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Abstract

It is shown that every cyclic split system S defined on an n-set with
#S > 2kn−

(2k+1
2

)
for some k ≤ n−1

2 always contains a subset of k+1
pairwise incompatible splits provided one has min(k, n−(2k+1)) ≤ 3.
In addition, some related old and new conjectures are also discussed.

1 Introduction

In this note, we show that every split system S defined on an n-set X contains
a subset of k + 1 pairwise incompatible splits provided one has n ≥ 2k + 1,
#S > 2kn−

(
2k+1

2

)
, and min(k, n− (2k + 1)) ≤ 3.

Recall that a split S = {A,B} of a set X is a bipartition of X into two sets
A,B; in particular, we have B = A := X−A. We denote by S(X) the set of
all splits of X; any subset S of S(X) is called a split system (defined on X).
Two splits S, S ′ of a set X are called compatible if there exist subsets A ∈ S
and A′ ∈ S ′ with A ∩ A′ = ∅, otherwise S and S ′ are called incompatible1.
We call a split system S ⊆ S(X) k-compatible if it does not contain a subset
of k + 1 pairwise incompatible splits.

At the end of the seventies, due to newly discovered results on multicom-
modity flow problems such as those appearing in [6, 7], it became of increasing
interest to determine upper bounds for the cardinality of a k-compatible split
system S ⊆ S(X), defined on an n-set X. It is well known that every maxi-
mal 1-compatible split system contains exactly 2n− 3 distinct splits, and it
was observed by M. Lomonosov that

#S ≤ n+
kn

2
+
kn

3
+ · · ·+ kn

bn/2c
< n(1 + k log2(n))

always holds for a k-compatible split system defined on an n-set (see Section
2). In [6], A. Karzanov conjectured that there is some universal constant c
so that #S ≤ cn holds for all 2-compatible split systems defined on an n-set
X, a conjecture that was established in [9] by P. Pevzner, who showed2 that

karzk(n) := max(#S | S ⊆ S([n]), S k-compatible )

1Note that incompatible splits have also been called qualitatively independent partitions
in [10, p.16] and crossing sets in [5, 6, 7, 8, 9]

2In [5], a possible flaw in Pevzner’s proof – probably due to poor translation – is pointed
out.
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is bounded by 6n in case k := 2. Recently, T. Fleiner improved on this bound
[5], showing that karz2(n) ≤ 5n must hold.

Here, we will restrict our attention to cyclic split systems, that is, split
systems S ⊆ S(X) for which there exists a bijection

φ : [n] := {1, . . . , n} → X (n := #X)

such that S is contained in the split system S(φ) consisting of all splits S of
the form

{{φ(i), φ(i+ 1), . . . , φ(j − 1)}, {φ(i), φ(i+ 1), . . . , φ(j − 1)}},

with 1 ≤ i < j ≤ n (cf. [1, 8], for example). For k, n ∈ N, let cyclk(n) denote
the maximal cardinality of a k-compatible cyclic split system S, defined on
[n]. As every cyclic split system defined on [n] is bn/2c-compatible, we clearly

have cyclk(n) =
(
n
2

)
whenever 2k + 1 ≥ n holds. We will show later on that,

in the remaining cases 2k+1 ≤ n, there are k-compatible cyclic split systems
S of cardinality 2kn−

(
2k+1

2

)
that are maximal among all such split systems,

and we conjecture

Conjecture 1 cyclk(n) = 2kn−
(

2k+1
2

)
for all k, n ∈ N with n ≥ 2k + 1.

It is easy to see that there exists a non-cyclic 3-compatible split system
S0 defined on {1, 2, . . . , 7} = [7] with #S0 = cycl3(7) + 3 = 24: Just take
the union of the cyclic split system S(Id[7]) with the three splits S{1,3}, S{4,6},
and S{5,7}. This example can be generalized; see [4] for more details.

However, it is not unlikely that the upper bound conjectured for cyclic
k-compatible split systems also holds for k-compatible split systems that,
though not necessarily cyclic, are at least weakly compatible, i.e. for k-
compatible split systems S with A1 ∩ A2 ∩ A3 = ∅, or A1 ∩ A2 ∩ A3 = ∅,
or A1 ∩ A2 ∩ A3 = ∅, or A1 ∩ A2 ∩ A3 = ∅ for any three subsets A1, A2, A3

with {Ai, Ai} ∈ S, 1 ≤ i ≤ 3 (cf. [1]). Clearly, every cyclic split system is
weakly compatible, and so we have necessarily weakk(n) ≥ cyclk(n) where
- of course - weakk(n) now denotes the maximal cardinality of a weakly
and k-compatible split system, defined on an n-set. Moreover, as any 2-
compatible split system is weakly compatible, we have karz2(n) = weak2(n);

so, if weakk(n) = cyclk(n) = 2kn −
(

2k+1
2

)
would hold for k = 2 and all n,

this would imply karz2(n) = 4n− 10 for n ≥ 5 (while karz2(n) =
(
n
2

)
clearly
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holds for n ≤ 5), thus implying sharp upper bounds for all n in case k = 2
for Karzanov’s conjecture.

In addition, the result that every weakly compatible split system defined
on [n] that is of maximal cardinality among all such split systems actually is a
cyclic split system (cf. [1, Theorem 5]) suggests that this might also hold for
weakly and k-compatible split systems, too. In other words, we conjecture

Conjecture 2 Every weakly and k-compatible split system S with

#S ≥ 2kn−
(

2k + 1

2

)

is cyclic (and, hence, of cardinality 2kn−
(

2k+1
2

)
if n ≥ 2k+1 and Conjecture

1 holds).

In this note, we will establish the following two results:

Theorem 1 Assume k, n ∈ N and n ≥ 2k + 1.
(i) There exist cyclic k-compatible split systems S defined on an n-set that are
maximal among all weakly and k-compatible split systems and have cardinality

#S = 2kn−
(

2k + 1

2

)
.

(ii) If S is a maximal cyclic and k-compatible split system contained in
S(Id[n]) such that {{i, i + 1, . . . , i + k}, {i, i+ 1, . . . , i+ k}} ∈ S holds for
i = 1, 2, . . . , k − 1, then the split system S′ induced on Y := [n] − {k} by
eliminating the split {{k}, X − {k}} and restricting all other splits in S to
Y , is a maximal cyclic and k-compatible split system defined on Y , and one
has #S = #S′ + 2k.

Theorem 2 Assume k, n ∈ N and n ≥ 2k + 1. Then one has cyclk(n) =

2kn−
(

2k+1
2

)
provided min(k, n− (2k + 1)) ≤ 3 holds.

The rest of this paper is organized as follows: In Section 2, we present the
well-known proof for Lomonosov’s bound. In Section 3, we establish Theorem
1. In Sections 4 and 5, we prove that Conjecture 1 holds for 2-compatible and
3-compatible cyclic split systems, respectively (see Theorems 3 and 4), and
in the final section we show that Conjecture 1 also holds for k-compatible
cyclic split systems on an n-set with n − (2k + 1) ≤ 3 (see Theorem 5).
Theorem 2 follows immediately from these facts.
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Remark 1 Since submission of this paper, Conjecture 1 has been established
in [3] while it has been established in [2] Conjecture 2 holds in case k = 2.

Acknowledgment: The authors would like to thank an anonymous referee
for his (unusually constructive, helpful and thorough) criticism.

2 Lomonosov’s bound

In this section, we present – for the reader’s convenience – the well-known
simple proof for Lomonosov’s bound.

We begin by recalling some further terminology from split theory. Given
a finite set X and a split system S ⊆ S(X), define the size of a split S =
{A,B} ∈ S to be the smaller of the two numbers #A and #B, that is,

size({A,B}) := min(#A,#B).

A split of size m will also be called an m-split. If S = {A,B} is an m-
split and m = #A < #B holds, A will also be called the m-part of S.
For every proper subset A of X, we denote by SA the split SA := {A,A},
induced by A. Whenever a subset A of X consists of one element x ∈ X
only, we may also write ’x’ instead of ’{x}’ as long as no confusion can arise.
In particular, we will write x instead of {x} and Sx = {x, x} instead of
S{x} = {{x}, {x}}, for every x ∈ X. For every element x ∈ X and split
S ∈ S(X), we denote by S(x) that subset, A or B, in S that contains x, and
by S(x), we denote its complement S(x) := S(x) = X −S(x). A split S ∈ S
seperates distinct elements x, y ∈ X if S(x) 6= S(y). Finally, we denote the
set {A ⊆ X | SA ∈ S} = {S(x) | S ∈ S, x ∈ X} by ∪S.

We now give a proof for Lomonosov’s bound in the language of split
theory.

Lemma 1 For any two positive integers k, n, we have

karzk(n) ≤ n+

bn
2
c∑

i=2

bkn
i
c.

Furthermore, if n is even, say n = 2m, then

karzk(n) ≤ n+ k +
m−1∑
i=2

bkn
i
c.
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Proof: Let S be a k-compatible split system on X with #X = n, and assume
2 ≤ t ≤ n/2, t ∈ N. Define

(∪S)t := {A ∈ ∪S | #A = t}.

For A,B ∈ (∪S)t, the splits SA and SB are compatible if and only if A = B
or A∩B = ∅. This means that, for all x ∈ X, there are at most k distinct sets
A ∈ (∪S)t with x ∈ A. By counting the pairs (A, x) with x ∈ A,A ∈ (∪S)t
we find

#(∪S)t ≤
kn

t
.

The lemma follows now easily by noting that the number of 1-splits is
bounded by n and that, if n = 2m, then the number of m-splits in S is
half the size of (∪S)m.

3 Cyclic split systems

From now on, we assume X = [n] and, when we talk about a cyclic split
system S, we tacitly assume S ⊆ S(n) := S(Id[n]) (i.e. the cyclic split sys-
tem obtained by putting φ = Id[n] in the definition for S(φ) given in the
introduction). For every m ∈ Z, we denote by m̂ the unique element in [n]
that is congruent to m modulo n. We also introduce the notation [p, q] :=

{p̂, ̂p+ 1, . . . , ̂q − 1}, and S
(j)
i := S[i,i+j−1] = {[i, i+ j − 1], [n]− [i, i+ j − 1]}

for i, j ∈ [n]. Rotating a split system S ⊆ S(X) by “ i ”, 1 ≤ i ≤ n, we obtain

a new split system ~S
i

defined by ~S
i

:= {A− i, B − i : {A,B} ∈ S}, where

C − i := { ̂c− i : c ∈ C}

for any C ⊆ [n]. Note that if S is cyclic, k-compatible, or incompatible, then

so is ~S
i
.

In what follows we will present rather abstract arguments when dealing
with cyclic split systems. However, the reader is advised to visualize these
arguments by drawing similar diagrams to that presented in Figure 1, a figure
that can be used in visualizing the proof of the following result on cyclic split
systems.

Lemma 2 Suppose that S ⊆ S(X) is cyclic, and that n ≥ 2k + 1. If S ∈ S
has size less than k+1, then S cannot be contained in any incompatible subset
S′ of S of cardinality k + 1.
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Figure 1: Visualizing cyclic split systems: In this figure, cyclic splits of the
set {1, 2, . . . , 10} are represented by diagonals connecting mid points of the
edges {i, i+1}, i = 1, . . . , 10 mod 10. Two splits are incompatible if and only
if the corresponding diagonals have a point of intersection in the interior of
the circle. Clearly, there is no system consisting of four pairwise incompatible
cyclic splits of {1, 2, . . . , 10} containing the split S = S

(3)
1 (just as claimed in

Lemma 2 below in the case k := 3).

Proof: Without loss of generality, suppose that S := S
(j)
1 , 1 ≤ j ≤ k. If S

were contained in a set S′ of k+ 1 pairwise incompatible splits, then k splits
from S′ would have to be incompatible with S. So, each of these splits would
have to separate some pair {i, i+1} for some i with 1 ≤ i ≤ j−1 < k and so,
by the pigeonhole principle, at least one pair of splits from S′ − {S} would
have to be compatible, a contradiction.

For each n ≥ 2k + 1, k ≥ 1, define Sn,k ⊆ S(n) to be the cyclic split
system on [n] consisting of all splits in S(n) of size less than k + 1, so that
#Sn,k = kn. We define a split system S to be a k-reduced split system if
all splits in S have size at least k + 1. So, a cyclic split system S ⊆ S(n) is
k-reduced if and only if S ∩ Sn,k = ∅ holds.

Corollary 1 The split system Sn,k is k-compatible.

Corollary 2 A cyclic split system S ⊆ S(n) is k-compatible if and only if the
union S ∪ Sn,k is k-compatible.
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Remark 2 In view of this last corollary, our conjecture that cyclk(n) =

2kn−
(

2k+1
2

)
can be reformulated as #S = kn−

(
2k+1

2

)
for all k-reduced and

k-compatible split systems S ⊆ S(n) (n ≥ 2k + 1).

We now give a recursive construction of maximal k-compatible cyclic split
systems S ⊆ S(n) of cardinality 2kn−

(
2k+1

2

)
, for all n ≥ 2k + 1, k ≥ 1:

Construction A Fix k ≥ 1. If n = 2k + 1, then S(n) = Sn,k and #Sn,k =

k(2k + 1) = 2k(k + 1) −
(

2k+1
k

)
, so that Sn,k provides us with the required

split system.
Now suppose we have a k-compatible split system S ⊆ S(n) with Sn,k ⊆ S

of any cardinality #S, and that n ≥ 2k + 1 holds. We will construct a k-
compatible cyclic system on [n+ 1] of cardinality #S + 2k. Note that since
Sn,k ⊆ S, there is a split of size at least k separating 1 from n. Let S0 be
any such split and put A0 := S0(1) and B0 := S0(n) . We now extend the
split system S to a new split system on [n+ 1] as follows:
(a) Put S1 := {A0 ∪ {n+ 1}, B0} and S2 := {A0, B0 ∪ {n+ 1}}.
(b) If S ∈ S does not separate 1 and n, then define S∗ := {S(1) ∪ {n +
1}, S(1)}.
(c) If S ∈ S − {S0} does separate 1 and n, we have either A0 ⊂ S(1) or
S(1) ⊂ A0. In the first case, define S∗ := {S(1) ∪ {n + 1}, S(n)}, in the
second case S∗ := {S(1), S(n) ∪ {n+ 1}}. Put

S∗ := {S∗ : S ∈ S− {S0}} ∪ {S1} ∪ {S2}.

Then S∗ ⊆ S(n+1) is clearly k-compatible, and #S∗ = #S + 1 holds. Note
that #S(n+ 1) > k holds for all S ∈ S∗ with 1 6∈ S(n+ 1) or n 6∈ S(n+ 1).
Hence, by including those 2k − 1 splits in Sn+1,k that separate n+ 1 from n
or from 1 or from both, we obtain a k-compatible split system S′ ⊆ S(n+1)

in view of Corollary 2, that contains Sn+1,k and has 2k more splits than S,
thus producing a k-compatible cyclic split system on [n+ 1] of size 2k+ #S,
as required.

It is straight forward to see that S′ is a maximal weakly and k-compatible
split system whenever S is: This is trivial in case k = 1 and, in case k ≥ 2, it
follows from the fact that every split S∗ ∈ S([n+ 1])−S′ for which S′ ∪{S∗}
is weakly and k-compatible, must reduce to a split

S := {S∗(n+ 1)− {n+ 1}, S∗(n+ 1)} ∈ S

8



because S∗ cannot coincide with S{n+1} and because we have assumed S to be
a maximal weakly and k-compatible split system in S([n]). Hence, S must be
distinct from S0 because both extensions of S0 are in S′, and S must separate
1 and n because S∗ - being distinct from S∗ - would otherwise necessarily
be of the form S∗ = {S(1), S(1) ∪ {n + 1}} = {S(n), S(n) ∪ {n + 1}} in
contradiction to the fact that then S∗, S{n,n+1} and S{n+1,1} would form a
system of three not weakly compatible splits in view of

n+ 1 ∈ S∗(n+ 1) ∩ {n, n+ 1} ∩ {n+ 1, 1} 6= ∅,
n ∈ S∗(n+ 1) ∩ {n, n+ 1} ∩ ([n+ 1]− {n+ 1, 1}) 6= ∅,
1 ∈ S∗(n+ 1) ∩ ([n+ 1]− {n, n+ 1}) ∩ {n+ 1, 1} 6= ∅,

S∗(n+ 1) ∩ ([n+ 1]− {n, n+ 1}) ∩ ([n+ 1]− {n+ 1, 1}) = S(1) 6= ∅.

So, we must have S(1) 6= S(n) and either A0 ⊆ S(1) and S∗ = {S(1),
S(n)∪{n+ 1}} or S(1) ⊆ A0 and S∗ = {S(1)∪{n+ 1}, S(n)}, and it is easy
to see that the k−1 splits in S′ of size k+1 that contain {n, n+1, 1} together
with S∗ and with S1 in the first case or S2 in the second case, would then
form a system of k + 1 pairwise incompatible splits. Hence we established:

Proposition 1 Given any cyclic and k-compatible split system S ⊆ S([n])
that is maximal among all weakly and k-compatible split systems contained
in S([n]) for some k and n with n ≥ 2k + 1, there exists a k-compatible and
cyclic split system S′ ⊆ S([n + 1]) of cardinality 2k + #S that is maximal
among all weakly and k-compatible split systems contained in S([n+ 1]).

Starting with S := S(n) in case n = 2k + 1, this leads to

Corollary 3 There exist maximal weakly and k-compatible split systems S ⊆
S([n]) of cardinality 2kn−

(
2k+1

2

)
, for any k, n ∈ N with 2k + 1 ≤ n.

Clearly, this establishes the first assertion in Theorem 1. To show that
also the second one must hold, assume that S is a maximal cyclic and k-
compatible split system contained in S(n) and that S contains the k − 1
pairwise incompatible splits Sk+1

i (i = 1, 2, . . . , k − 1).
As every split S ∈ S(n) − Sn,k for which either S(k − 1) 6= S(k) or

S(k+1) 6= S(k) holds, is necessarily incompatible with every split Sk+1
i , with

i = 1, 2, . . . , k−1, any two splits S, S ′ ∈ S>k := S−Sn,k with S(k−1) 6= S(k)

9



and S ′(k + 1) 6= S ′(k) must be compatible. Hence, A+ ∩ A− = ∅ must hold
for any two sets

A− ∈ A− := {S(k − 1) | S ∈ S>k, S(k − 1) 6= S(k)}

and
A+ ∈ A+ := {S(k + 1) | S ∈ S>k, S(k + 1) 6= S(k)}.

Consequently, there exists at most one pair of distinct splits S, S ′ in S>k−1

with S|[n]−{k} = S ′|[n]−{k}: Indeed, any such pair in S
(n)
>k−1 is necessarily of

the form S
(i)
k , S

(i−1)
k+1 for some integer i with k ≤ i ≤ n − k; hence, if there

were two such pairs S
(i)
k , S

(i−1)
k+1 and S

(j)
k , S

(j−1)
k+1 with, say, i < j, we would

have
S

(i)
k (k − 1) = [k + i, k − 1] ∈ A−

and
S

(j−1)
k+1 (k + 1) = [k + 1, k + j − 1] ∈ A+

in contradiction to

k + i ∈ [k + i, k − 1] ∩ [k + 1, k + j − 1].

Thus, we must have

#S− 2k − 1 ≤ #S|[n]−{k} ≤ #S− 2k

in view of the fact that there is exactly one split in S that does not give rise to
any split in the induced split system S|[n]−{k}, viz. S1

k , and there are exactly
2(k−1) pairs of distinct splits S, S ′ in S∩Sn,k with S|[n]−{k} = S ′|[n]−{k}, viz.

the pairs S
(k−i)
i , S

(k−i+1)
i , i = 1, . . . , k − 1 and S

(i)
k , S

(i−1)
k+1 , i = 2, . . . , k and we

have
#S|[n]−{k} = #S− 2k

if and only if there exists a pair of distinct splits S, S ′ in S>k−1 with S|[n]−{k} =
S ′|[n]−{k}.

Yet, if no such pair would exist, we could use our construction above
relative to any split S ∈ S|[n]−{k} with S(k − 1) 6= S(k + 1) of size at least

k to construct a k-compatible split system S′ ⊆ S(n) with #S′ = 1 + #S
in contradiction to our assumption that S is a maximal k-compatible split
system in S(n).

10



Thus, we must have #S|[n]−{k} = #S − 2k, S|[n]−{k} must be a maximal
cyclic k-compatible split system defined on the set [n] − {k}, there exists
a (necessarily unique) pair of distinct splits S, S ′ in S>k−1 with S|[n]−{k} =
S ′|[n]−{k} := S0, and S can be constructed from S|[n]−{k} as above, using S0

as the ‘cut-off split’.
This establishes the second assertion of Theorem 1.

4 2-compatible cyclic split systems

In this section, we prove the following result:

Theorem 3 Suppose that n ≥ 5. If S ⊆ S(n) is a 2-compatible split system,
then #S ≤ 4n− 10.

This result follows easily from the following lemma:

Lemma 3 Let S ⊆ S(n) be a maximal k-compatible and k-reduced split sys-
tem. Then all minimal elements, with respect to inclusion, in ∪S have size
k + 1.

Proof: Assume that A ∈ ∪S is minimal in ∪S and, without loss of generality,
assume A = {1, 2, . . . , i} for some i > k. If i = k+1, we are done. Otherwise,
the maximality of S together with {1, 2, . . . , i − 1} 6∈ ∪S implies that there
must exist k splits S1, S2, . . . , Sk in S that are pairwise incompatible and
incompatible with S{1,...,i−1} while one of those splits must be compatible
with SA = S{1,...,i}. So, this split must be of the form S{j,j+1,...,i} for some j
with 1 < j ≤ i− k, contradicting the minimality of A in ∪S.

Proof of Theorem 3: We proceed by induction with respect to n ≥ 5.
If n = 5, then clearly #S ≤ 4n−10 = 10 =

(
5
2

)
. Suppose that #S ≤ 4n−10

for all 2-compatible split systems S ⊆ S(n). Let S ⊆ S(n+1) be a maximal
2-compatible split system. Then, by Lemma 3, S contains a 3-split. Hence,
by Theorem 1(ii),

#S ≤ cycl2(n) + 4 = 4(n+ 1)− 10

which completes the proof.

11



Remark 3 It immediately follows from Lemma 3 and Theorem 1(ii) that
S ⊆ S(n) is a 2-compatible split system of cardinality 4n − 10 if and only if
S can be constructed using rotations and Construction A.

In a separate publication, we will deal more explicitly with the number
K2(n) of maximal 2-compatible split systems in S(n), and with the complexity
of algorithms that allow one to construct all of them.

5 3-compatible cyclic split systems

In this section, we give a proof for the following theorem.

Theorem 4 Suppose that n ≥ 7. If S ⊆ S(n) is a 3-reduced, 3-compatible
split system, then #S ≤ 3n− 21.

Before we begin this proof, we introduce an important concept for pairs
of splits: Given some x ∈ X, a pair of splits S, T of X is called an x-pair
if S(x) ∩ T (x) = {x} and S(x) ∪ T (x) = X hold. Note that every x-pair
consists of two compatible splits, and that two distinct splits {A,B} and
{A′, B′} form an x-pair if and only if their restrictions {A − {x}, B − {x}}
and {A′−{x}, B′−{x}} to X−{x} coincide. For cyclic split systems x-pairs
are easy to visualize; for example, in Figure 2 we picture two x-pairs, S1, S2

and S3, S4 in S(n) with x = 3.

Proof of Theorem 4: Note that the theorem is clearly true for n = 7. Now,
suppose that there is a 3-reduced and 3-compatible split system S ⊆ S(n) with
#S > 3n− 20 and that Theorem 4 holds for all 3-reduced and 3-compatible
cyclic split systems S′ defined on a set X of smaller cardinality. We have to
show then that #S = 3n− 21 must hold.

In view of Theorem 1, (ii), we may assume that S does not contain two
consecutive 4-splits and that, consequently, no x ∈ [n] can be contained in
the 4-part of three or more 4-splits in S.

By comparing – for each x ∈ [n] – the given split system S with the split
system

S∗x := {{A,B} ∈ S([n]−{x}) :

size({A,B}) ≥ 4 and {A ∪ {x}, B} ∈ S or {A,B ∪ {x}} ∈ S}

12



we see that it suffices to find one x ∈ [n] so that either at most one x-pair
exists or so that at most two x-pairs exist, yet x is contained in at most one
subset A from ∪S with #A = 4.

So, assume from now on that two x-pairs exist for every x ∈ [n], and
define a pair of incompatible splits S := {A,B}, T := {C,D} in S to be
minimal if #(A ∪ C) is minimal under the condition #(A ∩ C) = #A − 1.
Note first that #(A ∪ C) ≥ 6 must then hold because, by assumption, the
two splits S and T cannot be two consecutive 4-splits.

4

j+1
j

i+1

i

S

T243S S S

3

2

1

n

1S

Figure 2: An impossible configuration.

Now, without loss of generality, we may assume that S = S
(i)
1 , T = S

(j)
2 ,

where j ≥ i ≥ 4 and j ≥ 5. Consider the element 3 ∈ [n]. As shown
above, S must contain at least two 3-pairs S1, S2 and S3, S4 with, say, S1

and S3 separating 3 and 4. Note that S1, . . . , S4 cannot all be compatible
with T because this would be in contradiction to the the minimality of S, T .
Moreover, we can’t have S1, . . . , S4 all incompatible with T because then (cf.
Figure 2) S, T, S2, and S3 would form a quartet of pairwise incompatible
splits. Hence, there must be precisely two 3-pairs, and – without loss of
generality – we can assume that S1, S2 are both compatible with T and that
S3, S4 are both incompatible with T .

All we need to observe now to complete the proof is that 3 cannot be
contained in the 4-part of two or more 4-splits in S. However (cf. Figure 3),

13



4

j+1
j

i+1

i

T43S S

3

2

1

n

n-1

6
5

7

S

S1

S
2

Figure 3: Three impossible 4-splits: Neither S
(4)
2 = S[2,5] nor S

(4)
3 = S[3,6]

can be contained in S because otherwise we see that either the pair S
(4)
2 and

S2 = {{3, 4, . . . , h}, {h + 1, . . . , n, 1, 2}} (h ≤ j) or the pair S
(4)
3 and S1 =

{{4, 5, . . . , h}, {h+1, . . . , n, 1, 2, 3}} would contradict the minimality of S and
T . And the split S(4)

n cannot be contained in S because, together with S, T
and S4, it forms a quartet of pairwise incompatible splits.

the minimality of S, T implies that indeed neither S
(4)
2 = S[2,5] nor S

(4)
3 = S[3,6]

can be contained in S whereas S(4)
n cannot be contained in S because, together

with S, T and S4, it forms a set of four pairwise incompatible splits. This
establishes Theorem 4.

Remark 4 In contrast to Remark 3, not every 3-compatible cyclic split sys-
tem with size 6n− 21 (n ≥ 7) can be constructed using Construction A. For
example, let X := {1, . . . , 12}, and

S := {S(4)
1 , S

(4)
3 , . . . , S

(4)
9 , S

(4)
11 , S

(5)
1 , S

(5)
3 , . . . , S

(5)
9 , S

(5)
11 , S

(6)
1 , S

(6)
5 , S

(6)
9 } ∪ S12,3.

Then it can be shown that S ⊆ S(12) is a 3-compatible split system with size
51 = 72 − 21, such that the union of no two 4-parts of any two 4-splits in
S has cardinality five. From this, and Lemma 4 it follows that S cannot be
constructed using Construction A.
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6 k-compatible cyclic split systems with n−2k

small

In this section we prove a theorem concerning the behavior of k-compatible
cyclic split systems when n−2k is small. Our approach relies on the identity

2kn−
(

2k + 1

2

)
=

(
n

2

)
−
(
n− 2k

2

)
,

and the fact that #S(n) =
(
n
2

)
holds.

Theorem 5 Suppose that n ≥ 2k + 1. If S ⊆ S(n) is a k-compatible split
system on [n], and n− (2k + 1) ≤ 3, then

#S ≤ 2kn−
(

2k + 1

2

)
,

that is, S conforms with Conjecture 1.

Proof: We show that

#S(n) −#S ≥
(
n− 2k

2

)
when 0 ≤ n− (2k + 1) ≤ 3, from which the theorem immediately follows in
view of the identity stated above.

First, note that this equation clearly holds for n = 2k + 1. Now, put
b := n− 2k. We have to show that

#S(n) −#S ≥
(
b

2

)
(1)

holds for b = 2, 3, 4.
b = 2: Since S(n) contains exactly k + 1 splits of size k + 1 in this case, we

must remove at least one of these splits from S(n) to obtain a k-compatible
cyclic split system S. So #S(n) −#S ≥ 1 must hold.
b = 3: In this case, there are 2k + 3 splits of size k + 1, viz. S

(k+1)
i for

i = 1, . . . , n. We may assume, without loss of generality, that S
(k+1)
1 is not

contained in S. Now, since S is k-compatible, no k + 1 consecutive (k + 1)-

splits can be in S. Let i > 1 be minimal such that S
(k+1)
i fails to lie in S.
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Then, since i ≤ k + 2, we have i + k + 1 ≤ 2k + 3, and so at least one
of the splits S

(k+1)
i+1 , . . . , S

(k+1)
i+k+1 must also fail to lie in S. Thus, we see that

#S(n) −#S ≥ 3 must hold, as required.
b = 4: Since any two (k + 2)-splits are necessarily incompatible, we may

assume that at least two (k + 2)-splits lie in the complement of S in S(n).

Without loss of generality, let two of these splits be S
(k+2)
1 = S

(k+2)
k+3 and

S
(k+2)
i = S

(k+2)
i+k+2 where 1 < i ≤ k+ 2. Similarly, applying the argument given

in the case b = 3 to the set of (k+ 1)-splits in S(n), we see that at least three
(k+ 1)-splits must also be contained in S(n)−S. Now, consider the following
four collections of splits:

{S(k+1)
k+3+i, . . . , S

(k+1)
n , S

(k+1)
1 , S

(k+2)
2 , . . . , S

(k+2)
i−1 }

{S(k+1)
2 , . . . , S

(k+1)
i , S

(k+2)
i+1 , . . . , S

(k+2)
k+2 }

{S(k+1)
i+1 , . . . , S

(k+1)
k+3 , S

(k+2)
k+4 , . . . , S

(k+2)
k+1+i}

{S(k+1)
k+4 , . . . , S

(k+1)
k+2+i, S

(k+2)
k+3+i, . . . , S

(k+2)
2k+4 }.

Note that each of these collections consists of exactly k + 1 pairwise incom-
patible splits, and that every (k+1)-split from S(n) occurs exactly once, while

none of the two (k+ 2)-splits S
(k+2)
1 and S

(k+2)
i occurs in either of these four

families. Hence, there exits either a third (k + 2)-split in S(n) − S, or there
exists a fourth (k + 1)-split in S(n) that is not contained in S. In any case,
there must be a least six splits in S(n) − S, exactly as required.

Note that Theorems 3, 4 and 5 together establish Theorem 2.

Remark 5 The above proof implies in particular that – up to isomorphism
– there are as many k-compatible split systems in S(2k+3) of size

(
2k+3

2

)
−3 as

there are partitions of 2k into three numbers a, b, c ∈ IN0 with a ≤ b ≤ c ≤ k,
a number that is straight forward to compute and coincides with

k∑
c=d 2k

3
e

(1 + bk − c

2
c − 2k + 2c)

and, hence, with 1 + 3κ + 3κ2 in case k = 6κ for some κ ∈ IN, and with
i(1+κ)+3κ+3κ2 in case k = 6κ+i for some κ ∈ IN and some i ∈ {1, . . . , 5}.
Of course, only 1 + bk

2
c of these can be constructed from smaller systems (of

b = 2 type) using Construction A.
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