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AN EULERIAN PARTNER FOR INVERSIONS

MARK SKANDERA

ABSTRACT. A number of researchers studying permutation statistics on the sym-
metric group S, have considered pairs (x, Y), where x is an Eulerian statistic and
Y is a Mahonian statistic. Of special interest are pairs such as (des, MAJ), whose
joint distribution on S, is given by Carlitz’s g-Fulerian polynomials. We present
a natural Eulerian statistic stc such that the pair (stc, INV) is equally distributed
with (des, MAJ) on S,,, and provide a simple bijective proof of this fact. This result
solves the problem of finding an Eulerian partner for the Mahonian statistic INV.
We conjecture several properties of the joint distributions of stc with the statistics
des and MAJ.

1. INTRODUCTION

Let S, be the symmetric group on n letters and let N be the nonnegative integers.
A function f : S, — Nis called a permutation statistic. To define several permutation
statistics it will be convenient to use the notation [a] = {1,...,a} for any positive
integer a.

One important permutation statistic is des, which counts the descents of a permu-
tation. Writing a permutation 7 in one-line notation, 7 = m - - - 7,, we call position
1 a descent of m if m; > m; 1. Thus,

des(m) =#{i € [n — 1] |m > M1}
The number of permutations in S,, with & descents is commonly denoted A(n, k + 1),

A(n,k+1) = #{r € S, | des(r) = k}.

The distribution of a permutation statistic f on S, is the sequence (ao,ar,...),
where ay counts permutations 7 in S, satisfying f(m) = k. Therefore the distribution
of des on S, is the sequence (A(n,1),...,A(n,n)). The following table shows the
distribution of des on S,, forn =1,...,6.
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nk+1] 1 2 3 4 5 6
1 1
2 11
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1

The numbers {A(n,k+1)|n > 1;k + 1 € [n]} are called the Eulerian numbers. It
is easy to see (e.g. from Lemma 2.2) that the Eulerian numbers satisfy the recurrence

(1.1) Anyk+1)=(k+1)An—1,k+1)+ (n —k)A(n —1,k)
subject to the initial conditions

1, for k=0,
0, otherwise.

MLk+U:{

For fixed n, the Eulerian numbers are often written as the coefficients of the nth
Eulerian polynomaial

n—1
A ZA n, k—l-l k41 _ leeresw
k=0

TESH

While no closed formula is known for the Eulerian polynomials, their generating
function is given by

Ap(x)u™ 1
1 + Z n‘ - 1 _ (l‘—l)nfl’u,” :

n>1 ZnZl n!

Any permutation statistic whose distribution on S, is given by the nth Eulerian
polynomial A, (x) is called an FEulerian statistic. A second Eulerian statistic exc
counts excedances of a permutation,

exc(m) =#{i € [n— 1] | m > i}.

Z x1+exc(7r) — Z :El—i-des(ﬂ) — An(l‘)

WESn TFGS’VL

Thus,

An important permutation statistic which is not Eulerian is MAJ, the major index
of a permutation. MAJ is defined to be the sum of the descents of a permutation.
Denoting the descent set of a permutation 7 by

D(r) = {i|m > T},
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we have the definition

MAJ(T) = Z i

t€D(mr)

The following table shows the distribution of MAJ on S, forn =1,...,5.

n\k | 0 1 2 3 4 5 6 7 8 9 10
1 1

2 1 1

3 1 2 2 1

4 1 3 5 6 ) 3 1

5 1 4 9 15 20 22 20 15 9 4 1

The generating function for the number of permutations in S,, with major index
equal to k is the g-analog of n-factorial,

DI =1+ +qg+) - (T+a+¢+-+q").
WESn

The permutation statistics distributed this way on S,, have been named Mahonian
statistics [14] in honor of MacMahon. Another Mahonian statistic INV counts the
inversions of a permutation,

INV(7) = #{(m;,7j) |1 < j and m; > 7, }.

Following [10], we will write Eulerian statistics with lowercase letters and Mahonian
statistics with capitals.

A natural extension of the study of permutation statistics and their distributions
on S, is the study of pairs of permutation statistics and their joint distributions on
Sp. Of particular interest is the pair (des,MAJ) and its joint distribution. (See [1],
6], [7], [8], [9], [10], [14], [16], [18], [19], [20], [22].) The following table shows this
joint distribution on Ss.

des\MAJ O 1 2 3 4 5 6 7 8 9 10
0 1

1 4 9 9 4

2 6 16 22 16 6

3 4 9 9 4

4 1
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The generating function for the joint distribution of (des, MAJ) on S, is given by
Carlitz’s g-Eulerian polynomial B, (t) [4, 5],

Bn(t> _ Z Bn,k(Q)tk _ Z tdes(ﬂ)qMAJ(ﬂ)'
k=0

WESn

(We follow the notation of [18].) Analogous to the Eulerian numbers, the coefficients
B, k(q) of the g-Eulerian polynomial satisfy the recurrence [4]

B yi(q) = [k + 1];Bn-11(q) + ¢°[n — k]¢Bn-1,-1(q)

subject to the initial conditions

1, for k=0,
0, otherwise.

B(0, k) = {

A pair of statistics which has the same joint distribution on S, as (des, MAJ) is
sometimes called Euler-Mahonian. The Mahonian statistic with which exc forms an
Euler-Mahonian pair is Denert’s statistic, DEN. (See [18].)

Z pexc(r) qDEN(ﬂ') _ Z 4des(r) qMAJ(ﬂ') = B,(t,q).

7T€Sn TI'ESn

Equivalently,
#{m € S, |exc(m) = k;DEN(7) = p} = #{m € S, | des(7) = k;MAJ(7) = p}.

Denert [11] conjectured this equidistribution result, which was later proven by Foata
and Zeilberger [18] and Han [24].

Since the statistic INV arises so often in combinatorics, one might hope for a natural
Eulerian statistic x such that (x,INV) has this same joint distribution. There is in
fact a natural Eulerian statistic with this property. We will call it stc, and will define
it in Section 3.

In Section 2 we use the code and major index table of a permutation to give a
simple bijective proof that INV and MAJ are equally distributed on S,,. The bijection
is essentially due to Carlitz [5]. In Section 3 we define the statistic stc and give a
bijective proof that the pairs (stc, INV) and (des, MAJ) are equally distributed on S,,.
In Section 4 we define a set-valued function STC : S,, — 2*~1 which associates a set
of k numbers to each permutation 7 satisfying stc(m) = k. Analogous to the descent
set D(m) which sums to MAJ(7), the set STC(7) sums to INV(7). We conclude in
Section 5 with some open problems.
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2. THE EQUIDISTRIBUTION OF INV AND MAJ ON S,

Related to the symmetric group S, is the set of words w = wy - - - w, on the letters
[0,n — 1] ={0,...,n — 1} in which each letter w; is at most n —i. We will denote
this set by E,,

E,={w=w--w,|w €[0,n—ilfori=1,...,n.}
The componentwise greatest word in F, is the strictly decreasing word
n—1)-(n—2)---0.
We will refer to this word as the stair word of length n, and to the elements of E,, as
sub-stair words of length n. Clearly there are n! sub-stair words of length n.

There are many known bijections between FE,, and S,,, and by composing a certain
pair of these we obtain a proof that INV and MAJ are distributed equally on S,.
This proof might reasonably be attributed to Carlitz [15], since it follows easily from
his paper [5]. The first proof of this equidistribution is due to MacMahon [26], and
the first bijective proof is due to Foata [13]. A second bijective proof by Foata and
Schiitzenberger [17] shows that the two statistics are in fact distributed symmetrically
on S,. (See also [14] and [25, pp 200-203, 212].)

Let v : S, — FE, be the well known bijection which sends a permutation to its code.
The code of a permutation 7 is the word

code(m) = ¢y -+ ¢y

defined by
¢ =#{j€nl|j>im<m}
Example 2.1.
T = 2843617951
code(7) = 1 6 2 1 2 2 2 10

An important property of code(n) is that its components sum to INV(7).

Let o : S, — E, be the bijection which sends a permutation to its major index
table. To define the major index table, we will denote by 7(® the restriction of 7 to
the letters 7,...,n. (e.g. if 7 = 284367951, then 7(¥) = 846795, the restriction of 7
to the letters 4,...,9.)

Definition 2.2. Let 7 be a permuation in .S,,. Define the major index table of 7 to
be the word
majtable(m) = my - - - my,

where

0, if i =n,
MAJ(7®) — MAJ(7(+D)) otherwise.
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If we imagine building the permutation 7 from scratch by inserting the letters in
the order n,...,1, then m; is the amount by which the major index increases with
the insertion of 7.

Example 2.3. Let m = 284367951. To calculate the major index table we build 7
one letter at a time in the order 9, ..., 1 and record each increase in the major index.
(Slashes below indicate descents.)

G
9
89
879
8/679
8/679/5
8,/4679/5
8/4/3679/5
28,/4/3679/5 12
28/4/3679/5/1 20

S,

=
>
C o U~ RO olX
A
~
]

OOCOOJH%OHOOS

— N W OO = 00 O =.

Thus we have majtable(r) = m; - - - mg = 833140100.

An important property of majtable(n) is that its components sum to MAJ(7).

We will compose the maps v and p to prove the equidistribution of MAJ and INV,
but first let us prove that the map p is indeed a bijection.

Theorem 2.1. The map i : S, — E, defined by p(m) = majtable(w) is a bijection.

Proof. To invert u we apply the following procedure to a word m = my ---m,, in E,.

(1) Define w™ to be the one-letter word n.

(2) For i = n —1,...,1, let w® be the unique word obtained by inserting the
letter i into the word w(™*Y in such a way that MAJ(w®) — MAJ(w YD) = m,.

(3) Set 7 = w.

It is clear that if the word 7 exists, then it satisfies 7" = w fori = 1,...,n, so that
majtable(m) = m. By the following lemma, 7 does exist and is unique. In particular,
given any permutation w on the letters {i+1,...,n} and any integer ¢ in the interval
{0,...,n — i}, then there is a unique permutation w’ obtained by inserting the letter
i into w in such a way that MAJ(w') — MAJ(w) = £. O

Lemma 2.2. Let m = 7y -+ - m,_; be a permutation on the letters {i + 1,...,n}, and
suppose that m has k descents. Let d,_1 < --- < dqy be the positions of these k descents,
let dp, =0, and let agyq < -+ < an_; =n — 1 be the remaining positions of .
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E,
majtable(Tt) = code(p)

FIGURE 2.1
(1) Let € be an integer satisfying 0 < £ < k and define 7’ to be the permutation
obtained by inserting the letter i into position dy + 1 of w. Then,
des(n') = des(7),
MAJ(7') = MAI(7) + L.

(2) Let { be an integer satisfying k < ¢ < n—1i and define " to be the permutation
obtained by inserting the letter i into position ay + 1 of w. Then,

des(7) = des(7) + 1,
MAJ(7') = MAJ(7) + L.

Proof. (1) The descent set of 7’ is
D(ﬂ-/> = {dk717 L 7df7 dgfl + 1, e 7do —'— 1}

(2) Let p be the least number such that d,, < a,. Then,
D<7T/) = {dkfla s 7dp:a€7dp71 + L cee 7d0 + 1}7
and ag = ({ —k)+ (k—p)={—p. O

The equidistribution on S,, of MAJ and INV follows immediately. (See Figure 2.1.)

Corollary 2.3. The permutation statistics INV and MAJ are equally distributed on
Sn. That is, for each number k in the set [0,n — 1] we have

#{m € S| INV(1) =k} = #{r € S, |MAI(7) = k}.
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Proof. Define the bijection ¢ : S, — S,, by ¢ = v~'u. Since ¢ satisfies
majtable(m) = code(¢(m)),

it also satisfies
MAJ(7) = INV(¢p(T)).

O
Surprisingly, the letter order n,n — 1, ..., 1 preceding Definition 2.2 is not crucial
for the construction of the major index table. In fact any letter order oy,...,0,

induces a bijection S,, — E,, as in Theorem 2.1 [23]. Let us reconsider Theorem 2.1,
Lemma 2.2, and Corollary 2.3 in terms of a more general major index table.

Fix a permutation ¢ = o7 - - - 0,,, in .S,, and denote by 7@ the restriction of 7 to the
letters o, ...,0,. (e.g. if 0 = 852739461 and 7 = 284367951, then (¥ = 436791, the
restriction of 7 to the letters {oy,...,00} = {1,3,4,6,7,9}.) We will call the sequence
7M. .., 7™ defined in this way the sequence of restricted permutations corresponding
to o.

Definition 2.4. Fix a permutation ¢ in .S,,. For any permutation 7 in S,,, construct
the sequence of restricted permutations 7, ... 7™ corresponding to o and define
the o-major index table of 7 to be the word

o-majtable(m) = my - - - m,,

where
o if i =mn,
C I MA(rD) — mas(rHD), otherwise.

Note that if o is the permutation 1---n, then the sequence 7™, ... 7 retains
its prior meaning (preceding Definition 2.2), and the o-major index table is just the
major index table.

Theorem 2.4. Fiz a permutation o in S,. The map u, : S, — FE, defined by
o () = o-majtable(r) is a bijection.

Proof. Similar to the proof of Theorem 2.1. Use the following lemma instead of
Lemma 2.2. U

Lemma 2.5. Fix a permutation o in S,,. Let ™ be a word on the letters {c;s1,...,0n},
and suppose that m has k descents. Let dp_1 < --- < dy be the positions of these k
descents, let d, =0, and let d_y =n —1i. Define the positions dj, < --- < dj, by

d, _ dg, ifﬂ'd2+1 > 0y,
¢ max{j € [n —i]|d; < j < dp_1;m; < 0;}, otherwise.
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Let aj ., < --- < a,_; be the positions

{0,1,...,n—i}~{dg,...,dy}.
(1) Let ¢ be an integer satisfying 0 < ¢ < k and define 7’ to be the permutation
obtained by inserting the letter o; into position d, + 1 of w. Then,
des(n’) = des(7),
MAJ(7') = MAJ(7) + L.
(2) Let { be an integer satisfying k < ¢ < n—1i and define " to be the permutation
obtained by inserting the letter o; into position ay + 1 of w. Then,
des(n') = des(m) + 1,
MAJ(7") = MAI() + L.

Proof. Identical to the proof of Lemma 2.2. U

As a corollary of Theorem 2.4, we have n! bijections of the form

¢0‘ = f)/il,ua 0 Sy — Sy
which satisfy

MAJ(7) = INV(¢, (7))
and therefore prove the equidistribution of the statistics MAJ and INV on .S,,. It is not
difficult to show that if o = oy - - - 0,, and 0’/ = 0] - - - 0], are two different permutations,
then the bijections p, and p, are identical if and only if ¢,, = ¢/, _; and o,,_1 = 0,.
Thus, the cardinality of the set {¢, |0 € S,} is really % rather than n!. We shall see
that any of these bijections suffices to prove our main theorem.

3. MAIN RESULT

We introduce a function st : E, — N which provides a new interpretation of the
Eulerian numbers,

(3.1) A,k +1) = #{v € B, | st(v) = k}.

Using this function, we define a simple Eulerian statistic stc such that the joint
distribution on S, of the pair (stc, INV) is equal to that of the pair (des, MAJ). This
equidistribution result, which extends Corollary 2.3, solves the well-known problem
of finding an Eulerian “partner” for the statistic INV.

Definition 3.1. Define st : E,, — N to be the function which maps a sub-stair word
v =11 - v, to the greatest number ¢ such that v contains a subsequence v;,, ..., v;
which is (componentwise) strictly greater than the stair word of length ¢,

L
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FIGURE 3.1. A histogram interpretation of st(245223010).

While v may contain several such subsequences of maximum length, identifying
one and calculating this maximum length is quite easy. Starting from the rightmost
position of v and reading left, we circle the first letter which is at least one, the next
which is at least two, etc., until we cannot continue. The number of circled positions
of v is then st(v).

Example 3.2. Let v = 245223010. Starting from the right, we circle the 1, 3, 5, and
4. Thus, st(v) = 4. Note that vyvzvsvg = 4531 is strictly greater than 3210, the stair
word of length 4.

Representing words as histograms, we see that st(v) is the number of nonzero
stairs which we can place beneath the histogram of v while preserving the order of
these stairs. Figure 3.1 shows four nonzero stairs beneath the histogram of the word
245223010.

It is easy to show that the function st indeed gives an interpretation of the Eulerian
numbers as claimed in Formula (3.1). Let a(n,k + 1) be the number of words v in
E,, which satisfy st(v) = k. For any word v in E,, we have

t cee Uy, 1, if > st Cee ),
$t(0) = st(vy - vs- -+ v,) = st(vg---vp) + %vl st(vg -+ vp)
st(vg -+ vy,), if v; < st(vg---vy).
Thus « satisfies the recurrence
ank+1)=(k+1an—1,k+1)+ (n—k)a(n —1,k)

subject to the initial conditions
1, for k=0
al,k+1)=<" ’
( ) {O, otherwise.
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It follows that a(n, k+1) is the Eulerian number A(n, k+1). A second (bijective) proof
of formula (3.1) follows from our main theorem. Let us define a family of Eulerian
permutation statistics which count the stairs under the code and major index tables
of a permutation.

Definition 3.3. Define the permutation statistics stc and stm, by
ste(m) = st(code(n)),
stm, (7) = st(o-majtable(r)).
We prove the equidistribution of (stc, INV) and (des, MAJ) on S,, by demonstrating
that the bijection ¢, : S,, — S,, from Section 2 satisfies
MAJ(7) = INV(¢, (7)),
des(m) = ste(oq()).

Theorem 3.1. The pairs of permutation statistics (des, MAJ) and (stc, INV) are
equally distributed on S,. That is, for each pair (k,p) we have

#{m € S, |ste(m) = k;INV(7) = p} = #{7 € S, | des(7) = k; MAJ(7) = p},
Proof. Fix a permutation ¢ in S, and let ¢, : S, — S, be the bijection defined
following Lemma 2.5. For every permutation 7 in S,,, the bijection ¢, satisfies

o-majtable(m) = code(¢,()),
and therefore also satisfies
MAI(T) = INV(6 (),

stm, () = ste(pq(m)).

We claim that stm,(7) = des().

Let m = my - --m, be the o-major index table of 7, and let 7™, ... 7 be the
sequence of restricted permutations corresponding to o. Fix ¢ < n and assume that
st(miy1 -+ -my) = des(r*Y). By Definition 3.1 we have

st(mipr---my) + 1, if my > st(migq---my),

( ' A ") {St(mi+1 - 'mn)7 otherwise.

By Lemma 2.5 we have

() _ GO £, o)
| des(7+D), otherwise.

Thus, st(m; - - -m,) = des(7?). Proceeding by induction, we obtain stm, (7) = des(7),
as desired. 0
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Note in the above proof that the statistics stm, and des are identical, regardless of
our choice of . This fact is somewhat surprising, given that the words o-majtable(r)
and o’-majtable(m) are not in general equal when o and o’ are distinct.

Note also that a slight modification of the proof produces an Eulerian partner for
other Mahonian permutation statistics. Let sum : E,, — N be the function that
gives the component sum of a substair word of length n. Since the pair (st,sum)
is distributed on FE,, just as (des,MAJ) is distributed on S,, we have the following
generalization of Theorem 3.1.

Corollary 3.2. If STAT is any Mahonian permutation statistic and ¢ : S,, — E,, is
a bijective encoding of permutations as sub-stair words that satisfies

SUM(t)(7)) = STAT(m)
for all permutations 7 in S,, then the pair (st, STAT) is equally distributed on S,
with (des, MAJ).

This method produces a second Eulerian partner for INV if we encode permutations
by their inversion tables. (See [30, pp. 20-21]. It provides Eulerian partners for
Rawlings’s r-MAJ statistics [27] if we encode permutations with his m-MAJ codings.
It also produces a second Eulerian partner for DEN if we encode permutations with
Foata and Zeilberger’s “Denert table” [18].

4. THE STC-SET OF A PERMUTATION

Theorem 3.1 states an analogy between the statistic pairs (des, MAJ) and (stc, INV).
We will extend this analogy by defining an stc-analog for the descent set of a permu-
tation. Let D : S, — 2"~1 be the set-valued function which maps a permutation to
its descent set. (Here 2"~ denotes the set of all subsets of [n — 1].) Recall that D
satisfies

| D(m)| = des(n),
> i=wmai(w).
i€D(m)

In Definition 4.3 we will define a second set-valued function STC' : S,, — 21 which
satisfies

|STC(m)| = ste(m),
> i=mv(m).
1€STC ()

We will call STC() the ste-set of 7, and we will show that the functions D and ST'C
are equally distributed on .S,,.
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Our strategy in defining ST'C(7) for each permutation 7 in S, is to transform
the word code(w), whose components sum to INV(7), into another word in which all
nonzero letters are distinct and sum to INV(7). We then define ST'C(m) to be this set
of nonzero letters.

Let us begin by defining a set of n — 2 operators on FE,.

Definition 4.1. Let v = v;---v, be a word in E,. Fori =1,...,n — 2, define the
operator n; : E, — E, by

/
ni(y)zvl...vi_l.g.f S Vjgg - Up,

where
(Vis Vig1) if v; > vip1 or vy = vy =0,
(0, 0) =< (Vi1 + Lo, — 1) if 0 <v; < vy,
(Vit1,0;) if 0 =v; < vy

Unless v; is greater than v;;; (or both are zero), the operator 7; replaces this
nondecreasing pair of letters with a strictly decreasing pair. The sum of the new pair
is the same as that of the old.

It may be interesting to note that the operators 7y, ..., n,_s satisfy the relations

772-2 =7, for all 7,
NiMi+17i = Nis1MiMit1,  for i <n —2,
1M = M55 for |i — j| > 2.
It follows that these operators generate H,,_, the 0-Hecke monoid on n—2 generators.

(See [21].)

Composing 71, ...,M,—2, we define a map w : F,, — E, which applies a modified
“bubble sort” algorithm to a sub-stair word v. Each time it exchanges two nonzero
letters, it increments the letter moving left and decrements the letter moving right.

Definition 4.2. For i = 1,...,n — 2, define the operators w; : E,, — E, by
Wi = Tn—2 ",
and define w : E,, — FE,, to be the product

W =Wwi"""Wp—-2.

Figure 4.1 shows the computation of wv for v = 332110. Each line in the table
represents a single step of the algorithm, the action of n; for some j. Positions j
and j + 1 are marked below by x if the corresponding letters are altered, and by )(
otherwise.
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m = 2 3 2 1 10
X
om = 2 3 2 2 0O
X
Nawym = 2 3 3 1> (O 0
wwym = 2 3 3 1 00
X
noweym = 2 4 2) <1 00
Nanwswym = 2 4 2 1> 00
Wuum = 2><4 21 00
NiWWwyym = 5 1><2 1 0O
NaNwpoeym = 5 3 0><1 00
N3NoNwuwym = 5 3 1 0> (O 0
om = 5 3 1 0 0 O

FIGURE 4.1. Computation of w(332110).

Using Definition 4.2, one easily verifies that for any word v in E,, with stc(v) = k,
the word v' = wwv also belongs to E,, and satisfies

vy > > >0,

/ o _ !
Vpp1 = =1, =0,

vy 4 -+ v, = SuM(v).

The map w therefore naturally associates a subset of [n — 1] to each sub-stair word v
in E,: the set of nonzero letters of wwv.

Definition 4.3. Define the st-set of a sub-stair word v to be the set
ST(v) = {¢ > 0| { appears in wv}.

Applying this definition to the code and major index tables of a permutation 7, define
the stc-set and o-stm-set of m to be the sets

STC(m) = ST (code(r)),
o0-STM (m) = ST (o-majtable(r)).

We claim that for every subset T of [n — 1], the number of permutations in S,, with
ste-set T' equals the number of permutations in S5, with descent set T. We prove
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this equidistribution result by demonstrating that the bijection ¢, : S,, — S, from
Section 2 satisfies
D(r) = STC(¢g(m)).
Theorem 4.1. For every subset T of [n — 1], we have
#{r e S, |D(n)=T}=#{r € S,|STC(r) =T}.
Proof. Fix a permutation o in S, and let ¢, : S, — S, be the bijection defined
following Lemma 2.5. For every permutation 7 in S,,, the bijection ¢, satisfies
o-majtable(m) = code(p,()),
and therefore also satisfies
o-STM () = STC(¢p,(7)).
We claim that ¢-STM (7)) = D(m).

Let m = my---m, be the o-major index table of 7, and let 7 ... 7™ be
the sequence of restricted permutations corresponding to ¢. Fix ¢ < n and let
dy > -+ > dj_1 be the descents of 7+, Assume that

Wmigr - my) =dy--dy_y-0---0
so that we have
ST(mipy -+ -my) = D(x),
It is easy to see from Definition 4.2 that the map w satisfies
w(m;---my) =w(m; - w(migr---my)).
Thus, we have
wmi- - mp) =w(mi-do--djp_r-0---0)
m;-do---dg_1-0---0, if m; > d,
=< (doy+ 1) (dm—1+1)-dp, - -dg1-0---0, it m; <k,

(do+1)---(djo1+1)-(my —j)-dj---dy—1-0---0, otherwise,

where j is the least integer satisfying m; — j > d,.

Comparing the expressions above to those in the proof of Lemma 2.2, we see that
the nonzero letters in w(m; - - - m,,) are precisely the descent set of 7). (Equivalently,
the nonzero letters in the last n — i + 1 positions of w; - - - w,_om are the descent set
of 7). See Figure 4.2.) Thus, we have ST(m;---m,) = des(7). Proceeding by
induction, we obtain o-STM (7)) = D(r), as desired. O

Corollary 4.2. Let w be a permutation in S,, with ste(w) =k and INV(7) = p. Then
the STC(r) is a k-subset of [n — 1] whose elements sum to p.

By the discussion following Corollary 3.2, one can use the map w to define analogs
of the descent set for several other Eulerian permutation statistics.
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m=232110 m® = |5
wm = 2 3 2 @ n® = 465
nggym = 2 3 3 1 0 0
wwm = 2 3 3 1> <0 0 n® = 436/5
nyw;eym = 2 4><2 100
Nanzym = 2 4 2 <1 0 0
wuywym = 2 4 2 1> <0 0 @ = 4[326/5
N 00mm = 5><1 2100
NoNitwym = 5 3><O 100
N3NaNpwm = 5 3 1><O 00
wom = 5 3 1 o> <o 0 T = 4/13[26/5

FIGURE 4.2. Comparison of w; - - - w,_s(majtable(r)) and D(x®), for
m = 413265

5. OPEN PROBLEMS

Several important results in the area of permutation statistics involve generalization
to word statistics, joint distributions, and the f-vectors of simplicial complexes. These
results suggest interesting open problems regarding the statistic stc.

Question 5.1. Is there an Eulerian word statistic which naturally generalizes the
permutation statistic stc?

While there is an obvious generalization of the permutation statistic stc to ar-
bitrary words, this generalized statistic unfortunately is not Eulerian. (See [10],
[25, Ch. 10], [28] for more information on Eulerian word statistics.) Perhaps a
clever adjustment of the definition of the word statistic stc would rectify this sit-
uation. It may be interesting to note that the proof of Theorem 3.1 fails to gen-
eralize to the rearrangement class R(w) of an arbitrary word w because the sets
{code(u) |u € R(w)} and {majtable(u) |u € R(w)} are not in general equal. In fact,
even the sets {o-majtable(u) |u € R(w)} and {o’-majtable(u)|u € R(w)} are not in
general equal when o and ¢ are distinct.



AN EULERIAN PARTNER FOR INVERSIONS 17

More open problems concern the joint distributions on S, of the permutation
statistic stc with other permutation statistics. In particular, the joint distribution
of (des, stc) seems to be symmetric, and the joint distribution of (stc, MAJ) seems to
be equal to that of (des, INV). Further, there seems to be a single bijection that proves
these statements while simultaneously demonstrating the symmetry of the joint dis-
tribution of (MAJ,INV). The following conjecture is true for n less than or equal to
10.

Conjecture 5.1. The quadruples (des, MAJ,INV,stc) and (des, MAJ, IMAJ, ides) are
equally distributed on S,,.

We define ides and IMAJ to be the statistics which give the number of descents and
the major index of the inverse of a permutation,

ides() = des(m 1),
IMAJ(7) = MAJ(7 1),

Thus the joint distributions of (des,ides) and (MAJ,IMAJ) are obviously symmetric.
(See [17] for more results regarding these permutation statistics.)

One last problem concerning the permutation statistic stc is to use it as other
permutation statistics have been used to demonstrate relationships between f-vectors
of simplicial complexes and linear extensions of partially ordered sets. (See [2], [3],
[12], [28], [29], [31], [32], [33].) One such result uses descents to construct, for any
poset P, a balanced simplicial complex whose f-vector counts linear extensions of
P [12], [29]. Another result uses Dumont’s statistic dmc to construct, for any disjoint
sum of chains P = a; +- - -+agq, another poset whose f-vector counts linear extensions
of P [28]. Perhaps the statistic stc can be used to obtain a similar result.

Question 5.2. Let P be any finite poset. Can the statistic stc be used to construct
a second poset whose f-vector counts linear extensions of P?

An affirmative answer to this question would strengthen a special case of a result
of Stanley [29, Cor. 4.5], [31, Thm. 4.6] and would prove the conjecture stated in [28,
Conj. 6.1].
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