A new characteristic property of the palindrome prefixes of a standard Sturmian word

GIUSEPPE PIRILLO IAMI CNR Viale Morgagni 67/A 50134 FIRENZE, Italy

We use notions and terminology of theoretical computer science (see [1, 2, 3, 4, 5]).

The words u and v are conjugate and we write $u \sim v$ if there exist words s and t such that u = st and v = ts.

Let $\varphi : \{a, b\}^* \to \{a, b\}^*$ be the morphism given by $\varphi(a) = ab$, $\varphi(b) = a$. Let $f_0 = b$ and, for $n \ge 0$,

$$f_{n+1} = \varphi(f_n).$$

For $n \ge 2$, let $g_n = f_{n-2}f_{n-1}$ and let h_n be the longest common prefix of f_n and g_n . For example, for $n \le 5$, we have:

 $\begin{array}{l} f_1 = a, \\ f_2 = ab, \\ f_3 = aba, \\ f_4 = abaab, \\ f_5 = abaababa, \\ g_2 = ba \\ g_3 = aab, \\ g_4 = ababa, \\ g_5 = abaabaab \\ h_2 = \epsilon, \\ h_3 = a, \\ h_4 = aba, \\ h_5 = abaaba. \end{array}$

Notice that, for $n \ge 0$, $|f_n|$ is the n^{th} element of the sequence of Fibonacci numbers F_n . We have $F_0 = 1$, $F_1 = 1$ and, for each $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$; for $0 \le n \le 13$ the Fibonacci numbers F_n are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. For each $n \ge 2$, $f_n = f_{n-1}f_{n-2}$ implying that for each $n \ge 1$, f_n is a prefix of f_{n+1} .

Hence there exists a unique infinite word, namely the Fibonacci word (see [1, 2, 3, 4, 5]) denoted by f such that, for each $n \ge 1$, f_n is a prefix of f and we have

Some very well known facts concerning f are collected in Lemma 1.

Lemma 1. For each $n \geq 2$, i) (Near-commutative property) $f_{n+2} = f_{n+1}f_n = f_ng_{n+1} = h_{n+2}xy$ and $g_{n+2} = f_nf_{n+1} = f_{n+1}g_n = h_{n+2}yx$, where $x, y \in \{a, b\}, x \neq y$ and

$$xy = \begin{cases} ab & if \ n \ is \ even\\ ba & if \ n \ is \ odd. \end{cases}$$

ii) the words $h_n ab$ and $h_n ba$ are conjugate, i.e. $f_n \sim g_n$ (for instance, $aba \sim aab$, $abaab \sim abaab aba \sim abaababa and so on$).

Definition. An infinite word $s = s_1 s_2 s_3 \cdots , s_i \in \{a, b\}$ is Sturmian if there exist reals $\alpha, \rho \in [0, 1]$, such that either for all i

$$s(i) = a$$
 if $\lfloor \rho + (n+1)\alpha \rfloor = \lfloor \rho + n\alpha \rfloor$, $s(i) = b$ otherwise

or for all i

$$s(i) = a$$
 if $\lceil \rho + (n+1)\alpha \rceil = \lceil \rho + n\alpha \rceil$, $s(i) = b$ otherwise.

The infinite word is proper Sturmian if α is irrational. The infinite word is periodic Sturmian if α is rational. The infinite word is standard Sturmian if $\rho = 0$.

The Fibonacci word is a very particular case of Sturmian word (see [1, 2, 3, 4, 5]). We are convinced that looking **carefully** at the property of the Fibonacci word one can discover properties of Sturmian words. The previous mentioned fact suggested us the following result.

Proposition. A word w is a palindrome prefix of some standard Sturmian word if and only if wab and wba are conjugate.

Proof. "only if" part. It is possible to say that this part is well known, in any case for an accurate proof one must use some notions defined in [2] (*PAL*, *PER*, *Stand*, \ldots).

"if" part. This part seems to be unknown and, in our knowledge, it is never mentioned in the literature.

Now let w be written on an arbitrary alphabet and be such that $wab \sim wba$.

If |w| = 0 or |w| = 1 the statement is easily verified. So suppose that |w| > 1

We know that, for some words u, v we have wab = uv and wba = vu.

If |u| = 1 then u = a and $w = a^{|w|}$ which is a palindrome prefix of a standard Sturmian word.

So suppose $|u| \ge 2$.

If |v| = 1 then v = b and $w = b^{|w|}$ which is a palindrome prefix of a standard Sturmian word.

So we can suppose $|u| \ge 2$ and $|v| \ge 2$. If, without loss of generality, for instance $|u| \le |v|$ we easily see that u is a prefix of v and so w is a fractional power of both u and v.

Pose p = |u| and q = |v| and d = MCD(p,q). If d were greater than 1 then $|w| = p + q - 2 \ge p + q - d$ and, by a result of Fine and Wilf [5], w should have period d and consequently $u = h^{p/d}$ and $v = h^{q/d}$ for some non empty word h which is clearly impossible as u has suffix ba and v has suffix ab. So d = 1.

Now let us show that $alph(w) = \{a, b\}$. If it is not the case, suppose that $|alph(w)| \ge 3$ and w is one the words of minimal length such that $wab \sim wba$. Suppose |u| < |v| and put $q = kp + r, 0 \le r < p$. We can write $v = u^k v_1$ with v_1 a prefix of u of length r. Put also $v_1 = v''ab$. By the conjugation relation of wab and wba we get u'bav'' = v''abu' = w' for some word w'. We have $w'ab \sim w'ba$. As alph(w'ab) = alph(wab) and |w'| < |w| we have a contradiction. Consequently $alph(wab) = \{a, b\}$.

As d = 1 we can apply Theorem 2 of [2] and so w is a palindrome prefix of a standard Sturmian word.

Bibliography

[1]. J. Berstel and P. Séébold, Algebraic Combinatorics on words, to appear.

[2]. A. de Luca, *Sturmian words: structure, combinatorics, and their aritmetics*, Theoretical Computer Science 183 (1997) 45-82.

[3]. X. Droubay, J. Justin and G. Pirillo *Episturmian words and some constructions* of de Luca and Rauzy, Theoretical Computer Science, to appear.

[4]. J. Justin and G. Pirillo *Decimations and Sturmian words*, Informatique théorique et Applications, vol. 31, **3** (1997), 271-290.

[5]. M. Lothaire, *Combinatorics on words*, Addison-Wesley, 1982.