A new characteristic property of the palindrome prefixes of a standard Sturmian word

GIUSEPPE PIRILLO

IAMI CNR
Viale Morgagni 67/A
50134 FIRENZE, Italy

We use notions and terminology of theoretical computer science (see [1, 2, 3, 4, 5]).
The words u and v are conjugate and we write $u \sim v$ if there exist words s and t such that $u=s t$ and $v=t s$.

Let $\varphi:\{a, b\}^{*} \rightarrow\{a, b\}^{*}$ be the morphism given by $\varphi(a)=a b, \varphi(b)=a$. Let $f_{0}=b$ and, for $n \geq 0$,

$$
f_{n+1}=\varphi\left(f_{n}\right) .
$$

For $n \geq 2$, let $g_{n}=f_{n-2} f_{n-1}$ and let h_{n} be the longest common prefix of f_{n} and g_{n}. For example, for $n \leq 5$, we have:
$f_{1}=a$,
$f_{2}=a b$,
$f_{3}=a b a$,
$f_{4}=a b a a b$,
$f_{5}=a b a a b a b a$,
$g_{2}=b a$
$g_{3}=a a b$,
$g_{4}=a b a b a$,
$g_{5}=a b a a b a a b$
$h_{2}=\epsilon$,
$h_{3}=a$,
$h_{4}=a b a$,
$h_{5}=a b a a b a$.
Notice that, for $n \geq 0,\left|f_{n}\right|$ is the $n^{t h}$ element of the sequence of Fibonacci numbers F_{n}. We have $F_{0}=1, F_{1}=1$ and, for each $n \geq 2, F_{n}=F_{n-1}+F_{n-2}$; for $0 \leq n \leq 13$ the Fibonacci numbers F_{n} are $1,1,2,3,5,8,13,21,34,55,89,144,233,377$. For each $n \geq 2$, $f_{n}=f_{n-1} f_{n-2}$ implying that for each $n \geq 1, f_{n}$ is a prefix of f_{n+1}.

Hence there exists a unique infinite word, namely the Fibonacci word (see [1, 2, 3, 4, 5]) denoted by f such that, for each $n \geq 1, f_{n}$ is a prefix of f and we have
$f=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a a b a b a a b a b a \ldots$.
Some very well known facts concerning f are collected in Lemma 1.
Lemma 1. For each $n \geq 2$, i) (Near-commutative property) $f_{n+2}=f_{n+1} f_{n}=$ $f_{n} g_{n+1}=h_{n+2} x y$ and $g_{n+2}=f_{n} f_{n+1}=f_{n+1} g_{n}=h_{n+2} y x$, where $x, y \in\{a, b\}, x \neq y$ and

$$
x y= \begin{cases}a b & \text { if } n \text { is even } \\ b a & \text { if } n \text { is odd } .\end{cases}
$$

ii) the words $h_{n} a b$ and $h_{n} b a$ are conjugate, i.e. $f_{n} \sim g_{n}$ (for instance, aba $\sim a a b$, $a b a a b \sim a b a b a, ~ a b a a b a b a \sim a b a a b a b a$ and so on).

Definition. An infinite word $s=s_{1} s_{2} s_{3} \cdots, s_{i} \in\{a, b\}$ is Sturmian if there exist reals $\alpha, \rho \in[0,1]$, such that either for all i

$$
s(i)=a \text { if }\lfloor\rho+(n+1) \alpha\rfloor=\lfloor\rho+n \alpha\rfloor, s(i)=b \text { otherwise }
$$

or for all i

$$
s(i)=a \text { if }\lceil\rho+(n+1) \alpha\rceil=\lceil\rho+n \alpha\rceil, s(i)=b \text { otherwise. }
$$

The infinite word is proper Sturmian if α is irrational.
The infinite word is periodic Sturmian if α is rational.
The infinite word is standard Sturmian if $\rho=0$.
The Fibonacci word is a very particular case of Sturmian word (see [1, 2, 3, 4, 5]). We are convinced that looking carefully at the property of the Fibonacci word one can discover properties of Sturmian words. The previous mentioned fact suggested us the following result.

Proposition. A word w is a palindrome prefix of some standard Sturmian word if and only if wab and wba are conjugate.

Proof. "only if" part. It is possible to say that this part is well known, in any case for an accurate proof one must use some notions defined in [2] (PAL, PER, Stand, ...).
"if" part. This part seems to be unknown and, in our knowledge, it is never mentioned in the literature.

Now let w be written on an arbitrary alphabet and be such that $w a b \sim w b a$.
If $|w|=0$ or $|w|=1$ the statement is easily verified. So suppose that $|w|>1$
We know that, for some words u, v we have $w a b=u v$ and $w b a=v u$.
If $|u|=1$ then $u=a$ and $w=a^{|w|}$ which is a palindrome prefix of a standard Sturmian word.

So suppose $|u| \geq 2$.
If $|v|=1$ then $v=b$ and $w=b^{|w|}$ which is a palindrome prefix of a standard Sturmian word.

So we can suppose $|u| \geq 2$ and $|v| \geq 2$. If, without loss of generality, for instance $|u| \leq|v|$ we easily see that u is a prefix of v and so w is a fractional power of both u and v.

Pose $p=|u|$ and $q=|v|$ and $d=M C D(p, q)$. If d were greater than 1 then $|w|=$ $p+q-2 \geq p+q-d$ and, by a result of Fine and Wilf [5], w should have period d and consequently $u=h^{p / d}$ and $v=h^{q / d}$ for some non empty word h which is clearly impossible as u has suffix $b a$ and v has suffix $a b$. So $d=1$.

Now let us show that $\operatorname{alph}(w)=\{a, b\}$. If it is not the case, suppose that $|\operatorname{alph}(w)| \geq 3$ and w is one the words of minimal length such that $w a b \sim w b a$. Suppose $|u|<|v|$ and put $q=k p+r, 0 \leq r<p$. We can write $v=u^{k} v_{1}$ with v_{1} a prefix of u of length r. Put also $v_{1}=v^{\prime \prime} a b$. By the conjugation relation of $w a b$ and $w b a$ we get $u^{\prime} b a v^{\prime \prime}=v^{\prime \prime} a b u^{\prime}=w^{\prime}$ for some word w^{\prime}. We have $w^{\prime} a b \sim w^{\prime} b a$. As $a l p h\left(w^{\prime} a b\right)=a l p h(w a b)$ and $\left|w^{\prime}\right|<|w|$ we have a contradiction. Consequently alph $(w a b)=\{a, b\}$.

As $d=1$ we can apply Theorem 2 of [2] and so w is a palindrome prefix of a standard Sturmian word.

Bibliography

[1]. J. Berstel and P. Séébold, Algebraic Combinatorics on words, to appear.
[2]. A. de Luca, Sturmian words: structure, combinatorics, and their aritmetics, Theoretical Computer Science 183 (1997) 45-82.
[3]. X. Droubay, J. Justin and G. Pirillo Episturmian words and some constructions of de Luca and Rauzy, Theoretical Computer Science, to appear.
[4]. J. Justin and G. Pirillo Decimations and Sturmian words, Informatique théorique et Applications, vol. 31, 3 (1997), 271-290.
[5]. M. Lothaire, Combinatorics on words, Addison-Wesley, 1982.

