HOOKS AND POWERS OF PARTS IN PARTITIONS

ROLAND BACHER AND LAURENT MANIVEL

Abstract

This paper shows that the number of hooks of length k contained in all partitions of n equals k times the number of parts of length k in partitions of n. It contains also formulas for the moments (under uniform distribution) of k-th parts in partitions of n.

1. Introduction and Main Results

Many textbooks contain material on partitions. Two standard references are $[\mathbf{A}]$ and $[\mathbf{S}]$.

A partition of a natural integer n with parts $\lambda_{1}, \ldots, \lambda_{k}$ is a finite decreasing sequence $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}>0\right)$ of natural integers $\lambda_{1}, \ldots, \lambda_{k}>0$ such that $n=\sum_{i=1}^{k} \lambda_{i}$. We denote by $|\lambda|$ the content n of λ. Partitions are also written as sums: $n=\lambda_{1}+\cdots+\lambda_{k}$ and one uses also the (abusive) multiplicative notation

$$
\lambda=1^{\nu_{1}} \cdot 2^{\nu_{2}} \cdots n^{\nu_{n}}
$$

where ν_{i} denotes the number of parts equal to i in the partition λ.
A partition is graphically represented by its Young diagram obtained by drawing λ_{1} adjacent boxes of identical size on a first row, followed by λ_{2} adjacent boxes of identical size on a second row and so on with all first boxes (of different rows) aligned along a common first column. In the sequel we identify a partition with its Young diagram. A hook in a partition is a choice of a box H in the corresponding Young diagram together with all boxes at the right of the same row and all boxes below of the same column. The total number of boxes in a hook is its hooklength, the number of boxes in a hook to the right of H is its armlength and the number of boxes of a hook below H is the leglength. The Figure below displays the Young diagram of the partition (5, 4, 3, 1) of 13 together with a hook of length 4 having armlength 2 and leglength 1. We call the couple (armlength,leglength) of a hook its hooktype and denote it by $\tau=\tau(\alpha, k-1-\alpha)$ if its armlength is α and its leglength $k-1-\alpha$. Such a hook has hence total length k and there are exactly k different hooktypes for hooks of length k.

[^0]

The partition $(5,4,3,1)$ of 13 together with a hook of type $\tau(2,1)$ and length 4 .

Let k be a natural integer and let $\tau=\tau(\alpha, k-1-\alpha)$ be the hooktype of a hook of length k with armlength α and leglength $k-1-\alpha$. Given a partition λ of n, set

$$
\tau(\lambda)=\sharp\{\text { hooks of type } \tau \text { in (the Young diagram of) } \lambda\}
$$

and

$$
\tau(n)=\sum_{\lambda,|\lambda|=n} \tau(\lambda)
$$

where the sum is over all partitions of n.
Theorem 1.1. One has

$$
\begin{aligned}
\sum_{n=1}^{\infty} \tau(n) z^{n} & =\frac{z^{k}}{1-z^{k}} \prod_{i=1}^{\infty} \frac{1}{1-z^{i}} \\
& =\sum_{\lambda=1^{\nu_{1}} 2^{\nu_{2}} \ldots} \nu_{k} z^{|\lambda|}
\end{aligned}
$$

where the last sum is over all partitions of integers.
In other terms, the number of hooks of given type and length k appearing in all partitions of n equals the number of parts of length k in all partitions of n.

This result implies in particular that the total number of hooks of given type $\tau=\tau(\alpha, k-1-\alpha)$ occuring in all partitions of n depends only on the length k and not on the particular hooktype $\tau(\alpha, k-1-\alpha)$ itself. Since there are exactly k distinct hooktypes for hooks of length k, the total number of hooks of length k in partitions of n is given by the coefficient of z^{n} of the series

$$
k \frac{z^{k}}{1-z^{k}} \prod_{i=1}^{\infty} \frac{1}{1-z^{i}}
$$

C. Bessenrodt pointed out to us that this Theorem follows directly from Theorem 1.1 in [B]. Indeed, Theorem 1.1 of [B] states that the number of k-hooks of given leglength which can be added to a Young diagram always exceeds by 1 the number of k-hooks of the same leglength which can be removed from the same Young diagram. This implies the identity

$$
\sum_{n=1}^{\infty} \tau(n) z^{n}=z^{k}\left(\sum_{n=1}^{\infty} \tau(n) z^{n}+\prod_{i=1}^{\infty} \frac{1}{1-z^{i}}\right)
$$

on the generating series appearing in Theorem 1.1. The obvious initial conditions $\tau(n)=0$ for $n<k$ determine now the generating series which is easily checked to be

$$
\frac{z^{k}}{1-z^{k}} \prod_{i=1}^{\infty} \frac{1}{1-z^{i}}
$$

Our initial proof of Theorem 1.1 was based on the q-binomial theorem.

As remarked previously, partitions of a natural integer n can be written in (at least) two different ways: either by considering the finite decreasing sequence

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}\right)
$$

of its parts or by considering the vector

$$
\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n}\right)
$$

where ν_{i} counts the multiplicity of parts with length i in λ. We still denote by λ the vector

$$
\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}, 0, \ldots, 0\right) \in \mathbf{Z}^{n}
$$

of length n obtained by appending $n-k$ zero-coordinates at the end of the vector $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ defining a partition λ.

We consider moreover the vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ where γ_{i} equals the number of coordinates equal to i among ν_{1}, \ldots, ν_{n}. The vector γ of a partition encodes "multiplicities of multiplicities (of parts)" and does no longer encode the partition since for instance the γ-vectors of the two partitions $5=3+2$ and $5=4+1$ give both rise to $\gamma=(2,0,0,0,0)$.

We introduce also the vectors

$$
\begin{aligned}
& \lambda(n)=\left(\lambda_{1}(n), \lambda_{2}(n), \ldots, \lambda_{n}(n)\right)=\sum_{|\lambda|=n} \lambda, \\
& \nu(n)=\left(\nu_{1}(n), \nu_{2}(n), \ldots, \nu_{n}(n)\right)=\sum_{|\lambda|=n} \nu, \\
& \gamma(n)=\left(\gamma_{1}(n), \gamma_{2}(n), \ldots, \gamma_{n}(n)\right)=\sum_{|\lambda|=n} \gamma
\end{aligned}
$$

of \mathbf{Z}^{n} obtained by summing up the vectors λ, ν or γ over all partitions of n. The coordinates of the vector $\lambda(n)$ are of course related to the mean length (under uniform distribution) of the k-th part in partitions of n. Similarly, coordinates of $\nu(n)$ relate to the mean multiplicity of parts equal to k and coordinates of $\gamma(n)$ measure the mean number of distinct part-lengths appearing with common multiplicity k.

The following Table displays all five partitions of 4 together with the corresponding λ-, ν - and γ-vectors.

Partition	$(1,1,1,1)$	$(2,1,1)$	$(2,2)$	$(3,1)$	(4)
λ-vector	$(1,1,1,1)$	$(2,1,1,0)$	$(2,2,0,0)$	$(3,1,0,0)$	$(4,0,0,0)$
ν-vector	$(4,0,0,0)$	$(2,1,0,0)$	$(0,2,0,0)$	$(1,0,1,0)$	$(0,0,0,1)$
γ-vector	$(0,0,0,1)$	$(1,1,0,0)$	$(0,1,0,0)$	$(2,0,0,0)$	$(1,0,0,0)$

Summing up all λ-, ν - and γ-vectors associated to the five partitions of 4 we get hence

$$
\begin{aligned}
& \lambda(4)=(12,5,2,1), \\
& \nu(4)=(7,3,1,1), \\
& \gamma(4)=(4,2,0,1) .
\end{aligned}
$$

One has the following result.
Theorem 1.2. For all $n \geq 1$ we have $\lambda_{n}(n)=\nu_{n}(n)=\gamma_{n}(n)=1$ and

$$
\begin{aligned}
& \lambda_{k}(n)=\nu_{k}(n)+\lambda_{k+1}(n) \\
& \nu_{k}(n)=\gamma_{k}(n)+\nu_{k+1}(n)
\end{aligned}
$$

for $k=1, \ldots, n-1$.
These equalities can be restated as

$$
\lambda_{k}(n)=\sum_{i=k}^{n} \nu_{i}(n) \text { and } \nu_{k}(n)=\sum_{i=k}^{n} \gamma_{i}(n) .
$$

This last equality states for instance that the sum over all partitions of n of the number of distinct parts arising with multiplicity at least k equals the number of parts equal to k in all partitions of n. Our proof of this fact uses generating series. C. Bessenrodt ([B1]) communicated to us a beautiful bijective proof which we reproduce with her permission.

The coordinates of the vectors $\nu(n)$ are of course given by the generating series mentioned in Theorem 1.1, i.e., the k-th coordinate $\nu_{k}(n)$ of $\nu(n)$ equals the coefficient of z^{n} in the generating series

$$
\frac{z^{k}}{1-z^{k}} \prod_{i=1} \frac{1}{1-z^{i}}
$$

The coordinates of the vectors $\lambda(n)$ and $\nu(n)$ are then easily computed using Theorem 1.2. More precisely, one has the following result:

Corollary 1.3. (i) The k-th coordinate of the vector $\lambda(n)$ is the coefficient of z^{n} in the generating series

$$
\prod_{i=1}^{\infty} \frac{1}{1-z^{i}} \sum_{j=k}^{\infty} \frac{z^{j}}{1-z^{j}}
$$

(ii) The k-th coordinate of the vector $\gamma(n)$ is the coefficient of z^{n} in the generating series

$$
\frac{(1-z) z^{k}}{\left(1-z^{k}\right)\left(1-z^{k+1}\right)} \prod_{i=1}^{\infty} \frac{1}{1-z^{i}}
$$

Given a partition

$$
\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(1^{\nu_{1}} \cdots n^{\nu_{n}}\right)
$$

and an integer $d \geq 0$ we introduce the vectors $\binom{\lambda}{d}$ and $\binom{\nu}{d} \in \mathbf{Z}^{n}$ by setting

$$
\binom{\lambda}{d}=\left(\binom{\lambda_{1}}{d}, \ldots,\binom{\lambda_{n}}{d}\right) \text { and }\binom{\nu}{d}=\left(\binom{\nu_{1}}{d}, \ldots,\binom{\nu_{n}}{d}\right)
$$

and define

$$
\binom{\lambda(n)}{d}=\sum_{|\lambda|=n}\binom{\lambda}{d}, \left.\quad\binom{\nu(n)}{d}=\sum_{\mid 1^{\nu_{1}}}^{2^{\nu_{2}} \ldots \mid=n} \right\rvert\,\binom{\nu}{d}
$$

with coordinates

$$
\binom{\lambda_{k}(n)}{d}=\sum_{|\lambda|=n}\binom{\lambda_{k}}{d}, \quad\binom{\nu_{k}(n)}{d}=\sum_{\mid 1^{\nu_{1}}}^{2^{\nu_{2} \ldots \mid=n}} \quad\binom{\nu_{k}}{d} .
$$

The following example shows the vectors $\binom{\lambda}{1}=\lambda,\binom{\lambda}{2},\binom{\lambda}{3}$ and $\binom{\nu}{1}=$ $\nu,\binom{\nu}{2},\binom{\nu}{3}$ associated to all five partitions of 4 .

Example:

Partition	$(1,1,1,1)$	$(2,1,1)$	$(2,2)$	$(3,1)$	(4)
$\binom{\lambda}{1}$	$=(1,1,1,1)$	$(2,1,1,0)$	$(2,2,0,0)$	$(3,1,0,0)$	$(4,0,0,0)$
$\left.\begin{array}{l}\lambda \\ 2\end{array}\right)$	$=(0,0,0,0)$	$(1,0,0,0)$	$(1,1,0,0)$	$(3,0,0,0)$	$(6,0,0,0)$
$\left.\begin{array}{l}\lambda \\ 3\end{array}\right)$	$=(0,0,0,0)$	$(0,0,0,0)$	$(0,0,0,0)$	$(1,0,0,0)$	$(4,0,0,0)$

Partition	$(1,1,1,1)$	$(2,1,1)$	$(2,2)$	$(3,1)$	(4)
$\binom{\nu}{1}$	$=(4,0,0,0)$	$(2,1,0,0)$	$(0,2,0,0)$	$(1,0,1,0)$	$(0,0,0,1)$
$\left(\begin{array}{l}\nu \\ 2\end{array}\right.$	$=\binom{\nu}{3}$	$(6,0,0,0)$	$(1,0,0,0)$	$(0,1,0,0)$	$(0,0,0,0)$

We have thus

The following probably well-known result allows easy computations of the vectors $\binom{\lambda(n)}{d}$ and $\binom{\nu(n)}{d}$.

Proposition 1.4. For any natural integer $d \geq 0$, the k-th coefficients $\binom{\lambda_{k}(n)}{d}$, respectively $\binom{\nu_{k}(n)}{d}$ (extended by $\binom{0}{d}$ for $k>n$) have generating series

$$
\sum_{n}^{\infty}\binom{\lambda_{k}(n)}{d} z^{n}=\left(\prod_{j=1}^{k-1} \frac{1}{1-z^{j}}\right)\left(\sum_{i=0}^{\infty}\binom{i}{d} z^{i k}\left(\prod_{j=1}^{i} \frac{1}{1-z^{j}}\right)\right)
$$

and

$$
\sum_{n}^{\infty}\binom{\nu_{k}(n)}{d} z^{n}=\left(\frac{z^{k}}{1-z^{k}}\right)^{d}\left(\prod_{j=1}^{\infty} \frac{1}{1-z^{j}}\right)
$$

Remark 1.5. One has

$$
\sum_{|\lambda|=n} \lambda_{k}^{d}=\sum_{i} i!\operatorname{Stirling}_{2}(d, i)\binom{\lambda_{k}(n)}{i}
$$

and

$$
\sum_{\mid 1^{\nu_{1}}}^{2^{\nu_{2} \ldots \mid=n}} \nu_{k}^{d}=\sum_{i} i!\operatorname{Stirling}_{2}(d, i)\binom{\nu_{k}(n)}{i}
$$

where $\operatorname{Stirling}_{2}(d, i)$ denote Stirling numbers of the second kind, defined by $x^{d}=\sum_{i} \operatorname{Stirling}_{2}(d, i) x(x-1) \cdots(x-i+1)$.

Asymptotics are not so easy to work out from the formula for $\binom{\lambda(n)}{d}$. Our last result is an equivalent expression for the above series on which asymptotics are easier to see.

We introduce the generating series $\sigma_{r}(k)$ defined as

$$
\sigma_{r}(k)=\sum_{i=k}^{\infty}\left(\frac{z^{i}}{1-z^{i}}\right)^{r}
$$

for $r \geq 1$ and $k \geq 1$ natural integers. We consider the series $\sigma_{r}(k)$ as beeing graded of degree r and define the homogeneous series $S_{d}(k)$ of degree d by

$$
\begin{aligned}
S_{d}(k) & =\sum_{\left|\left(1^{\nu_{1}} 2^{\nu_{2} \ldots}\right)\right|=d} \frac{d!}{\left(\sum_{i} \nu_{i}\right)!}\binom{\left(\sum_{i} \nu_{i}\right)}{\nu_{1} \nu_{2} \ldots} \prod_{i=1}^{d}\left(\frac{\sigma_{i}(k)}{i}\right)^{\nu_{i}} \\
& =d!\sum_{\mid 1^{\nu_{1}} 2^{\nu_{2} \ldots t^{\nu_{t}} \mid=d}} \prod_{j=1}^{d} \frac{\left(\sigma_{j}(k)\right)^{\nu_{j}}}{j^{\nu_{j}} \nu_{j}!}
\end{aligned}
$$

(i.e., the coefficient of the homogeneous "monomial" series $\sigma_{\lambda}(k)=$ $\sigma_{\lambda_{1}}(k) \ldots \sigma_{\lambda_{s}}(k)$ equals the number of elements in the symmetric group on $|\lambda|$ elements of the conjugacy class with s cycles of length $\lambda_{1}, \lambda_{2}, \ldots$, λ_{s}).

We have then the following result.
Theorem 1.6. For any natural integers $d \geq 1$ and $k \geq 1$, we have

$$
\sum_{n}^{\infty}\binom{\lambda_{k}(n)}{d} z^{n}=\frac{S_{d}(k)}{d!}\left(\prod_{j=1}^{\infty} \frac{1}{1-z^{j}}\right)
$$

The first series $S_{i}=S_{i}(k)$ are given in terms of $\sigma_{j}=\sigma_{j}(k)$ as follows

$$
\begin{aligned}
& S_{0}=1, \\
& S_{1}=\sigma_{1}, \\
& S_{2}=\sigma_{1}^{2}+\sigma_{2}, \\
& S_{3}=\sigma_{1}^{3}+3 \sigma_{1} \sigma_{2}+2 \sigma_{3} \\
& S_{4}=\sigma_{1}^{4}+6 \sigma_{1}^{2} \sigma_{2}+3 \sigma_{2}^{2}+8 \sigma_{1} \sigma_{3}+6 \sigma_{4} \\
& S_{5}=\sigma_{1}^{5}+10 \sigma_{1}^{3} \sigma_{2}+20 \sigma_{1}^{2} \sigma_{3}+15 \sigma_{1} \sigma_{2}^{2}+30 \sigma_{1} \sigma_{4}+20 \sigma_{2} \sigma_{3}+24 \sigma_{5}
\end{aligned}
$$

Let us remark that the analogous statement of Theorem 1.6 for the generating series $\sum_{n}\binom{\nu_{k}}{d} z^{n}$ boils down to a trivial identity.

The formulas of Theorem 1.6 ease the computations of asymptotics (in n) for $\lambda_{k}(n)$ and its moments and allow a rederivation of the results contained in [EL] and [VK]: Indeed, the asymptotics of the coefficients in $\sum_{n}^{\infty}\binom{\lambda_{k}(n)}{d} z^{n}$ are essentially given by the asymptotics of

$$
\frac{\sigma_{1}^{d}(k)}{d!}\left(\prod_{j=1}^{\infty} \frac{1}{1-z^{j}}\right)
$$

which can be worked out.

2. Proofs

Proof of Theorem 1.2. The partition 1^{n} yields the unique nonzero contribution to $\lambda_{n}(n)$ and $\gamma_{n}(n)$ and this contribution equals 1 in both cases. The partition n consisting of a unique part of length n yields the unique non-zero contribution to $\nu_{n}(n)$ and this contribution equals again 1 .

Given a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of n, the conjugate partition $\lambda^{t}=$ $\left(\lambda_{1}^{t}, \ldots, \lambda_{k^{\prime}}^{t}\right)$ of λ is defined by

$$
\lambda_{j}^{t}=\sharp\left\{i \mid \lambda_{i} \geq j\right\}
$$

(this corresponds to a reflection of the Young diagramm of λ through the main diagonal $y=-x$). The difference $\lambda_{k}-\lambda_{k+1}$ (where nonexisting parts are considered as parts of length 0) equals hence the number ν_{k}^{t} of parts having length k in the transposed partition $\lambda^{t}=$ $\left(1^{\nu_{1}^{t}} 2^{\nu_{2}^{t}} \cdots\right)$ of λ. Summing over all partitions of n yields then the recursion relation $\lambda_{k}(n)=\nu_{k}(n)+\lambda_{k+1}(n)$.

The proof of the equality $\nu_{k}(n)=\gamma_{k}(n)+\nu_{k+1}(n)$ uses generating series. Introducing the numbers

$$
\begin{aligned}
& m_{k}(\lambda)=\sharp\left\{i \mid \nu_{i} \geq k\right\}, \\
& m_{k}(n)=\sum_{|\lambda|=n} m_{k}(\lambda)
\end{aligned}
$$

one has obviously $\gamma_{k}(n)=m_{k}(n)-m_{k+1}(n)$. We have hence to show the equality $m_{k}(n)=\nu_{k}(n)$ for $1 \leq k<n$ (the equalities $m_{n}(n)=$ $\nu_{n}(n)=1$ are easy).

We introduce the generating function

$$
\psi_{k}(y, z)=\sum_{\lambda} y^{m_{k}(\lambda)} z^{|\lambda|} .
$$

One has

$$
\begin{aligned}
& \psi_{k}(y, z)=\sum_{I \subset\{1,2,3, \ldots\}, \notin(I)<\infty}\left(\prod_{i \in I} \frac{y z^{k i}}{1-z^{i}}\right)\left(\prod_{1 \leq j \notin I} \frac{1-z^{k j}}{1-z^{j}}\right) \\
& =\prod_{j=1}^{\infty}\left(\frac{y z^{k j}}{1-z^{j}}+\frac{1-z^{k j}}{1-z^{j}}\right)=\prod_{j=1}^{\infty}\left(\frac{1}{1-z^{j}}-(1-y) \frac{z^{k j}}{1-z^{j}}\right) .
\end{aligned}
$$

A small computation yields

$$
\frac{\partial \psi_{k}(y, z)}{\partial y}=\psi_{k}(y, z) \sum_{j=1}^{\infty} \frac{z^{k j}}{1-(1-y) z^{k j}}
$$

and we have hence

$$
\sum_{n=0}^{\infty} m_{k}(n) z^{n}=\frac{\partial \psi_{k}}{\partial y}(1, z)=\left(\prod_{j=1}^{\infty} \frac{1}{1-z^{j}}\right) \frac{z^{k}}{1-z^{k}}=\sum_{n=0}^{\infty} \nu_{k}(n) z^{n}
$$

(cf. Theorem 1.1 for the last equality) which finishes the proof. QED
C. Bessenrodt's bijective Proof of Theorem 1.2. We establish first the equality

$$
\nu_{k}(n)=\sum_{i=k}^{n} \gamma_{i}(n)
$$

which corresponds to the second statement of Theorem 1.2.
Define the sets

$$
P_{k}(n)=\left\{(i, \lambda)| | \lambda \mid=n, 1 \leq i \leq \nu_{k}(\lambda)\right\}
$$

and

$$
Q_{k}(n)=\left\{(j, \lambda)| | \lambda \mid=n, \nu_{j}(\lambda) \geq k\right\}
$$

(recall that $\nu_{i}(\lambda)$ counts the number of parts with length i in the partition λ). The cardinality $\sharp\left(P_{k}(n)\right)$ equals obviously $\nu_{k}(n)$ and one has similarly $\sharp\left(Q_{k}(n)\right)=\sum_{i=k}^{n} \gamma_{i}(n)$ (recall that $\gamma_{i}(\lambda)$ counts the number of distinct partlengths whose parts appear with multiplicity i in λ). An element $(i, \lambda) \in P_{k}(n)$ stems from a partition λ having at least i parts equal to k. Erasing i such parts and adding k parts of length i yields a partition μ of n such that μ contains at least k parts of length i. This shows that $(i, \mu) \in Q_{k}(n)$ and the application $(i, \lambda) \longmapsto(i, \mu)$ is clearly a bijection.

The first statement of Theorem 1.2 can be proven similarly by considering the sets

$$
R_{k}=\left\{(i, \lambda)| | \lambda \mid=n, 1 \leq i \leq \lambda_{k}(\lambda)\right\}
$$

and

$$
S_{k}(n)=\left\{(j, \lambda)| | \lambda \mid=n, j \leq \sum_{i=k}^{n} \nu_{i}(\lambda)\right\}
$$

and the bijection $R_{k}(n) \longrightarrow S_{k}(n)$ defined by $(i, \lambda) \longmapsto\left(i, \lambda^{t}\right)$ (this is more or less the proof given above).

QED

Corollary 1.3 results immediately from Theorem 1.2 and from the last equality in Theorem 1.1.

Proof of Proposition 1.4. A partition

$$
\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}=i \geq \lambda_{k+1} \geq \ldots\right)
$$

with $\lambda_{k}=i$ of $n=\sum_{j=1} \lambda_{j}$ can be written as
$\lambda=\left(i+\left(\lambda_{1}-i\right) \geq i+\left(\lambda_{2}-i\right) \geq \cdots \geq i+\left(\lambda_{k-1}-i\right) \geq i \geq \lambda_{k+1} \geq \ldots\right)$.
Such partitions are hence in bijection with pairs of partitions

$$
\begin{aligned}
& \alpha=\left(\alpha_{1}=\left(\lambda_{1}-i\right) \geq \alpha_{2}=\left(\lambda_{2}-i\right) \geq \cdots \geq \alpha_{k-1}=\left(\lambda_{k-1}-i\right) \geq 0\right) \\
& \omega=\left(\omega_{1}=\lambda_{k+1} \geq \omega_{2}=\lambda_{k+2} \geq \ldots\right)
\end{aligned}
$$

with α having at most $k-1$ non-zero parts and ω having all parts $\leq i$. The conjugate partition α^{t} of α has hence only parts $\leq k-1$. Such a pair α^{t}, ω of partitions yields hence a unique partition with $\lambda_{k}=i$ of the integer $n=k i+\sum_{j=1}^{k-1} \alpha_{j}^{t}+\sum_{j=k+1} \omega_{j}$ and contributes hence with $\binom{i}{d}$ to the k-th coordinate $\binom{\lambda_{k}(n)}{d}$ of $\binom{\lambda(n)}{d}$. Summing up over $i \in \mathbf{N}$ yields easily the generating series for $\binom{\lambda_{k}(n)}{d}$.

Considering the generating series for $\binom{\nu_{k}(n)}{d}$ one has

$$
\sum_{n}\binom{\nu_{k}(n)}{d} z^{n}=\left(\sum_{j}\binom{j}{d} z^{j k}\right) \prod_{i \neq k} \frac{1}{1-z^{i}}
$$

and the (easy) equality

$$
\sum_{j}\binom{j}{d} Z^{j}=\frac{1}{Z}\left(\frac{Z}{1-Z}\right)^{d+1}
$$

implies the result.
QED
Proof of Theorem 1.6. Given a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ the definition

$$
\lambda_{k}^{t}=\sharp\left\{i \mid \lambda_{i} \geq k\right\}
$$

for the k-th part of its transposed partition $\lambda^{t}=\left(\lambda_{1}^{t}, \lambda_{2}^{t}, \ldots\right)$ shows the equalities

$$
\sum_{\lambda} y^{\lambda_{k}} z^{|\lambda|}=\sum_{\lambda} y^{\left(\lambda^{t}\right)_{k}} z^{|\lambda|}=\left(\prod_{i=1}^{k-1} \frac{1}{1-z^{i}}\right)\left(\prod_{j=k}^{\infty} \frac{1}{1-y z^{j}}\right)
$$

Denote this series by $\varphi_{k}(y, z)$. An easy computation yields

$$
\varphi_{k}(y, z)=\left(\prod_{i=1}^{\infty} \frac{1}{1-z^{i}}\right) \prod_{j \geq k}\left(1-(y-1) \frac{z^{j}}{1-z^{j}}\right)^{-1}
$$

Applying the identity

$$
\prod_{i}\left(1-x_{i}\right)^{-1}=\exp \left(\sum_{l=1}^{\infty} \frac{\sum_{i} x_{i}^{l}}{l}\right)
$$

of formal power series to the last factor we get

$$
\begin{aligned}
& \prod_{j \geq k}\left(1-(y-1) \frac{z^{j}}{1-z^{j}}\right)^{-1}=\exp \left(\sum_{l=1}^{\infty} \frac{(y-1)^{l}}{l} \sigma_{l}(k)\right) \\
& \quad=\sum_{n=0}^{\infty} \frac{(y-1)^{n}}{n!} \sum_{\left|\left(1^{\nu_{1}} 2^{\nu_{2}} \ldots\right)\right|=n} \frac{n!}{\left(\sum_{i} \nu_{i}\right)!}\binom{\sum_{i} \nu_{i}}{\nu_{1} \nu_{2} \ldots} \prod_{i}\left(\frac{\sigma_{i}(k)}{i}\right)^{\nu_{i}} \\
& \quad=\sum_{n=0}^{\infty} \frac{(y-1)^{n}}{n!} S_{n}(k) .
\end{aligned}
$$

We have thus

$$
d!\sum_{\lambda}\binom{\lambda_{k}}{d} z^{|\lambda|}=\frac{\partial^{d} \varphi_{k}}{\partial y^{d}}(1, z)=\left(\prod_{i=1}^{\infty} \frac{1}{1-z^{i}}\right) S_{d}(k)
$$

which finishes the proof by comparison with Proposition 1.4. QED
We thank S. Attal, M-L. Chabanol and C. Krattenthaler for comments and for their interest in this work. We also thank C. Bessenrodt for comments on a preliminary version.

References

[A] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Addison-Wesley (1976).
[B] C. Bessenrodt, On hooks of Young diagrams, Ann. of Comb. 2, 103110 (1998).
[B1] C. Bessenrodt, Electronic letter to the authors, 18 sept. 2001.
[EL] P. Erdös, J. Lehner, The distribution of the number of summands in the partition of a positive integer, Duke Math. Journal 8, 335-345 (1941).
[GR] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge University Press (Encycl. of Math. and its Appl.), 1990.
[S] Stanley, Enumerative Combinatorics 2, Cambridge University Press (1999).
[ST] M. Szalay, P. Turán, On some problems of the statistical theory of partitions with application to characters of the symmetric group I, Acta Math. Sci. Hung. 29, 361-379 (1977).
[VK] A. Vershik, S. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux, Soviet Math. Dokl. 18, 1977, 527-531.

Roland Bacher
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR 5582 (UJF-CNRS)
BP 74
38402 St MARTIN D'HÈRES Cedex (France)
e-mail: Roland.Bacher@ujf-grenoble.fr

Laurent Manivel
INSTITUT FOURIER
Laboratoire de Mathématiques
UMR 5582 (UJF-CNRS)
BP 74
38402 St MARTIN D'HÈRES Cedex (France)
e-mail: Laurent.Manivel@ujf-grenoble.fr

[^0]: 2000 Mathematics Subject Classification. 05A17.
 Key words and phrases. Partition.

