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Abstract. Let Sn be the symmetric group, Cr the cyclic group of order r, and let S(r)
n

be the wreath product of Sn and Cr; which is the set of all coloured permutations on
the symbols 1, 2, . . . , n with colours 1, 2, . . . , r, which is the analogous of the symmetric
group when r = 1, and the hyperoctahedral group when r = 2. We prove, for every 2-
letter coloured pattern φ ∈ S(r)

2 , that the number of φ-avoiding coloured permutations
in S

(r)
n is given by the formula

∑n
j=0 j!(r − 1)j

(
n
j

)2. Also we prove that the number
of Wilf classes of restricted coloured permutations by two patterns with r colours in
S

(r)
2 is one for r = 1, is four for r = 2, and is six for r ≥ 3.

1. Introduction

The goal of this note is to give analogies of enumerative results on certain classes of
permutations characterized by pattern-avoidance in the symmetric group, and in the

hyperoctahedral group. In S
(r)
n , the natural analogue of the symmetric group and of

the hyperoctahedral group, we identify classes of restricted coloured permutations with
enumerative properties analogous to results in the symmetric group and hyperoctahe-
dral group. In the remainder of this section we present a brief account of earlier work
which motivated out investigation, summarize the main results, and present the basic
definitions used throughout the note.

Pattern avoidance in the symmetric group proved to be a useful language in a va-
riety of seemingly unrelated problems, from stack sorting [K, T, W] to the theory of
Kazhdan-Lusztig polynomials [Br], singularities of Schubert varieties [LS, Bi], Cheby-
shev polynomials [CW, MV1, Kr, MV2, MV3], and rook polynomials [MV4]. Signed
pattern avoidance in the hyperoctahedral group proved to be a useful language in combi-
natorial statistics defined in type-B noncrossing partitions, enumerative combinatorics
[S, BS], algebraic combinatorics [FK, BK, Be, M, R].

Let π ∈ Sn and τ ∈ Sk be two permutations. An occurrence of τ in π is a subsequence
1 ≤ i1 < i2 < · · · < ik ≤ n such that (πi1 , . . . , πik) is order-isomorphic to τ ; in such a
context τ is usually called a pattern. We say that π avoids τ , or is τ -avoiding, if there
is no occurrence of τ in π. The set of all τ -avoiding permutations in Sn is denoted
by Sn(τ). For an arbitrary finite collection of patterns T , we say that π avoids T if π
avoids any τ ∈ T ; the corresponding subset of Sn is denoted by Sn(T ). The first case
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examined was the case of permutations avoiding one pattern of length 3. Knuth [K]
found that |Sn(τ)| = Cn for all τ ∈ S3, where Cn is the nth Catalan number. Later,
Simion and Schmidt [SS] found the cardinalities of |Sn(T )| for all T ⊂ S3.

The hyperoctahedral group Bn is an analog of the symmetric group Sn. Let us view
the elements of Bn as signed permutation b = b1b2 . . . bn in which each of the symbols
1, 2, . . . , n appears once, possibly barred. Thus, the cardinality of Bn is n!2n. Simion
[S] was looking for the analogs of Knuth’s results for Bn; she discovered that for ev-
ery 2-letter signed pattern τ ; the number of τ -avoiding signed permutations in Bn is∑n

j=0

(
n
j

)2
j!. Also Simion [S] found the number of all coloured permutations in Bn

avoiding double 2-letter signed patterns in B2. This invites us to define a further gen-
eralizations for avoiding a pattern in the symmetric group Sn and avoiding a signed
pattern in the hyperoctahedral group Bn.

The group S
(r)
n = Sn o Cr where Cr is the cyclic group of order r, is an analog of

the symmetric group (Sn) and of the hyperoctahedral group (Bn). We will view the

elements of the set S
(r)
n as coloured permutations φ = (φ1, φ2, . . . , φn) in which each of

the symbols 1, 2, . . . , n appears once, coloured by one of the colours 1, 2, . . . , r (more

generally, we denote by S
{s1,...,sr}
{a1,...,an} the set of all permutations of the symbols a1, . . . , an

where each symbol appears once and is coloured by one of the colours s1, . . . , sr). Thus,

S
(1)
n = Sn, S

(2)
n = Bn, and the cardinality of S

(r)
n is n!rn. The absolute value notation

means |φ| is the permutation (|φ1|, . . . , |φn|) where |φj| is the symbol which appear in

φ at the position j. An example φ = (1(1), 3(2), 2(1)) is a coloured permutation in S
(2)
3 ,

and |φ| = (1, 3, 2).

Let φ = (τ
(s1)
1 , . . . , τ

(sk)
k ) ∈ S

(r)
k , and ψ = (α

(v1)
1 , . . . , α

(vn)
n ) ∈ S

(r)
n ; we say that ψ

contains φ (or is φ-containing) if there is a sequence of k indices, 1 ≤ i1 < i2 < · · · <
ik ≤ n such that the following two conditions hold:

(i) (αi1 , . . . , αik) is order-isomorphic to |φ|;
(ii) vij = sj for all j = 1, 2, . . . , k.

Otherwise, we say that ψ avoids φ (or is φ-avoiding). The set of all φ-avoiding

coloured permutations in S
(r)
n is denoted by S

(r)
n (φ), and in this context φ is called a

coloured pattern. For an arbitrary finite collection of coloured patterns T , we say that ψ

avoids T if ψ avoids any φ ∈ T ; the corresponding subset of S
(r)
n is denoted by S

(r)
n (T ).

As an example, ψ = (3(1), 2(2), 1(2)) ∈ S(2)
3 avoids (2(1), 1(1)); that is, ψ ∈ S(2)

3 ((2(1), 1(1))).

Let T1, T2 be two subsets of coloured patterns; we say that T1, T2 ⊂ S
(r)
k are in the

same Wilf class if |S(r)
n (T1)| = |S(r)

n (T2)| for n ≥ 0 (see [W]).

In the symmetric group Sn, for every 2-letter pattern τ the number of τ -avoiding per-
mutations is one, and for every pattern τ ∈ S3 the number of τ -avoiding permutations
is given by the Catalan number [K]. Also Simion [S] proved there are similar results for

the hyperoctahedral group Bn. Here we are looking for similar results for S
(r)
n . We show
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that for every 2-letter coloured pattern φ the number of φ-avoiding coloured permu-

tations in S
(r)
n is given by

∑n
j=0 j!(r−1)j

(
n
j

)2
, which generalizes the results of [S, Sec. 3].

The paper is organized as follows: the elementary definitions, and the symmetric
operations, are treated in Section 2. In Section 3 we give two relations between

avoidance of patterns in Sk and avoidance of coloured patterns in S
(r)
k . In Section 4

we present two sets of coloured patterns, and produce a bijection which gives a combi-
natorial geometric explanation for one of these results. Finally, in Sections 5 and 6
respectively, we prove the first and second part of the Main Theorem.

Main Theorem:
(i) For every 2-letter coloured pattern φ, the number of φ-avoiding coloured permuta-

tions in S
(r)
n is given by the expression:

∑n
j=0 j!(r − 1)j

(
n
j

)2
.

(ii) A double restrictions by 2-letter coloured patterns gives one Wilf class for r = 1,
four Wilf classes for r = 2, and six Wilf classes for r ≥ 3.

2. Symmetries on coloured permutations

As on the symmetric group Sn there are three natural symmetric operations: the

reversal, the complement, and the inversion (see [SS]). On S
(r)
n we define:

(i) the reversal br : S
(r)
n → S

(r)
n by

br : (α
(s1)
1 , . . . , α(sn)

n ) 7→ (α(sn)
n , . . . , α

(s1)
1 );

(ii) the complement bc : S
(r)
n → S

(r)
n by

bc : (α
(s1)
1 , . . . , α(sn)

n ) 7→ ((n+ 1− α1)(s1), . . . , (n+ 1− αn)(sn));

(iii) the colour-complement cc : S
(r)
n → S

(r)
n by

cc : (α
(s1)
1 , . . . , α(sn)

n ) 7→ (α
(r+1−s1)
1 , . . . , α(r+1−sn)

n ).

Example 2.1. Let ψ = (1(1), 3(2), 2(1)) ∈ S
(2)
3 , then br(ψ) = (2(1), 3(2), 1(1)), bc(ψ) =

(3(1), 1(2), 2(1)), and cc(ψ) = (1(2), 3(1), 2(2)).

Proposition 2.2. The group < br, bc, cc > is isomorphic to D8.

Remark 2.3. More generally, we extend these symmetric operations to T ⊆ S
(r)
n by

g(T ) = {g(ψ)|ψ ∈ T}, where g = br, bc, or cc. Therefore for any T ⊆ S
(r)
n , n ≥ 0

|S(r)
n (T )| = |S(r)

n (br(T ))| = |S(r)
n (bc(T ))| = |S(r)

n (cc(T ))|.

Also there are other symmetric operations. The first is the inverse < · >−1: S
(r)
n →

S
(r)
n defined by

< · >−1: (α
(s1)
1 , . . . , α(sn)

n ) 7→ (β
(sn)
1 , . . . , β(sn)

n );

where β = α−1 in Sn (see [W]). The second is colour-permutation cpδ : S
(r)
n → S

(r)
n

where δ ∈ Sr, defined by

cpδ(α
(s1)
1 , . . . , α(sn)

n ) = (α
(δs1 )
1 , . . . , α(δsn )

n ).

More generally, for any T ⊂ S
(r)
n we define cpδ(T ) = {spδ(ψ)|ψ ∈ T}.
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Remark 2.4. Let T ⊂ S
(r)
k , δ ∈ Sr, then |S(r)

n (T )| = |S(r)
n (cpδ(T ))|. An example,

for r ≥ 3, |S(r)
n ((1(1), 2(2)), (1(2), 2(3)))| = |S(r)

n ((1(2), 2(1)), (1(1), 2(3)))|, by the symmetric
operation cp(2,1,3,4,...,r).

3. Avoidance patterns and coloured patterns

We say a coloured permutation φ ∈ S
(r)
k is homogeneous if φi = α

(u)
i for all i =

1, 2, . . . , k where 1 ≤ u ≤ r; in this case we denote φ by [α](u). More generally, we write
T(u) = {[α](u)|α ∈ T}, where T ⊂ Sk.

Theorem 3.1. Let 1 ≤ u ≤ r, T ⊆ Sk. For all n ≥ 0

|S(r)
n (T(u))| =

n∑
j=0

j!(r − 1)j|Sn−j(T )|
(
n

j

)2

.

Proof. Since all the patterns in T(u) are homogeneous with the same colour, then we

can choose a coloured permutation in S
(r)
n (T(u)) by choosing n− j symbols with colour

u, and n− j positions where 0 ≤ j ≤ n, and in the other positions we put any coloured
permutation with the other symbols and without colour u. Hence

|S(r)
n (T(u))| =

n∑
j=0

(
n

j

)2

|S{u}{1,2,...,j}(T(u))||S{1,...,u−1,u+1,...,r}
{j+1,...,n} |.

�

Example 3.2. (see [S, Eq. 46]) Let a = 1, 2. For r = 2, by Theorem 3.1 we get

|S(2)
n ((1(a), 2(a)), (2(a), 1(a)))| = (n+ 1)!,

|S(2)
n ((1(a), 2(a)))| = |S(2)

n ((2(a), 1(a)))| =
n∑
j=0

j!

(
n

j

)2

.

Remark 3.3. Let r ≥ 1, τ ∈ Sk. For all n ≥ 0, |S(r)
n (Fτ )| = rn|Sn(τ)|, where

Fτ = {(τ (v1)
1 , . . . , τ

(vk)
k )|1 ≤ v1, v2, · · · , vk ≤ r}. As an example, |S(r)

n (T )| = rn for all
n ≥ 0, where T = {(1(a), 2(b))|a, b = 1, 2, . . . , r}.

4. Restricted sets

In this section, we calculate cardinalities of S
(r)
n (T ) for two special subsets T ⊂ S

(r)
2 .

The first special subset is defined by Tb;a1,a2,...,al = {(1(b), 2(aj))|j = 1, 2, . . . , l}.
Theorem 4.1. Let 1 ≤ l ≤ r, and 1 ≤ b ≤ a1 < a2 < · · · < al ≤ r. Then∑

n≥0

|S(r)
n (Tb;a1,a2,...,al)|

n!
xn =

(
1− (r − l)x

(1− (r − 1)x)l

) 1
l−1

;

when l = 1 we take the limit of the right hand side which equals e
x

1−(r−1)x

1−(r−1)x
.

Proof. Let φ ∈ S(r)
n (Tb;a1,...,al), pr(n) = |S(r)

n (Tb;a1,...,al)|, and let us consider the possible
values of φ1:
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(1) Let φ1 = i(c), c 6= b, and 1 ≤ i ≤ n; so φ ∈ S
(r)
n (Tb;a1,...,al) if and only if

(φ2, . . . , φn) is Tb;a1,...,al -avoiding, hence in this case there are (r− 1)npr(n− 1)
coloured permutations.

(2) Let φ1 = i(b); since φ is Tb;a1,...,al-avoiding, the symbols i+ 1, . . . , n must appear
without colours a1, . . . , al. Also the symbols 1, . . . , i − 1 are Tb;a1,...,al-avoiding,
and can be placed anywhere at positions 2, . . . , n, hence there are

n∑
i=1

(
n− 1

i− 1

)
(n− i)!(r − l)n−ipr(i− 1)

coloured permutations in this case.

By the above two cases we obtain a recurrence relation satisfied by pr(n)

pr(n) = (r − 1)npr(n− 1) +
n∑
i=1

(
n− 1

i− 1

)
(n− i)!(r − l)n−ipr(i− 1),

for n ≥ 1, and pr(0) = 1. Let qn = pr(n)/n!. By multiplying the recurrence by
xn−1/(n− 1)!, and summing up over all n ≥ 1, we obtain

d

dx
q(x) = (r − 1)

d

dx
(xq(x)) +

q(x)

1− (r − l)x
,

where q(x) =
∑

n≥0 qnx
n. Since q(0) = 1, the theorem holds. �

Corollary 4.2. For all n ≥ 0, |S(r)
n (T1;1,2,...,r)| =

n∏
j=0

(j(r − 1) + 1).

Proof. Immediately, Case 1 of the proof of Theorem 4.1 gives (r−1)npr(n−1) coloured
permutations, and Case 2 of the proof of Theorem 4.1 (because i = n) gives pr(n− 1)
coloured permutations. Then for n ≥ 2,

pr(n) = |S(r)
n (T1;1,2,...,r)| = ((r − 1)n+ 1)pr(n− 1).

Since pr(0) = 1, the corollary holds. �

Example 4.3. (see [S, Eq. 47]) By Corollary 4.2,

|S(2)
n (T1;1,2)| = |S(2)

n ((1(1), 2(1)), (1(1), 2(2)))| = (n+ 1)!.

Now we present the second special subset. Consider a subset T ⊂ S
(r)
k ; we say that

T is good if it is the union of disjoint homogeneous subsets; that is, T =
⋃p
j=1(Tj)(uj).

As an example, T = {(1(1), 2(1), 3(1)), (1(1), 3(1), 2(1)), (2(2), 1(2), 3(2))} is a good set.

Theorem 4.4. Let T =
⋃p
j=1(Tj)(uj) be a good set. Then |S(r)

n (T )| for n ≥ 0 is given
by

n∑
j1=0

n−j1∑
j2=0

· · ·
n−j1···−jp−1∑

jp=0

(r − p)n−j1···−jp
(

n

j1, . . . , jp, n− j1 · · · − jp

)2

·(n− j1 · · · − jp)!
p∏
i=1

|Sji(Ti)|.
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Proof. The theorem holds for p = 1 by Theorem 3.1. Now let p > 1, so by definitions

|S(r)
n (T )| =

n∑
j1=0

|S{1,...,u1−1,u1+1,...,r}
n−j1 (T\(T1)(u1))||Sj(T1)|

(
n

j1

)2

,

therefore,

|S(r)
n (T )| =

n∑
j1=0

|S(r−1)
n−j1 (T\(T1)(u1))||Sj1(T1)|

(
n

j1

)2

.

Hence, by the inductive assumption, and

|S(r−p)
n−j1−···−jp | = (n− j1 − · · · − jp)!(r − p)n−j1−···−jp ,

the theorem holds. �

Let Tl;a1,...,ad;ad+1,...,al be a subset of S
(r)
2 defined by

Tl;a1,...,ad;ad+1,...,al =
d⋃
i=1

{(1(ai), 2(ai))} ∪
l⋃

i=d+1

{(2(ai), 1(ai))},

hence by Theorem 4.4 we obtain the following corollary:

Corollary 4.5. Let a1, . . . , al be l different numbers integers between 1 and r. Then

|S(r)
n (Tl;a1,...,ad,ad+1,...,al)| for n ≥ 0 is given by

n∑
j1=0

n−j1∑
j2=0

· · ·
n−j1···−jl−1∑

jl=0

(r − l)n−j1···−jl
(

n

j1, . . . , jl, n− j1 · · · − jl

)2

(n− j1 · · · − jl)!.

Now we build a bijection, which gives for the set S
(r)
n (Tl;a1,...,ad;ad+1...,al) a combina-

torial geometric explanation. Consider l lines L1,. . . ,Ll such that Li contains all the
points of the form j(i) for all j = 1, 2, . . . , n. We say Li is good if the points 1(i) to n(i)

are decreasing, and the line Li is bad if the points 1(i), . . . , n(i) are increasing, otherwise
we say the line Li is free.

Now we consider the following collection which represents the set Tl;a1,...,ad;ad+1,...,al .
Let La1 , . . . , Lad be good lines, Lad+1

, . . . , Lal be bad lines, and Li be a free line for all
1 ≤ i ≤ r such that i 6∈ {a1, . . . , al}. For example, the representation of T2;3;2 where
r = 4, is given by the following diagram.

@
@
@
@
@

n
(3)

. . .

3
(3)

2
(3)

1
(3)

L3

@
@
@
@
@

1
(2)

2
(2)

3
(2)

. . .

n
(2)

L2

@
@
@
@
@
L1

@
@
@
@
@
L4

Figure 1: Representation of T2;3;2

Here the lines L1 and L4 are free lines.

Now let us define a path between the points on the lines of the representation of
Tl;a1,...,ad;ad+1,...,al . A path is a collection of steps, starting anywhere, where every step
is one of the following steps (such that no two points in the collection have the same
symbols):
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(i) a decreasing step from a point to another point on a bad, or a good line,
(ii) a free step on the free line, or between the lines (from a point to another point).

Proposition 4.6. The set of paths of n steps is exactly the set of Tl;a1,...,ad;ad+1,...,al-

avoiding coloured permutation in S
(r)
n .

Proof. By definitions we see that every path of n steps is a Tl;a1,...,ad;ad+1,...,al-avoiding

coloured permutation in S
(r)
n . On the other hand, if φ is Tl;a1,...,ad;ad+1,...,al-avoiding

coloured permutation in S
(r)
n , then all the symbols in φ coloured by ai are decreasing

for 1 ≤ i ≤ d and increasing for d + 1 ≤ i ≤ l, and the other symbols appear in any
order coloured by any colour u 6= ai for all 1 ≤ i ≤ l. Therefore, by reading φ from the
left to the right, we obtain a path of n steps. Hence the proposition holds. �

By using the above proposition we obtain a combinatorial proof of Corollary 4.5.
This corollary produces a generalization of certain results in [S], in particular we get
the following (because i1 + · · ·+ ir = n).

Corollary 4.7. Let 0 ≤ d ≤ r; for n ≥ 0,

|S(r)
n (Tr;1,...,d;d+1,...,r)| =

n∑
i1=0

n−i1∑
i2=0

· · ·
n−i1−···−ir−2∑

ir−1=0

(
n

i1, . . . , ir−1, n− i1 − · · · − ir−1

)2

.

Example 4.8. (see [S, Eq. 49]) Let r = 2; Corollary 4.7 yields

|S(2)
n (T2;∅;1,2)| = |S(2)

n (T2;1;2)| = |S(2)
n (T2;1,2;)| =

n∑
i=0

(
n

i

)2

=

(
2n

n

)
.

5. Single restriction by a 2-letter coloured pattern

The length 2 coloured permutations give rise to some enumeratively interesting classes
of coloured permutations, which we examine in this section. In the symmetric group Sn,
patterns of length 2 are uninterestingly restrictive, and length 3 is the first interesting

case. Also in S
(r)
n , restriction by patterns of length 1 is trivial, and given by the following

formula |S(r)
n (1a)| = n! · (r − 1)n, where 1 ≤ a ≤ r. Let us write

dr(n) =
n∑
j=0

j!(r − 1)j
(
n

j

)2

,

and let dr(x) be the generating function of the sequence dr(n)/n!. From Theorems 4.1

and 4.4 it is easy to see that dr(x) = e
x

1−(r−1)x

1−(r−1)x
.

Now we prove the first case of the Main Theorem, that is, that there exists exactly
one Wilf class of a single restriction by a 2-letter coloured pattern, for all r ≥ 1.

Theorem 5.1. Let r ≥ 1, and 1 ≤ a, b, c, d ≤ r. For n ≥ 0

|S(r)
n ((1(a), 2(b)))| = |S(r)

n ((2(c), 1(d)))| = dr(n).

Proof. By Section 2 (symmetric operations) we have to verify two cases:

(1) Let 1 ≤ a ≤ r; for n ≥ 0, |S(r)
n ((1(a), 2(a)))| = dr(n). But this follows from

Theorem 3.1 and because |Sm(12)| = 1 for m ≥ 0;
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Case φ φ′ |S(5)
n (φ, φ′)| for n = 0, 1, 2, 3, 4, 5 Reference

1 (1(1), 2(1)) (2(1), 1(1)) 1, 5, 48, 672, 12288, 276480 Theorem 6.1
2 (1(1), 2(1)) (1(1), 2(2)) 1, 5, 48, 672, 12288, 276480 Theorem 6.1
3 (1(1), 2(2)) (2(1), 1(2)) 1, 5, 48, 672, 12288, 276480 Theorem 6.1
4 (1(1), 2(2)) (2(2), 1(1)) 1, 5, 48, 672, 12288, 276480 Theorem 6.1
5 (1(1), 2(2)) (1(1), 2(3)) 1, 5, 48, 672, 12288, 276480 Theorem 6.1

6 (1(1), 2(1)) (1(2), 2(2)) 1, 5, 48, 668, 12046, 265062 Theorem 6.3
7 (1(1), 2(1)) (2(2), 1(2)) 1, 5, 48, 668, 12046, 265062 Theorem 6.3
8 (1(1), 2(1)) (1(2), 2(3)) 1, 5, 48, 668, 12046, 265062 Theorem 6.3
9 (1(1), 2(1)) (2(2), 1(3)) 1, 5, 48, 668, 12046, 265062 Theorem 6.3
10 (1(1), 2(2)) (1(3), 2(4)) 1, 5, 48, 668, 12046, 265062 Theorem 6.3
11 (1(1), 2(2)) (2(3), 1(4)) 1, 5, 48, 668, 12046, 265062 Theorem 6.3

12 (1(1), 2(2)) (2(1), 1(3)) 1, 5, 48, 670, 12168, 270856 Theorem 6.5
13 (1(1), 2(2)) (2(2), 1(3)) 1, 5, 48, 670, 12168, 270856 Theorem 6.5

14 (1(1), 2(1)) (2(1), 1(2)) 1, 5, 48, 671, 12288, 273665 Theorem 6.6

15 (1(1), 2(2)) (1(2), 2(3)) 1, 5, 48, 669, 12106, 267867

16 (1(1), 2(2)) (1(2), 2(1)) 1, 5, 48, 670, 12166, 270672

Table 1. Pairs of 2-letter coloured patterns

(2) Let b ≤ a; for n ≥ 0, |S(r)
n ((1(a), 2(b)))| = |S(r)

n ((1(a), 2(a)))|. But this follows from

Theorem 4.1 by |S(r)
n (Ta;b)| = |S(r)

n (Ta;a)|.
�

6. Double restrictions by 2-letter coloured patterns

In this section, we find the number of Wilf classes for r ≥ 1, of double restrictions by

2-letter coloured patterns. In S
(r)
2 there are r2(r2−1) possibilities to choose two elements

of the following forms: (1(a), 2(b)), (1(c), 2(d)), and there are r4 possibilities to choose two
elements of the following forms: (1(a), 2(b)), (2(c), 1(d)), where 1 ≤ a, b, c, d ≤ r. On
the other hand, by symmetric operations (Section 2), the question of determining the

S
(r)
n (φ, φ′) for r2(2r2 − 1) choices for 2-letter coloured patterns φ, φ′ reduces to the

determination of the S
(r)
n (φ, φ′) where φ, φ′ are from Table 1.

Theorem 6.1. For n ≥ 0, |S(r)
n (T )| = n!(n+ r − 1)(r − 1)n−1 where

(i) T = {(1(1), 2(1)), (2(1), 1(1))} for r ≥ 1;
(ii) T = {(1(1), 2(1)), (1(1), 2(2))} for r ≥ 2;

(iii) T = {(1(1), 2(2)), (2(1), 1(2))} for r ≥ 2;
(iv) T = {(1(1), 2(2)), (2(2), 1(1))} for r ≥ 2;
(v) T = {(1(1), 2(2)), (1(1), 2(3))} for r ≥ 3.

Proof. By Theorem 3.1 and because |Sm(12, 21)| = 1, 1, 0 where m = 0, m = 1, m ≥ 2
respectively, (i) holds, and Theorem 4.1 immediately yields (ii), and (v) respectively
for T1;1,2 and T1;2,3. Now let us prove (iii) and (iv).
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Case (iii): Let pn = |S(r)
n (T )|, φ ∈ S(r)

n (T ), and let us consider the possible values
of φ1:

(1) Let φ1 = i(c), c 6= 1; φ ∈ S(r)
n (T ) if and only if (φ2, . . . , φn) ∈ S(r)

{1,...,i−1,i+1,...,n}(T ).

Hence in this case there are (r − 1)npn−1 coloured permutations.
(2) Let φ1 = i(1); since φ is T -avoiding, the symbols 1, . . . , i − 1, i + 1, . . . , n are

not coloured by 2, and can be replaced anywhere at positions 2, . . . , n for all
1 ≤ i ≤ m. Hence, in this case there are (n−1)!(r−1)n−1 coloured permutations.

Therefore by the above two cases pn satisfies the following relation:

pn = n(r − 1)pn−1 + n!(r − 1)n−1.

Since p0 = 1, (iii) holds.

Case (iv): Let pn = |S(r)
n (T )|, φ ∈ S(r)

n (T ) such that φj = n(c), and let us consider
the possible values of j, c:

(1) Let c 6= 2; φ ∈ S
(r)
n (T ) if and only if (φ1, . . . , φj−1, φj+1, . . . , φn) ∈ S

(r)
n−1(T ).

Hence in this case there are (r − 1)npn−1 coloured permutations.

(2) Let c = 2; φ ∈ S
(r)
n (T ) if and only if (φ1, . . . , φj−1, φj+1, . . . , φn) is a coloured

permutation with symbols 1, 2, . . . , n− 1 and colours 2, . . . , r for all 1 ≤ j ≤ n.
Hence, in this case there are (n− 1)!(r − 1)n−1 coloured permutations.

So we obtain the same relations as for (iii), hence (iv) holds. �

Example 6.2. (see [S, Eq. 46, 47]) As an example we get

|S(2)
n ((1(1), 2(1)), (2(1), 1(1)))| = |S(2)

n ((1(1), 2(1)), (1(1), 2(2)))| =
|S(2)
n ((1(1), 2(2)), (2(1), 1(2)))| = |S(2)

n ((1(1), 2(2)), (2(2), 1(1)))| = (n+ 1)!

for n ≥ 0, which was proved in [S].

Theorem 6.3. Let 2 ≤ a ≤ b, and r ≥ b; for all n ≥ 1

|S(r)
n (T )| =

∑
i+j≤n

(
n

i, j, n− i− j

)2

(n− i− j)!(r − 2)n−i−j,

where

(i) T = {(1(1), 2(1)), (1(a), 2(b))}; (ii) T = {(1(1), 2(1)), (2(a), 1(b))};
(iii) T = {(1(1), 2(2)), (1(3), 2(4))}; (iv) T = {(1(1), 2(2)), (2(3), 1(4))}.

Proof. Cases (i), (ii): Similar to the proof of Theorem 3.1 we find that

|S(r)
n (T )| =

n∑
j=0

(
n

j

)2

|Sj(12)|S(r−1)
n−j (φ)|,

where either φ = (1(a), 2(b))} or φ = (2(a), 1(b))}. Hence, since Sj(12) = 1 for all j ≥ 0,
the two claims follow from Theorem 5.1.

Cases (iii), (iv): Let T1 = {(1(1), 2(2)), (1(3), 2(4))}, T2 = {(1(1), 2(2)), (2(3), 1(4))},
and let φ ∈ S

(r)
n (T1). Also let us define Iφ to be the set of all j such that φj is

coloured by either 3 or 4. Now we define a function f : S
(r)
n (T1) → S

(r)
n (T2) by revers-

ing all the φj where j ∈ Iφ. Hence by definitions, f is a bijection, which means that
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|S(r)
n ((1(1), 2(2)), (2(3), 1(4)))| = |S(r)

n ((1(1), 2(2)), (1(3), 2(4)))|.

On the other hand, by Theorem 5.1 there exist bijections, fa,b;c : S
(r)
n ((1(a), 2(b))) →

S
(r)
n ((1(c), 2(c)), and ga,b;c : S

(r)
n ((2(a), 1(b))) → S

(r)
n ((2(c), 1(c)). Now let us define a bijec-

tion g : S
(r)
n ((1(1), 2(2)), (2(3), 1(4))) → S

{1,3,5,6,...,r}
n ((1(1), 2(1)), (2(3), 1(3))), as follows. Let

φ ∈ S(r)
n ((1(1), 2(2)), (2(3), 1(4))), let Iφ the set of all j such that φj is coloured by either 1

or 2, and let Jφ the set of all j such that φj is coloured by either 3 or 4; we define g(φ)
by operating the bijection f1,2;1 on all φj where j ∈ Iφ, by operating the bijection f3,4;3

on all φj where j ∈ Jφ, and leaving the other φj with j /∈ Iφ ∪ Jφ in the same order.
Hence, g is a bijection, and by Theorem 4.4 the Cases (iii) and (iv) follow. �

Example 6.4. (see [S, Eq. 47]) As an example, by Theorem 6.3 for n ≥ 0

|S(2)
n ((1(1), 2(1)), (2(2), 1(2)))| =

(
2n

n

)
.

Theorem 6.5. For r ≥ 3, ∑
n≥0

S
(r)
n (T )

n!
xn =

∫
d2
r−1(x)dx

1− (r − 1)x
,

where

(i) T = {(1(1), 2(2)), (2(1), 1(3))}; (ii) T = {(1(1), 2(2)), (2(2), 1(3))}.

Proof. Case (i): Let T = {(1(1), 2(2)), (2(1), 1(3)))}, pn = S
(r)
n (T ), φ ∈ S(r)

n (T ), and let
us consider the possible values of φ1:

(1) Let φ1 = i(c), c 6= 1; so φ ∈ S(r)
n (T ) if and only if (φ2, . . . , φn) ∈ S(r)

{1,...,i−1,i+1,...,n}(T ).

Hence in this case there are (r − 1)npn−1 coloured permutations.
(2) Let φ1 = i(1), 1 ≤ i ≤ n; since φ is T -avoiding, the symbols i + 1, . . . , n are

not coloured by 2, and the symbols 1, . . . , i − 1 are not coloured by 3. Hence

there are
(
n−1
i−1

)
|S(r−1)
n−i ((2(1), 1(3)))||S(r−1)

i−1 ((1(1), 2(2)))| coloured permutations, so

by Theorem 5.1 there are
(
n−1
i−1

)
dr−1(n− i)dr−1(i− 1) coloured permutations.

Therefore pn satisfies the following relation:

pn = n(r − 1)pn−1 +
n∑
i=1

(
n− 1

i− 1

)
dr−1(n− i)dr−1(i− 1)

with p0 = 1 and p1 = r. Let qn = pn/n!, and q(x) =
∑

n≥0 qnx
n; by multiplying the last

relation by xn

(n−1)!
, and summing over n ≥ 1 we get∑

n≥1

(nqn − n(r − 1)qn−1)xn = xd2
r−1(x),

hence [(1− (r − 1)x)q(x)]′ = d2
r−1(x), which means that Case (i) holds.

Case (ii): Let T = {(1(1), 2(2)), (2(2), 1(3)))}, pn = S
(r)
n (T ), and φ ∈ S(r)

n (T ) such that
φj = n(c). Let us consider the possible values of j, c:
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(1) Let c 6= 2; φ ∈ S
(r)
n (T ) if and only if (φ1, . . . , φj−1, φj+1, . . . , φn) ∈ S

(r)
n−1(T ).

Hence in this case there are (r − 1)npn−1 coloured permutations.
(2) Let c = 2; since φ is T -avoiding, all the symbols in (φ1, . . . , φj−1) are not coloured

by 1, and the symbols in (φj+1, . . . , φn) are not coloured by 3. Hence there are(
n−1
j−1

)
|S(r−1)
j−1 ((2(2), 1(3)))||S(r−1)

n−j ((1(1), 2(2)))| coloured permutations, so by Theo-

rem 5.1 there are
(
n−1
j−1

)
dr−1(j − 1)dr−1(n− j) coloured permutations.

Therefore pn satisfies the following relation:

pn = n(r − 1)pn−1 +
n∑
j=1

(
n− 1

j − 1

)
dr−1(n− j)dr−1(j − 1)

with p0 = 1. Hence, by Case (i) we see that Case (ii) holds. �

Theorem 6.6. For r ≥ 2,∑
n≥0

S
(r)
n ((1(1), 2(1)), (2(1), 1(2)))

n!
xn =

∫ dr−1(x)
1−(r−1)x

dx

1− (r − 1)x
.

Proof. Let T = {(1(1), 2(1)), (2(1), 1(2)))}, pn = S
(r)
n (T ), φ ∈ S(r)

n (T ), and let us consider
the possible values of φ1:

(1) If φ1 = i(c) where c 6= 1, then φ ∈ S
(r)
n (T ) if and only if (φ2, . . . , φn) ∈

S
(r)
{1,...,i−1,i+1,...,n}(T ). Hence in this case there are (r − 1)npn−1 coloured per-

mutations.
(2) If φ1 = i(1) then, since φ avoids T , the symbols i + 1, . . . , n are not coloured

by 1, and the symbols 1, . . . , i − 1 are not coloured by 2. Hence there are(
n−1
i−1

)
|S(r−1)
n−i ||S

(r−1)
i−1 ((1(1), 2(1)))| coloured permutations, so by Theorem 5.1 there

are
(
n−1
i−1

)
(n− i)!(r − 1)n−idr−1(i− 1) coloured permutations.

Therefore pn satisfies the following relation: p0 = 1, and for n ≥ 1

pn = n(r − 1)pn−1 +
n∑
i=1

(
n− 1

i− 1

)
(n− i)!(r − 1)n−idr−1(i− 1).

Let qn = pn/n!, and q(x) =
∑

n≥0 qnx
n, by multiplying the last relation by xn

(n−1)!
, and

summing over n ≥ 1 we get∑
n≥1

(nqn − n(r − 1)qn−1)xn =
xdr−1(x)

1− (r − 1)x
,

hence [(1− (r − 1)x)q(x)]′ = dr−1(x)
1−(r−1)x

, which proves the theorem. �

Example 6.7. (see [S, Eq. 48]) Let us write an = |S(2)
n ((1(1), 2(1)), (2(1), 1(2)))|; by sym-

metric operations and by Theorem 6.6, pn = npn−1 + (n − 1)!
n−1∑
j=0

1
j!

for n ≥ 1, hence

n! < pn < (n+ 1)! for n ≥ 3.

Let wc(r) be the number of Wilf classes of a double restriction by 2-letter coloured
patterns with r colours; then by Theorems 6.1–6.6, and by Table 1 we may formulate
part (ii) of the Main Theorem as follows.
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Corollary 6.8. wc(r) = 1, 4, 6 for r = 1, 2, r ≥ 3 respectively.

Acknowledgements. I am grateful to the anonymous referees for their helpful com-
ments.
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