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Abstract

Implementations of the celebrated Gosper algorithm (1978) for indefinite
summation are available on almost any computer algebra platform. We re-
port here about an implementation of an algorithm by Karr, the most general
indefinite summation algorithm known. Karr’s algorithm is, in a sense, the sum-
mation counterpart of Risch’s algorithm for indefinite integration. This is the
first implementation of this algorithm in a major computer algebra system. Our
version contains new extensions to handle also definite summation problems. In
addition we provide a feature to find automatically appropriate difference field
extensions in which a closed form for the summation problem exists. These new
aspects are illustrated by a variety of examples.

1 Introduction

Karr developed an algorithm for indefinite summation [Kar81, Kar85] based on the
theory of difference fields [Coh65]. He introduced so called mo-fields, in which first
order linear difference equations can be solved in full generality. We implemented this
algorithm in the computer algebra system Mathematica and developed a user interface
that dispenses the user from working explicitly with difference fields. Instead, the user
can handle all summation problems in terms of sums and products.

This algorithm cannot only deal with series of hypergeometric terms, like Gosper’s
algorithm [Gos78, PS95], series with g-hypergeometric terms, like [PR97], or holo-
nomic series, like Chyzak’s algorithm [CS98], but with series of terms where for ex-
ample the harmonic numbers can appear in the denominator (see section 2.4).

In some cases appropriate difference field extensions are necessary in order to find
a closed form to a summation problem. In many cases our implementation is able to
find such extensions automatically. Therefore one does not have to deal with problems
concerning difference field extensions. This feature to find automatic extensions will
be demonstrated in section 3.

Finally, we extended Karr’s algorithm to handle definite summation problems.
The algorithm is generalized so that linear difference equations of any order can be
solved. It is also possible to consider field extensions in form of algebraic relations,
like ((—1)%)2 = 1. A rather complex example will illustrate how definite summation
problems can be solved in our Mathematica implementation.

*This work is supported by the SFB grant F1305 of the Austrian “Fonds zur Forderung der
wissenschaftlichen Forschung” and by the DAAD grant “Doktorandenstipendium im Rahmen des
gemeinsamen Hochschulsonderprogramms IIT von Bund und Landern”.
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This article is based on transparencies [Sch99] we used for a presentation at the
Séminaire Lotharingien de Combinatoire 43. Some further results have been added.

The Mathematica package is available in an encoded form by email request to
Carsten.Schneider@risc.uni-linz.ac.at. The Mathematica code of the package
has not been published yet because it is still under construction.

2 Karr’s indefinite summation algorithm

2.1 A first example

In the book Concrete Mathematics [GKP94, exercise 6.69] the task of finding a closed
form representation of

Z k2Hn+k’

k=1

where H,, := 22:1 % is the n-th harmonic number, is posed as a bonus problem.
Knuth’s solution to this problem is

1 1 1
3N <n + 5) (n+1)(2Hy, — Hy,) — 36" (10n” +9n — 1)

where he remarks

“It would be nice to automate the derivation of formulas such
as this.”

The closed form of this bonus problem can be computed by using Karr’s algorithm.
The implementation is available in form of a Mathematica package, in which functions
are provided to define a given summation problem in the Mathematica environment.

In[1] := Problem69 = DefineSum[k"2DefineHNumber[n + k], {k, 1, n}]

Outll] = (& Hyz)
k=1

The functions DefineSum and DefineProduct are used to define sums and products.
There are several other functions available, like Def ineHNumber, DefineBinomial or
DefinePower to define harmonic numbers, binomials or powers. Additionally, various
functions are provided to introduce new objects.

Karr’s algorithm is applied to the summation problem by calling the function
KReduce. Here the solution of Karr’s algorithm is simplified by using the Mathematica
function Simplify.

In[2] := KReduce[Problem69]//Simplify

1
Ouf2] = ——-n (1+0) (-1+100+6 (1+20) Ky — 12 (1+2 1) Hy )
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2.2 Indefinite summation and first order linear
difference equations

In this section we will give a rough outline of Karr’s approach, which is based on the
theory of difference fields. In the following a difference field is considered as a field
together with a field automorphism®.

A huge class of indefinite summation problems can be formalized by first order
linear difference equations in difference field settings. Since Karr’s algorithm can solve
first order linear difference equations in full generality, Karr’s algorithm enables to
treat this type.

We will illustrate Karr’s approach by the following elementary problem: find a

closed form of .
> k.
k=0

A difference field for the problem

Let t1,ty be indeterminates and consider the field automorphism o : Q(t1,t2) —
Q(t1,t2) induced by

J(fl) = t1+1
o(ts) = (t1+1)ta

Note that the automorphism acts on ¢; and ¢ like the shift operator N on n and n!
via Nn=n+1and Nn! = (n+ 1)nl.

A first order difference equation

The indefinite summation problem can be rephrased in terms of the difference field
Q(t1,t2) as follows: find a solution g € Q(¢1,t2) of

o(g) —g=t1ta.
Karr’s algorithm computes the solution g = ¢5 from which
(k+ 1) =K' =EkkK!

immediately follows.

The closed form

By the telescoping trick one obtains the closed form evaluation

2.3 Difference field extensions

The goal is to simplify the triple sum (note H; = 23:1 %)

n k H.
2. m T
k=1 1=2

IMore precisely, we will consider only a subclass of difference fields, so called wo-fields (see
[Kar81]).
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by eliminating the outermost sum. Applying Karr’s algorithm on

In[3] := tripleSum = DefineSum]|
DefineSum[DefineHNumberli]/(i"2 — 1), {i, 2, k}],
{k,1,n}]

n k

Outl3] = (Z (_1er 12))

k=1 i=2

one gets
In[4] := KReduce[tripleSum|//Simplify

Out[4] = (2Hn —2n(1 +n)H2+

4n(1 +n)

(1+n)(2—n+4n(1+n)i (—1H:L"I)>>

1=

This means, the triple sum can be expressed in terms of n, H,, and the double sum

n

Z iQIf 1 (1)

=2

Experiences with handling summations of harmonic numbers tell us that the sum (1)
can be expressed by using the harmonic numbers of second order HY = Sk

Karr’s algorithm can be forced to use Hg), which amounts algebraically to an exten-

sion of the underlying difference field, the solution space, by these elements H%z).

In[5] :== KReduce|tripleSum, Tower— > {Hf)}}//Simplify

(—2(3+2n)H, — 2(1 + n)H? + (1 +1n)(3n + 2(1 + n)HP))

This non-automatic extension was carried out by setting the option Tower— > {H,(lz)}.

2.4 The power of Karr’s algorithm

Since Karr’s algorithm is based on difference fields, arbitrary rational compositions
of sums and products can be treated. As another example we consider
In[6] := powerExample = DefineSum|[1/DefineSum|[1/i, {i,1,k}]/
(1 — k « DefineSum|[1/i, {i, 1,k}]),
{k,2,n}]

n

1
Outle] = 3 ((Zk (1) -x2i, (1)))

k=2 i=1

Applying Karr’s algorithm leads to the simplified expression

In[7] := KReduce[powerExample]
1

s (2)

out]7] = —1 +
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3 Automatic difference field extensions

In section 2.3 it was shown, how a simpler closed form can be found by extending the
difference field in which one expects to find the solution for the telescoping problem.
In general, one has to know in advance in which difference field extension a simple
closed form exists. To make work easier, the implementation provides the possibility
that appropriate extensions are searched for automatically.
The following two examples show how the automatic extension feature can be
applied to summation problems.

Finding a manual extension
Applying Karr’s algorithm on the double sum (1)

In|8] := doubleSum =
DefineSum|DefineHNumber[k]|/ (k"2 — 1), {k,2,n}]

Outl8] = zn: (%ikz)

the following result is found with the automatic extension feature:
In[9] := KReduce[doubleSum, TowerSuggestion— > True]//Simplify
—2(1+4n+ 2n?)H, + (1 + n) (7 +437 ., (%ﬁfﬁ@))

Out[9] = 4n(1 T

Looking closer at the suggested extension

n . n n n
2i—1 1 1 1 1
— 5 = = — + - — -
22(2—1)22 2(22—1 222 ; z>
=2 1=2 =2 1=2
from the partial fraction decomposition one sees immediately that this sum can be ex-

pressed by the harmonic numbers of first and second order. This observation justifies

)

the use of the manual extension Hg , as it was done in section 2.3.

Automatic extension in two steps

The following expression consisting of four nested sums will be simplified by using
Karr’s algorithm twice with the automatic extension feature.
In[10] := quadrupleSum = DefineSum[DefineSum[DefineSum]|
1/DefineHNumber]i], {i, 1,k}], {k,1,n}],
{n,2,m}]
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In the first step an expression is found consisting of terms with at most three nested
sums.

In[11] := tripleSum =
KReduce[quadrupleSum, TowerSuggestion— > True|//
Simplify

Out[11] = (1+m)zm: (Hi) +(1+m)zm: (— I_;—1)+

11=1 b 11=1

ti| — 14 +H, 22:1 ﬁ
& ol ),

H,

=2
In the second step Karr’s algorithm returns a term with at most two nested sums.
In[12] := KReduce[tripleSum,
m, TowerSuggestion— > True, Level— > 2]//
Simplify
Out[12] = 1 (2(71 + m)m+
2H,

m

m

Hm(*2+(1 +m)(2+m) Y (Hi) +2(1 +m)zm: (7 ;71),

> (- )

11=2

The higher the value of option Level is set, the more the chances are increased to
find an appropriate extension. But this also increases the required time and space
resources.

4 Definite summation

I have extended Karr’s algorithm in order to deal also with definite summation. I will
demonstrate some features of my Mathematica package with a concrete example. In
[FK99] the following identity pops up:

" Hy 3+k+n) (1) (-1)7"
2 k(1+k)! 2+ k)! (—k +n)!

(n)! z":f(3+k+n)! (-D* (1= @2+n) (-1)")
(34 n)! & E(1+E)? (=k+n)!

+

k=1

=24+n)(-1)"-2. (2)
k=1

With my package one not only can prove this identity automatically but even is able
to find the closed form
2+n)(-1)" —2.
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In the following the two sums on the left hand side of (2) are considered separately.

In[13] := mySuml = DefineSum|[DefinePower|[—1, k| DefinePower[—1,n — 1]
DefineFactorial[n + k + 3]/(DefineFactorialk + 1]
DefineFactorialk + 2]DefineFactorial[n — k])
DefineHNumber[k], {k,1,n}|

EHe (3+k—+n)l (=) (=)™

k=1

In[14] := mySum?2 = DefineSum|—DefinePower|[—1, k]
DefineFactorial[n + k + 3](1 — DefinePower[—1,n|(n + 2))/
(k DefineFactoriallk + 1]"2DefineFactorialn — k]),
{k,1,n}]
( _ (B+k+n) (-1)" (1—(2+n) (—1)‘1‘)>

=1 k (1+k)% (—k+n)!.

n

Out[14] =

Especially, in section 4.1 I will demonstrate the basic procedure to solve definite
summation problems with my Mathematica package, whereas in section 4.2 I focus
on some technical details one has to take into account to find closed forms.

4.1 A closed form of mySum1
Finding a recurrence
First a recurrence is found that is satisfied by mySum1.

In[15] := recl = GenerateRecurrence/ mySum1]//Simplify
Out[15] = {n (1 +n) (2+n) (3+n) (4+n) (-1 +n)!
(—(9+2mn) (8+6n+n?) SUMn|+
(9+2mn) (1348 n+n®) SUM[1 +n]+
(304+42n+17n* +21n°) SUM[2 +n]—
(3+mn) (25+ 15 n+21n?) SUM[3 +n]) ==
2(-1)"(9+2n) (35+24n+41n% (4+n)!}
The idea how to find a recurrence is based on Zeilberger’s creative telescoping method

[Ze190]. Although Karr’s original summation algorithm was already capable to carry
out creative telescoping, nobody has noticed this possibility until now.

Solving the recurrence

In the second step, solutions of the recurrence are computed. As mySuml depends
on the harmonic numbers, it can be expected that the solutions for its recurrence
also consist of terms of the harmonic numbers. Consequently the solution space is
extended manually via Tower— > {H,}.
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In[16] := recSoll = SolveRecurrence(recl, SUM|[n],
Tower— > {Hy}]

—n?+4H,+6nH,+2n°H,

(1+n) (2+n)

[ (16 —13n? —5n*+ 32 H, + 64 nH, +40n? Hy, + 80 Hy) (—1)" 1

’ 4 (1+4+n) (2+n)

This has to be interpreted as follows: Karr’s algorithm delivers three linear indepen-
dent solutions for the homogeneous version of the recurrence, namely

outf16] = {{0, 1}, {0, 3 }, {0,% (2+n) (-1)*},

3—n?4+4H,+6nH,+2n%H,

) (+n) 2+n) ! (2+n) (1)

e

and one particular solution of the inhomogeneous recurrence itself:

(16 — 13 n? — 5 n® + 32 H,, + 64 n H,, + 40 n* H,, + 8 n® H,)) (-1)™
4(1+n)(2+n) '

Finding the linear combination

Finally, the closed form of mySuml is that linear combination of the homogeneous
solutions plus the inhomogeneous solution which has exactly the same initial values
as mySuml. This is also computed automatically:
In[17] := solutionl = FindLinearCombination[recSoll, mySum1]
3—n’4+4H,+6nH,+2n°H, 1 n
+ > (2+4n) (1) +
(1+1) (2+n) 4( ) (=)
(16 —13n? —51n®+ 32 H, + 64 nH, +40n? Hy, + 8 0 Hy) (—1)"
4(14+n) (2+n)

Out[17] = —1 —

4.2 A Closed form of mySum?2
Finding a recurrence
Similar to mySuml a recurrence of order 2 for the second sum is computed.

In[18] := rec2 = GenerateRecurrence[mySum?2, RecOrder— > 2]
Out[18) = { —n (14+n) 34n) (1+3 (-1)"+ (-1)" n)
(144 (-1)"+(-1)"n) (284 15n+21n*) (—1 +n)! SUM[n]+
6n(1+n) (3+n)° (=142 (-1)"+(—1)"n)
(-1+4 (-1)"+(-1)" n) (-1 +n)! SUM[1 + n]+
n(14+n)(3+n)(—1+2(-1)"+(-1)"n)
(1+3(-1)"+(-1)"n) (10+9n+20n?) (—1+n)! SUM2+n] ==
2 (—142 (<1 + (~1)"n) (143 (=1 + (~1)" )
(144 (-1)"+(-1)"n) (35+24n+41n°) (4+n)!}
Here the order of the recurrence we were looking for is specified by the option
RecOrder — > 2. By default - as in the previous example for mySuml - the algo-

rithm starts looking for a recurrence of order one and increases the order step by step
if it does not succeed in finding a recurrence of the current order.
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Solving the recurrence
In the second step, the following solutions for the recurrence are found.

In[19] := recSol2 =
SolveRecurrence[rec2, SUM|[n|, Tower— > {DefineHNumber[n]},
plusBound— > 1, WithMinusPower— > True]
Out[19] = {{0,2+n— (-1)"},{0,16 — 6 n* — n®+
(-1)™ +28n (—1)" +230° (-1)" +81n° (—1)" +n* (-1)"},

1 2 3
{1,% (260 — 150 n® — 39 n® + 336 Hy+

616 n H, + 336 n® H, + 56 n® H, — 325 (—1)™ + 365 n? (—1)" +

228 n® (—1)" +39n* (—1)™ — 672 H, (—1)" — 1568 n H, (—1)" —

1288 n® Hy (—1)™ — 448 n° H, (—1)™ — 566 n* H, (—1)™)}}
To handle this problem, I have generalized Karr’s algorithm for solving linear differ-
ence equations of any order. For this generalization a denominator bounding is used
which was developed by Bronstein [Bro99]. Unfortunately, there is still an unsolved
problem concerning degree boundings of some solution parts. Nevertheless one can
find all possible solutions by an incremental strategy, i.e., increasing step by step
the degree boundings for each computation attempt. By increasing the value of the
plusBound option these boundings are raised. Consequently the chances are higher
to find more solutions. For this strategy, however, more time and space resources are
required. In this example the value of plusBound is set at least as high as 1. By
default - as in the previous example for mySum1 - the value of plusBound is set to 1.

In addition, we have to consider the algebraic relation

(-1} =1
to find all solutions for the recurrence. In order to take care of this, the option
WithMinusPower is set to True.
Finding the linear combination of mySum?2
Finally the closed form of mySum2 can be found as before:

In[20] := solution2 = FindLinearCombination[recSol2, mySum?2)]
Out[20) = —(83+mn) (—1+3n+20°— (—-1+6n+70*+210°%) (-1)"+
2 (2+3n+0n%) H (-14(2+n) (-1)"))

4.3 The closed form of mySum1+mySum?2

In the end, by combining the closed forms of mySuml and mySum2 the closed form of
the original summation problem (2) is computed.

In[21] := solutionl + solution2/((n + 1)(n + 2)(n + 3))//Simplify
Out[21] = =2+ (2 +n) (—1)*
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