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On a class of combinatorial diophantine
equations

Peter Kirschenhofer∗ and Oliver Pfeiffer†

Department of Mathematics and Statistics, University of Leoben, Austria

Abstract. We give a combinatorial proof for a second order recurrence for
the polynomials pn(x), where pn(k) counts the number of integer-coordinate
lattice points x = (x1, . . . , xn) with ‖x‖ =

∑n
i=1|xi| ≤ k. This is the main

step to get finiteness results on the number of solutions of the diophantine
equation pn(x) = pm(y) if n and m have different parity. The combinatorial
approach also allows to extend the original diophantine result to more general
combinatorial situations.

1 Introduction

In [7] P. Kirschenhofer, A. Pethő and R. F. Tichy have studied the poly-
nomials pn(x) which are achieved by continuation of pn(k) counting the
number of integer-coordinate lattice points x = (x1, . . . , xn) in a domain
‖x‖ =

∑n
i=1|xi| ≤ k of the n-dimensional space. Using an analytical ap-

proach it was shown that the pn(x) obey the second order recurrence

npn(x) = (2x+ 1)pn−1(x) + (n− 1)pn−2(x), n ≥ 1;

p−1(x) = 0, p0(x) = 1 (1.1)

This recurrence allows to identify the polynomials

qn(x) = inn!pn(−1

2
− ix

2
) (1.2)
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as a set of real orthogonal polynomials (via a theorem that is usually at-
tributed to Favard [5], but in fact is much older, compare e.g. the comments
in [1] or[2]). More precisely, the (qn(x))n≥0 turn out to belong to the classes
of orthogonal Sheffer sets (compare [7]) identified by Meixner in his classical
paper [9], namely

qn(x) = n!P
( 1

2
)

n (
x

2
,
π

2
), (1.3)

where P
(λ)
n (x, φ) denotes the Meixner-Pollaczek polynomials

P (λ)
n (x, φ) =

(2λ)n
n!

einφ 2F 1

[ −n, λ+ ix
2λ

; 1− e−2iφ
]

(1.4)

(compare [8, Section 1.7]).
In [7] the interest is focussed on finiteness results on the diophantine

equation

pn(x) = pm(y). (1.5)

For several small values of n, bounds on the number of integer solutions of
(1.5) can be established using a famous result by Baker [3]. Furthermore,
using a method due to Davenport, Lewis and Schinzel [6] it is proved in [7]
that equation (1.5) has only finitely many solutions if n and m have different
parity. A key step in order to apply the technique by Davenport, Lewis
and Schinzel is to have information about the location of the zeroes of the
polynomials in question (resp. of their derivatives), and this information may
be drawn from the orthogonality of the qn(x). Therefore the existence of a
second order recurrence of type (1.1) for the pn(x) plays a central role for
this diophantine problem as well as possible generalizations.

At the 42nd session of the Seminaire in Maratea the question was posed,
whether there is a purely combinatorial proof for (1.1). In the following we
present such a type of proof, starting from the original interpretation of pn(k)
as a number of lattice points.

A different combinatorial approach would be the following: The pn(k)
have the double generating function∑

n,k≥0

pn(k)znuk =
1

1− z − u− zu
(1.6)



(compare [7]). Therefore the pn(k) also count the number of minimal lattice
paths with diagonal steps from (0, 0) to (n, k), where a single step leads
either one unit to the right or one unit to the top or is a diagonal step
from (i, j) to (i + 1, j + 1). (It is not difficult to find a bijection between
the lattice points from the original definition and these lattice paths, too.)
Using the lattice path interpretation the pn(k) are known in the literature
as Delannoy numbers D(n, k) (compare [4, p.80]). Starting from this kind of
interpretation combinatorical proofs for recurrence (1.1) may be gained, too.

From (1.6) it follows immediately that∑
n≥0

n!pn(k)
zn

n!
= exp

{
k log (1 + z)− (k + 1) log (1− z)

}
, (1.7)

so that n!pn(k) may be interpretated in an “exponential model” (compare e.g.
[11]) as a set of labelled objects whose “components” have the exponential
generating function

k log (1 + z)− (k + 1) log (1− z) =
∑
n≥1

(n− 1)!an
zn

n!
,

where

an =

{
2k + 1 for n odd

1 for n even
. (1.8)

In the final section we formulate a slightly more general situation of permuta-
tions with coloured cycles. The corresponding second order linear recurrence
allows to extend the original diophantine result from [7] to this situation,
too.

2 A combinatorial proof for (1.1)

Let n, k be positive integers and Fn,k denote the set of lattice points described
in the previous section. Then npn(k), i.e. the left hand side of (1.1), counts
the number of sequences in F∗n,k where F∗n,k originates from Fn,k by labeling
one of the elements:

x = (x1, . . . , xi
∗
, . . . , xn) ∈ F∗n,k. (2.1)

In order to find the right hand side of (1.1) we split up F∗n,k in the following
way:



• Case 1: x = xA0
∗
0xB (with possibly empty strings xA and xB).

In this instance we map x to y = xAxB ∈ Fn−2,k. Obviously, any
fixed sequence y = (y1, . . . , yn−2) has exactly n − 1 representations
y = xAxB, so that each element of Fn−2,k will occur (n − 1)-times in
this way. Altogether we have produced (n−1)pn−2(k) sequences, which
corresponds to the last term in (1.1).

• Case 2: x = xA0
∗
.

We map x to y = xA ∈ Fn−1,k. This can be done in exactly one way,
thus we obtain pn−1(k) sequences in this case.

• Case 3: x = xA0
∗
xi+1xB with xi+1 6= 0.

We map x to y = xA(−|xi+1|)xB ∈ Fn−1,k. For any negative entry in y
there is a representation of y as xA(−|xi+1|)xB. Denoting the number
of all negative entries in y by N−(y) we therefore obtain 2N−(y) copies
of any string y in Fn−1,k by this mapping. The factor 2 here arises from
the fact that the absolute value of xi+1 is taken in the mapping.

• Case 4: x = xAj
∗

with j 6= 0.

We map x to y = xA ∈ Fn−1,k. Since ‖x‖ has to be less or equal
to k, we have to ensure that ‖xA‖ + |j| ≤ k from which we obtain
1 ≤ |j| ≤ k−‖y‖. Thus any string y ∈ Fn−1,k appears 2(k−‖y‖) times
as an image. The factor 2 again arises since the absolute value of j is
taken in this mapping.

• Case 5a: x = xAj
∗
xi+1xB with j 6= 0 and xi+1 ≥ 0.

We map x to y = xA(|j|+ xi+1︸ ︷︷ ︸
=yi

)xB ∈ Fn−1,k. Now is |j| ≥ 1 and

yi − |j| = xi+1 has to be greater or equal to 0. Together this means
that 1 ≤ |j| ≤ yi such that there are yi possibilities to select |j| for any
positive yi. Denoting the sum over all positive (resp. negative) entries
of y by ‖y‖+ (resp. ‖y‖−) we have altogether 2

∑
yi>0 yi = 2‖y‖+

possibilities in this case.

• Case 5b: x = xAj
∗
xi+1xB with j 6= 0 and xi+1 < 0.



We map x to y = xA(−|j|+ xi+1︸ ︷︷ ︸
=yi

)xB ∈ Fn−1,k. In the same manner as

in case 5a we find 1 ≤ |j| ≤ (−yi)− 1. Therefore we obtain (−yi)− 1
possibilities for |j|, so that in total the frequency of y ∈ Fn−1,k is

2(
∑
−yi≥2

(−yi)− 1) = 2(
∑
−yi≥1

(−yi)− 1) = 2
∑
−yi>0

(−yi)− 2
∑
−yi>0

1 =

= 2‖y‖− − 2N−(y).

Summing up cases 2 to 5b, each sequence in Fn−1,k occurs with the frequency

1 + 2N−(y) + 2(k − ‖y‖) + 2‖y‖+ + 2‖y‖− − 2N−(y) = 2k + 1,

which means that the number of sequences produced in these cases corre-
sponds to (2k + 1)pn(k).

Together with case 1 this proves the recurrence (1.1).

3 Permutations with coloured cycles

The exponential generating function (1.7) for the numbers n!pn(k) immedi-
ately yields a combinatorial interpretation of these quantities in an expo-
nential model, compare the comments in the Introduction. In the following
we present a slight extension of this model: whereas numerous combinato-
rial models of this type are known from literature (compare e.g. [10]), our
main point of observation is, that proceeding in this way the diophantine
result from [7] can be extended to a whole class of combinatorial counting
polynomials.

Let us consider the set Pn;a,b of coloured permutations of {1, 2, . . . , n},
where each cycle in the canonical cycle representation is associated a colour,
and there are a colours for the cycles of odd length and b colours for the
cycles of even length. Let cn(a, b) be the number of elements in Pn;a,b. Then
the following recurrence holds:

cn(a, b) = acn−1(a, b) + (n− 1)(n− 2 + b)cn−2(a, b), n ≥ 1;

c−1(a, b) = 0, c0(a, b) = 1. (3.1)

To prove (3.1) let us consider a permutation π ∈ Pn;a,b and have a look at
the position of the element n in the canonical cycle decomposition.



If (n) forms a 1-cycle of π, then there are a colours for (n), and there are
cn−1(a, b) possibilities for the remaining part of π, which may be interpreted
as an element of Pn−1;a,b.

If n belongs to a cycle of length ≥ 2, we consider the element m following
n in this cycle. There are n−1 possibilities for m. If we consider all cn−2(a, b)
coloured permutations σ of {1, 2, . . . , n − 1}\{m}, there are n − 2 different
possibilities to insert the block nm in an existing block of σ (without altering
its colour) to obtain all coloured permutations of {1, . . . , n}, where n is in
a block of length ≥ 3. If we adjoin (nm) as a cycle of length 2 to σ, there
are b possible colours for that cycle and we obtain the remaining coloured
permutations of Pn;a,b.

Thus the proof of (3.1) is complete.

An immediate consequence of (3.1) is

cn(2k + 1, 1) = n!pn(k) (3.2)

where pn(k) is defined as in the previous sections. This coincides also with
the information gained from (1.8). Furthermore, we find that

incn(−ix, b) = n!P
( b

2
)

n (
x

2
,
π

2
)

resp.

cn(x, b) = inn!P
( b

2
)

n (−ix
2
,
π

2
),

where P
(λ)
n (x, φ) are the Meixner-Pollaczek polynomials from (1.4). As a

consequence the diophantine result from [7, Theorem 4.4] on (1.5) can be
generalized as follows:

The diophantine equation

cn(x; b) = cm(y; b), b ∈ N (3.3)

where ck(x; b) = 1
k!
ck(x; b) is the average number of colourings of a permu-

tation in Pk;a,b, has for n,m ≥ 3, n 6≡ m (mod 2) only a finite number of
integer solutions.
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