. A=B, A K Peters, MA (1996).

[11] Strehl, V. Binomial identities - combinatorial and algorithmical aspects, Discrete
Mathematics, 136 (1994), 309-346.

[12] Wilf, H.S., Zeilberger,D. An algorithmic proof theory for hypergeometric (ordi-
nary and “q”) multisum/integral identities”, Invent. Math., 108 (1992), 575-633.

[13] Zeilberger, D. A fast algorithm for proving terminating hypergeometric identi-
ties, Discrete Mathematics, 80 (1990), 207-211.

[14] Zeilberger, D. The method of creative telescoping, Journal of Symbolic Compu-
tation 11 (1991), 195-204.

8


