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Abstract

Garrett, Ismail, and Stanton gave a general formula that contains the Rogers–
Ramanujan identities as special cases. The theory of associated orthogonal polynomials
is then used to explain determinants that Schur introduced in 1917 and show that the
Rogers–Ramanujan identities imply the Garrett, Ismail, and Stanton seemingly more
general formula. Using a result of Slater a continued fraction is explicitly evaluated.
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1. Introduction. In a recent paper [6] Garrett, Ismail, and Stanton prove, amongst many
other things, the following generalization of the celebrated Rogers–Ramanujan identities:

1 +
∞∑
n=1

qn
2+mn

(1− q)(1− q2) . . . (1− qn)
(1.1)

= (−1)mq−(m2 )Em−2

∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

−(−1)mq−(m2 )Dm−2

∞∏
n=0

1
(1− q5n+2)(1− q5n+3)

,

with the Schur polynomials, defined by

Dm = Dm−1 + qmDm−2, D0 = 1, D1 = 1 + q,(1.2)

Em = Em−1 + qmEm−2, E0 = 1, E1 = 1.(1.3)
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Another proof, based on generalized Engel expansions, can be found in [3].

Schur [8] has computed the limits

D∞ =
∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

, E∞ =
∞∏
n=0

1
(1− q5n+2)(1− q5n+3)

.(1.4)

The aim of this note is to explain the result (1.1) within the context of associated or-
thogonal polynomials and their disguised appearance in Schur’s work in the form of deter-
minants. One basic ingredient is a sequence of orthogonal polynomials studied by Al-Salam
and Ismail in [1]. In §2 we show how the polynomials studied by Schur in [8] and the
Rogers–Ramanujan identities can be used to give a proof of (1.1). In §3 the more general
polynomials of [1] are used to formulate a more general identity than (1.1). An application
to some of the Slater identities [9] is included in §4.

The Al-Salam and Ismail polynomials {Un(x; a, b)} are defined by

U0(x; a, b) = 1, U1(x; a, b) = x(1 + a),(1.5)

Un+1(x; a, b) = x(1 + aqn)Un(x; a, b)− bqn−1Un−1(x; a, b), n ≥ 1.(1.6)

To indicate the dependence of Un(x; a, b) on q, when necessary we will use the notation
Un(x; a, b|q). In accordance with the theory of orthogonal polynomials [4], the numerator
polynomials {U∗n(x; a, b)} satisfy the recursion in (1.6) and the initial conditions

U∗0 (x; a, b) = 0, U∗1 (x; a, b) = 1 + a.(1.7)

Therefore

U∗n(x; a, b) = (1 + a)Un−1(x; qa, qb).(1.8)

Schur [8] actually considered the polynomials Un(1; 0,−q) and U∗n(1; 0,−q). In the notation
of (1.2) and (1.3) we have

Dn = Un+1(1; 0,−q), En = U∗n+1(1; 0,−q) = Un(1; 0,−q2).(1.9)

Let

F (z; a, q) =
∞∑
n=0

(−1)nzn

(q; q)n(−a; q)n
qn(n−1)(1.10)
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where we have used the standard notation for shifted factorials (a; q)n found in [2], [5].
Al-Salam and Ismail [1] proved that the limiting relation

lim
n→∞

z−nUn(z; a, b) = (−a; q)∞ F (b/z2; a, q),(1.11)

holds uniformly on compact subsets of the complex z-plane which do not contain z = 0.
They also gave the explicit representation

Un(x; a, b) =
bn/2c∑
k=0

(−a; q)n−k(q; q)n−kxn−2k

(−a; q)k(q; q)k(q; q)n−2k
(−b)kqk(k−1).(1.12)

In §4 we recast (1.12) in the form of a generating function with generating function
variables a and b. In order to do so, we need the following form of the q-binomial theorem
[2], [5]

(−u; q)n =
n∑
k=0

(q; q)nqk(k−1)/2

(q; q)k(q; q)n−k
uk.(1.13)

2. Schur’s determinants. We first show how Schur would have proved (1.1) in 1917.
Consider the following determinant of Schur:

Schur(b) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 bq1+m . . .

−1 1 bq2+m . . .

−1 1 bq3+m . . .

−1 1 bq4+m . . .
. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant with respect to the first column (“top–recursion”) we get

Schur(b) = Schur(bq) + bq1+m Schur(bq2).

Setting

Schur(b) =
∞∑
n=0

anb
n,

we get, upon comparing coefficients,

an = qnan + q1+mq2n−2an−1,
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or

an =
q2n−1+m

1− qn
an−1.

Since a0 = 1, iteration leads to

an =
qn

2+mn

(1− q)(1− q2) . . . (1− qn)
,

and thus the left hand side of (1.1) can be expressed by Schur(1).

On the other hand, Schur(1) is the limit of the finite determinants

Schurn :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 q1+m . . .

−1 1 q2+m . . .

−1 1 q3+m . . .

−1 1 q4+m . . .
...

...
...

. . . . . . . . .

−1 1 qn+m

−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding this determinant with respect to the last row (“bottom–recursion”) we get

Schurn = Schurn−1 +qn+m Schurn−2 .(2.1)

We see that the sequences 〈Dn+m〉n and 〈En+m〉n satisfy the recursion (2.1) , and thus
any linear combination will satisfy the same recurrence relation.

Set

Schurn = λDn+m + µEn+m.(2.2)

We can determine the parameters λ and µ using the initial conditions Schur0 = 1, Schur1 =
1 + q1+m, which leads to the evaluations

λ =
Em − Em−1

Dm−1Em −DmEm−1
=

qmEm−2

Dm−1Em −DmEm−1
,(2.3)

µ =
Dm −Dm−1

DmEm−1 −Dm−1Em
=

qmDm−2

DmEm−1 −Dm−1Em
.(2.4)

The denominators in (2.3) and (2.4) are Casorati determinants, the discrete version of
a Jacobian, and can be computed explicitly [7]. Indeed

Dm−1Em −DmEm−1 = (−1)mq(
m+1

2 ).(2.5)
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The proof of (2.5) is by induction on m. The beginning m = 0 is trivial; the induction
step goes like this:

DmEm+1 −Dm+1Em = Dm(Em + qm+1Em−1)− (Dm + qm+1Dm−1)Em

= qm+1(DmEm−1 −Dm−1Em)

= −qm+1(−1)mq(
m+1

2 ) = (−1)m+1q(
m+2

2 ).

This replaces (2.3)–(2.4) by the nicer forms

λ = (−1)mq−(m2 )Em−2, µ = (−1)mq−(m2 )Dm−2.(2.6)

Thus the above analysis has led to

Schurn = (−1)mq−(m2 )Em−2Dn+m − (−1)mq−(m2 )Dm−2En+m.(2.7)

Performing the limit n→∞ this turns into

Schur(1) = (−1)mq−(m2 )Em−2D∞ − (−1)mq−(m2 )Dm−2E∞,(2.8)

which is (1.1).

3. Associated orthogonal polynomials.

The proof outlined in §2 can be considered in the context of orthogonal polynomials
which satisfy three term recurrences such as (1.2)–(1.3). In this section we give in Lemma
3.3 a result for general orthogonal polynomials which specializes to the proof in §2. Some
applications of Lemma 3.3 to the Al-Salam-Ismail polynomials are also given.

Any sequence of orthogonal polynomials {pn(x)} satisfies a three term recurrence rela-
tion

pn+1(x) = (Anx+Bn)pn(x) + Cnpn−1(x), n ≥ 1,(3.1)

and we assume the initial conditions

p0(x) = 1, p1(x) = A0x+B0.(3.2)

The analogue of Schur’s finite determinant is the well-known tridiagonal determinant
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pn(x) =(3.3)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A0x+B0 C1 . . .

−1 A1x+B1 C2 . . .

−1 A2x+B2 C3 . . .

−1 A3x+B3 C4 . . .
...

...
...

. . . . . . . . .

−1 An−2x+Bn−2 Cn

−1 An−1x+Bn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

If An = 1, Bn = 0, Cn = qn+m, then pn+1(1) = Schurn. To see that the polynomials
defined by (3.3) satisfy (3.1) expand the determinant representing pn+1(x) about the last
row. We then verify that p1(x) and p2(x) of (3.3) agree with p1(x) from (3.2) and p2(x)
which arises from (1.1) using the initial conditions (1.2).

Recall that the numerator polynomials {p∗n(x)} [4], [7] associated with {pn(x)} are de-
fined to be solutions of

zn+1(x) = (Anx+Bn) zn(x) + Cn zn−1(x), n ≥ 1,(3.4)

with the initial conditions

p∗0(x) = 0, p∗1(x) = A0.(3.5)

The two sets of polynomials {pn(x)} and {p∗n(x)} form a basis for solutions of the
three-term recurrence (3.4). One could also consider {p∗n+1(x)} as a solution to the three-
term recurrence relation which has the indices shifted up by one. More generally, the mth
associated polynomials are defined to be the solution to

p
(m)
n+1(x) = (An+mx+Bn+m)p(m)

n (x) + Cn+mp
(m)
n−1(x), n ≥ 1,(3.6)

with

p
(m)
0 (x) = 1, p

(m)
1 (x) = Amx+Bm.(3.7)

Thus we see that if An = 1, Bn = 0, Cn = qn, then

p
(m)
n+1(1) = Schurn, Dn = pn+1(1), En = p(1)

n (1).(3.8)
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Theorem 3.1 The polynomials Un(x; a,−b|q) satisfy the polynomial identity

(−b)m−1q(
m−1

2 )Un(x; aqm,−bqm|q) = Um−1(x; a,−b|q)Un+m−1(x; aq,−bq|q)(3.9)

−Um−2(x; aq,−bq|q)Un+m(x; a,−b|q),

for m ≥ 1, n ≥ 0, with U−1(x; a, b|q) := 0.

The relationship (3.9) is an extension of (2.7). After applying (1.11), the n → ∞ limit
of (3.9) becomes the following corollary.

Corollary 3.2 We have the following generalization of (1.1)

(−b/x)m−1q(
m−1

2 )F (−bqm/x2; aqm, q)(3.10)

=
[
(−aq; q)m−1Um−1(x; a, b)F (−bq/x2; aq, q)

− (−a; q)mxUm−2(x, aq,−bq)F (−b/x2; a, q)
]
.

The proof of Theorem 3.1 depends on a Lemma well-known to those who are familiar
with the analytic theory of continued fractions and orthogonal polynomials. We include its
proof only to make this work as self-contained as possible.

Lemma 3.3 The associated polynomials {p(m)
n (x)} satisfy

p(m)
n (x) =

p∗m−1(x)pn+m(x)− pm−1(x)p∗n+m(x)
(−1)mC1C2 . . . Cm−1A0

(3.11)

Proof.

Fix m ≥ 2. As a function of n, {p(m)
n−m(x)}∞n=m also satisfies (3.4), so it is a linear

combination of {pn(x)} and {p∗n(x)} with coefficients that are independent of n, but may
depend upon m and x. Thus we use initial conditions (3.7) to find coefficients Am(x) and
Bm(x) in

p(m)
n (x) = Am(x)pn+m(x) +Bm(x)p∗n+m(x).

The result is

Am(x) = p∗m−1(x)/∆m(x), Bm(x) = pm−1(x)/∆m(x),(3.12)

where

∆m(x) = p∗m−1(x)pm(x)− pm−1(x)p∗m(x).(3.13)
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It is clear that ∆m(x) is a discrete Wronskian (Casorati Determinant) of pm(x) and
p∗m(x) and can be evaluated from

∆m+1(x) = −Cm∆m(x),

which follows from (3.4). Thus

∆m(x) = (−1)mC1C2 . . . Cm−1A0,

since ∆0(x) = −A0.

Let

An = 1 + aqn, Bn = 0, Cn = bqn−1,(3.14)

so that the pn(x) = Un(x; a,−b), see (1.5) and (1.6). Thus the mth associated polynomials
are

p(m)
n (x) = Un(x; aqm,−bqm), for m,n ≥ 0.(3.15)

In view of (1.9) and (3.8), it follows that (3.9) and (3.10) generalize (2.7) and (2.8), respec-
tively. In other words Schur’s proof is the case a = 0, b = q.

Remark: The analogue of (1.1) for Rogers–Ramanujan identities of any moduli have
been found by Garrett. She also combinatorially proved (1.1) by an involution, and gener-
alized (1.1) to partitions whose parts differ by at least d.

4. Further results. The relationship (1.1) is the case a = 0, x = 1 and b = q of (3.10),
if we assume the Rogers–Ramanujan identities, that is assume (1.4). Another interesting
result is found by choosing a = −q1/2, x = 1, b = q, and then replacing q by q2.

In our notation (38) and (39) in [9] are

F (−q2;−q, q2) =
∞∑
n=0

q2n2

(q; q)2n
=
∞∏
n=0

(1 + q3+8n)(1 + q5+8n)(1− q8n+8)
(1− q2n+2)

,(4.1)

F (−q4; q3, q2)
(1− q)

=
∞∑
n=0

q2n2+2n

(q; q)2n+1
=
∞∏
n=0

(1 + q1+8n)(1 + q7+8n)(1− q8n+8)
(1− q2n+2)

.(4.2)

These are Rogers–Ramanujan identities of order 8 as indicated in [9]. It is interesting
to note that with the choices a = −q1/2, x = 1, b = q, formula (3.10) is
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∞∑
n=0

q2mn+n2

(q; q)n(q2n+1; q)m
(4.3)

= (−1)mq(
m
2 ) [Um−2(1;−q3,−q4|q2)F (−q2;−q, q2)

− Um−1(1;−q,−q2|q2)F (−q4;−q3, q2)/(1− q)
]
.

Al-Salam and Ismail [1] established the continued fraction representation

F (−qbz−2; qa, q)
zF (−bz−2; a, q)

=
1 + a

(1 + aq)z+
b

(1 + aq2)z+
bq

(1 + aq3)z+
· · ·(4.4)

The special case z = 1, b = q, a = −√q gives, via (4.1)–(4.2),

1
(1− q3)+

q2

(1− q5)+
q4

(1− q7)+
· · · =

∞∏
n=0

(1 + q1+16n)(1 + q14+16n)
(1 + q6+16n)(1 + q10+16n)

.(4.5)

Recall that a Gaussian (or q-)binomial and trinomial coefficients are[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
,

[
n

j, k

]
q

=
(q; q)n

(q; q)j(q; q)k(q; q)n−j−k
.(4.6)

The polynomials {Un(x; a, b|q)} contain a redundant parameter. In fact it is clear from
(1.12) that x−nUn(x; a, bx2|q) is independent of x. As orthogonal polynomials the x variable
is important and we can scale away the b parameter. Set

Vn(a, b|q) = x−nUn(x; a,−bx2|q) =
bn/2c∑
k=0

[
n− k
k

]
q

(−a; q)n−k
(−a; q)k

bkqk(k−1).(4.7)

Since (−a; q)n−k/(−a; q)k = (−aqk; q)n−2k we can expand the quotient using the q-
binomial theorem (1.13) and obtain

Vn(a, b|q) =
bn/2c∑
k=0

n−2k∑
j=0

[
n− k
j, k

]
q

ajbkqk(k+j−1)+j(j−1)/2.(4.8)

For example the coefficient of ajbkqm in Vn(a, b|q) has a combinatorial interpretation in
terms of counting pairs of partitions. This combinatorial study is still in progress.
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