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COMBINATORIAL FANS, LATTICE-ORDERED GROUPS, AND
THEIR NEIGHBOURS: A SHORT EXCURSION

VINCENZO MARRA AND DANIELE MUNDICI

ABSTRACT. Just like the celebrated dictionary between integral convex geometry
and toric varieties bridged until then remote mathematical worlds, the less well-
known duality between (certain) lattice-ordered groups and rational polyhedral
sets brought combinatorial techniques to bear on the investigation of these abstract
algebraic structures. We offer a brief excursion into these relatively new territories,
with special emphasis on the novel and admittedly unclear role played by order-
theoretical considerations.

1. INTRODUCTION

In an inaugural address ([25]) delivered in Florence, Italy, in 1993, G.-C. Rota
maintained that

[while] one of the leading trends that is visible in present-day mathe-
matics [is] ‘the return to concreteness’, [...] the relationship between
combinatorics and algebra today [...] is not a forgetting of the past.
[...] some outstanding work in combinatorics that is going on today is
greatly benefiting the algebra of yesterday.

As a prominent example, Rota mentioned

the discovery of toric varieties, [...] a dictionary whereby results of
algebraic geometry can be translated into results of convex integral
geometry in the style of Minkowski and Hadwiger. [...] The theo-
rems of algebraic geometry now find new and unexpected life in the
newly added class of toric varieties, coming from an altogether differ-
ent source, a combinatorial source to be sure.

The main theme of this paper is a similar interaction between another realm
of abstract algebra, the theory of lattice-ordered groups, and a version of “convex
integral geometry in the style of Minkowski and Hadwiger” ([25]), the eminently
combinatorial theory of rational polyhedral sets. Prima facie, ordered groups are
no less far removed from polyhedra than algebraic geometry — and yet, much as in
the case of toric varieties, the connection is so intimate as to be a genuine duality.

Key words and phrases. Fans, polyhedral cones, convex geometry, lattice-ordered groups, toric
varieties.
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We begin with a survey of basic results on complexes of polyhedral cones and their
subdivisions. We then introduce lattice-ordered abelian groups, and sketch enough
of their theory to establish the relationship with polyhedral complexes. Along the
way, as a sort of counterpoint to our leitmotiv, we indicate the algebro-geometric
significance of some of the material introduced. It is only in the last section that we
bring this second theme into the foreground for a necessarily short excursion into
the world of toric varieties.

2. COMBINATORIAL CONVEXITY: FANS

We introduce a linear version of polyhedral complexes known as fans. The ter-
minology is due to M. Demazure, who called these objects eventails. It is quite a
descriptive name, provided it is interpreted as ‘possibly torn fans’ ([23]). A compre-
hensive treatment may be found in [15].

Throughout this paper, we fix a free abelian group N of rank n. Upon tensoring
N with R we obtain a real n-dimensional vector space Ng = R ® N. We let
M = Homgz(N,Z) denote the Z-module dual to N, and Mg = R ® M the vector
space dual to Ng.

In down-to-earth terms, N & Z" Nr = R" and N is the group of integral n-tuples
in R™. Similarly, M can be identified with Z™ and My with R™. These identifications,
however, only make sense if we choose a basis of N (and therefore of M, N, and
Mg).! Whenever convenient, we shall tacitly assume we have fixed one such basis.

Let {#1,...,¥,} C N be a finite set of integral vectors. The rational polyhedral
cone o, or simply the cone o generated by {1, ...,7,,} is their positive linear hull
over R, i.e.,

0-:<?71a717m>:{p161++pmﬁm|0§p17’pm€R}

A cone ¢ is k-dimensional iff the R-linear space it spans is k-dimensional. A
face of ¢ is any nonempty convex subset 7 C ¢ such that every line segment in o
which has an interior point in 7 lies entirely in 7. Lest we burden this paper with
an inordinate amount of detail, we shall assume a number of intuitive and easily
proved statements about cones — e.g., the faces of a cone are finite in number, the
set of faces is a (finite) lattice under inclusion (whence every face is contained in
some maximal proper face, a facet), and so on.

Upon intersecting a finite number of integral half-spaces (i.e., sets of the form
{(z1,...,2n) € R" | 2121 + -+ - + 252, > 0}, 2; € Z) one clearly obtains a cone in
Ng. That this is no accident is a basic result in convex geometry.

The Fundamental Theorem of Polyhedra. A subset 0 C Ny is a cone iff it is
the intersection of finitely many integral half spaces of Ng.

Tt turns out that this is equivalent to a choice of coordinates on an algebraic variety — see
Section 4.
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A cone 0 = (0y,. .., Uy,) is simplicial iff {¢',...,7,,} is linearly independent over
R. A nonzero vector ¥ € N is primitive iff its coordinates (with respect to the
canonical basis) are relatively prime. The wvertices of a simplicial cone o are the
(uniquely determined) primitive vectors o; € N such that o = (¥, ..., Tp)-

A rational polyhedral fan (in Ng), in short, a fan, is a finite set ¥ of polyhedral
cones such that

(1) Every face of every cone of ¥ belongs to X.
(2) Any two cones of ¥ intersect in a common face.

The support of ¥, denoted |X|, is the union of all its cones. A fan ¥ is simplicial iff
all its cones are simplicial.

A polyhedral cone o carries a natural fan structure Y, which is given by the
collection of all its faces (including () and o itself). With this notation, |X,| = o.
We shall not be pedantic about the distinction between ¥, and o.

SUBDIVISIONS.  Subdivisions of rational polyhedral cones, besides being of interest
in themselves, encode the birational geometry of toric varieties. Thus, we discuss
various notions of refinement for fans (see Figure 1). Given two fans ¥ and A in
Ng, A is a subdivision of X, or it refines X, iff |3| = |A| and every cone of A is
contained in some cone of ¥. We write A < Y to denote the fact that A refines
Y. In this case, every cone of ¥ is a union of cones of A. More generally, following
Danilov ([11]) we say that X is inscribed in A iff every cone of 3 is a union of cones
of A, whence we have the (possibly strict) inclusion |X| C |A|.

Just like a polyhedron can be triangulated without adding new vertices (say, by
generalising the elementary plane construction of ‘adding diagonals’), a fan can
always be subdivided into a simplicial fan without adding 1-dimensional cones. The
m-skeleton 2™ of a fan X is the set of m-dimensional cones of . (It is not itself a
fan, for it does not contain, together with a cone, all of its faces). Then there exists
a simplicial fan A; with the same 1-skeleton of ¥ such that A; < X.

In many contexts, simplicial subdivisions are not fine enough — it turns out that
a certain proper subclass of simplicial cones plays a key role in the theory of toric
varieties. A cone o = (#,...,¥,) C Ng is unimodular (alternative terminology,
reqular) iff {7y, ..., ¥, } can be completed to a basis of N. Hence, in particular, o
is simplicial and the set of its vertices is {71, ..., U, }. A fan ¥ is unimodular iff all
its cones are unimodular.

Clearly, not every simplicial cone is unimodular. However, it is always possible
to subdivide a given cone into unimodular subcones. Further, this can always be
done through stellar subdivisions. Let ¥ be a fan in Ng, and let ¢ € ¥ be an
m~dimensional cone. The star in ¥ of a face F' C o, denoted star F', is the set
of cones in ¥ having F' as a face; the closed star of F is the fan cstar F' = {7 |
7 is a face of a cone 6 € star F'}. The relative interior of o, denoted relint o, is the
topological interior of NV, where V is the linear subspace of Ny spanned by o. Let
w € relint c N N. Then there is a unique minimal face F' of o such that @ € relint F',
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namely, the intersection of all faces containing . The stellar subdivision® of ¥
along ¢ through  is the fan obtained from ¥ removing star F' and joining 0 to the
boundary (cstar F' — star F') of the star of F. If A is obtained from ¥ via a finite
number (may be zero) of stellar subdivisions, we write ¥ <* A. Clearly, ¥ <* A
implies ¥ < A, but not conversely.

Unimodular Refinements. Let ¥ be a fan. There exists a simplicial fan A1 with
the same 1-skeleton of ¥ such that Ay < Y. Further, there exists a unimodular fan
Ag such that Ay <* Ay < X, that s, Aqy 1s obtained from A1 by a finite number of
stellar subdivision.

Remark. Unimodularity is the combinatorial counterpart of the central algebro-
geometric notion of smoothness ([23], [16], [15]).

For self-contained proofs of the existence of simplicial and unimodular refinements,

see e.g. [15].
A special sort of stellar subdivision is particularly important for the contents
of this paper. Let ¢ = (#,...,7,,) be an m-dimensional cone of a fan ¥ in Ng.

Suppose 7 = (i,,...0;,) is a d-dimensional face of 0. We call & = ) the
barycenter of 7. The fan obtained from X by stellar subdivision along 7 through
W is a barycentric stellar subdivision of ¥. We write A < X to denote the fact
that A is obtained from X by a finite number (maybe zero) of stellar barycentric
subdivisions; if all barycenters belong to 2-dimensional cones, we write A <5 3. and
speak of binary starring. It is easy to show but important to realize that if A <X
and Y is unimodular, then A is unimodular — barycentric subdivisions preserve
unimodularity. This fails for general stellar subdivisions.?

If ¥ is simplicial but not unimodular, a fan A such A < 3 cannot be unimodular.
Thus barycentric subdivisions cannot be used to refine a given fan into a unimodular
one. On the other hand, if ¥ happens to be unimodular, binary starrings produce
most general subdivisions, in the following sense.

The De Concini-Procesi Lemma. Let X, A be two unimodular fans in Nr, and
assume |3| = |A|. There ezists a unimodular fan ¥* in R" such that

(1) ¥* <, X ;

(2) 3* <A

The De Concini-Procesi Lemma was first established in [14], and may be inter-
preted as a statement on the birational geometry of toric varieties. The interested
reader can find a self-contained elementary proof in Panti’s paper [24].

2Stellar subdivisions were introduced by James W. Alexander in [3] for abstract simplicial com-
plexes, and in [2] for geometric complexes. Their importance in algebraic topology is well-known
— see e.g. [4].

3The barycenter of a rational simplex is known to geometers of numbers as the (multidimen-
sional) Farey mediant of its vertices, a classical notion intimately connected with (multidimen-
sional) continued fraction expansions. See [10], [22] and references therein for further information.
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(a) (b) (c) (d)

FIGURE 1. Subdivisions of a cone. (a) A cone C. (b) A subdivision
(triangulation) of C. (c) A stellar subdivision of C'. (d) A barycentric
stellar subdivision of C.

MORPHISMS OF FANS. Let ¥ be a fan in Ni. Let N’ be a free abelian group of
rank 7/, N = R@ N, ¥’ a fan in N}. A map of fans is an element of Homy (N, N)
— a group homomorphism ¢ : N — N’ — such that its (unique) scalar extension
¢r : Ng — N} maps cones into cones; explicitly, for each ¢ € ¥ there is 0/ € ¥/
such that ¢r(c) C o’. In the fan-toric dictionary included in Section 4, maps of
fans correspond to morphisms of toric varieties. The latter provided the original
motivation for the definition of a map of fans.

Let us restrict attention to an endomorphism ¢ of fans with the same support
— that is, assume N’ = N and |¥'| = |X|. A moment’s reflection shows that ¢
induces a subdivision of ¥ into ¥’. Conversely, any fan ¥’ in Ni such that ¥/ < X
canonically induces an endomorphism ¢ of fans which fixes the support |X|. Thus,
all forms of subdivisions we have introduced above may be regarded as morphisms
(of fans or of toric varieties). The combinatorially fundamental notion of stellar
subdivision gives rise to morphisms of great interest in algebraic geometry, namely
blow-ups — the basic tool used to resolve singularities of algebraic varieties. As we
have seen above, every fan admits a unimodular refinement. This translates to the
statement that every toric variety admits a resolution of singularities. While we
refer to [23], [16] and [15] for further information on the algebro-geometric aspects
of desingularizations, we include a fan-theoretic treatment of resolutions of two-
dimensional toric singularities, both by way of illustration and with the intent of
showing interesting connections with the geometry of numbers.

A cone o C Ny is strongly convex (alternative terminology, has apex at the origin)
iff it does not contain a linear subspace of Ng, except {0}.* For the remaining part

4This is an interesting notion for many reasons, amomgst which is the following characterization:
for m > 2, an m-dimensional cone is strongly convex iff it is the positive linear hull of a polytope
of dimension m — 1. A polytope (= bounded polyhedron) is the convex hull of a finite set of points
in R™.
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of this section, set n = 2, and let ¥ be a fan in Nz = R?. To avoid tedious
degenerate cases, we assume all cones of X are strongly convex. Let 8y be the set
of all unimodular fans with the same support as ¥. Clearly, refinement is a partial
order on 8x. We now claim that the poset (8x, <) is in fact a lattice.® Furthermore,
we claim we can compute finite lattice joins and meets in (8y, <). It suffices to show
this much: Given unimodular fans ¥;,%s € 8y, one can compute A € 8y, with the
property that if ¥/ < ¥, ¥, for some ¥’ € Sy, then A < Y. The argument for the
existence and computability of joins is similar.

Let 1,3, € 8y, and consider the set © = {0y N0y | 0; € ¥;,1 = 1,2}, It is
promptly seen that © is a fan such that |©| = |X|. Further, © jointly refines ¥; and
Yo, and it is clear that it is the coarsest such refinement. Unfortunately, © need not
be unimodular, whence in general © ¢ 8x. Our claims are settled if we can show
that it is possible to compute a coarsest (hence, canonical) unimodular refinement

of ©.

0 2 4 6 8 10 12

FIGURE 2. Canonical unimodular refinement of a 2-dimensional cone.

Clearly, it suffices to proceed locally and restrict attention to a single strongly
convex 2-dimensional cone ¢ in Ng, whence, in particular, o is simplicial. Consider
the convex hull P in Ng of all integral points (¢ N N) — {0}. (See Figure 2.) This
is an unbounded polygon with a finite number of compact edges. Let us display the
(necessarily integral) endpoints of such edges as the finite set of vectors

{Toy .-, U}
such that #; and ¥, are adjacent®, for 0 < i < m. To fix ideas, suppose that the
order in which we have listed the ;s is counterclockwise. For each i, o; = (U;, Ui 41)
is a 2-dimensional simplicial cone whose vertices are precisely the vectors o;, ¥,
— if some ¥; were not primitive, the primitive generator of (#;) would not belong
to P, a contradiction. Furthermore, each ¢; is unimodular, as is easy to check. For
0 < 7 < m, the collection of all cones o;, together with their 1-dimensional faces
v; and the origin of Ng, is a unimodular fan X7 refining 0. A moment’s reflection

SWith maximum, but with no minimum, if & has at least one 2-dimensional cone.
6That is, their convex hull in N does not contain any other @y, k # 4, k # i + 1.
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shows that any unimodular subdivision of ¢ must refine 3. We have thus shown
the existence of the coarsest desingularization of ¢. Finally, we exhibit an explicit
algorithm to compute X7, given a presentation o = (i, . .., i;) of the cone ¢. Notice
that from any such presentation one can compute the vertices of ¢ — first compute
rational vectors 7, 75 such that o = (7}, 7), and then use the Euclidean algorithm
to compute the vertices. Without loss of generality, then, we may assume that o
is presented as o = (Wi, wWs), where {w, Wy} is the set of its vertices, again listed
in counterclockwise order. Notice that w; = vy and Wy, = v,,. Since these vertices
are primitive linearly independent vectors, another application of the Euclidean
algorithm yields a primitive vector 77; and integers p, ¢ such that

e {7, } is a basis of the Z-module N — in other words, (w7, ;) is unimod-
ular;
e 0 < p < ¢ with p and ¢ relatively prime;
® Wy = pwi + qii;.
In case ¢ = 1, we are done, for p = 0 and ¢ is unimodular. Otherwise, we consider
the Hirzebruch-Jung continued fraction expansion’

q 1
——=b -
q—p by — =

with b; > 2, which must terminate since ﬁ is rational. Then it can be proved that,
upon inductively defining

fiv1 = (bs — 2)Tj—; + (b — 1)73; ,
the following equalities hold:

Ui = Vj—1 + 1

whence the vectors ¢; can be computed, as claimed. Thus, the Hirzebruch-Jung
continued fraction expansion is precisely what is needed for the effective desingular-
ization of 2-dimensional toric varieties.

Remark. In higher dimensions, things are far more complicated and not yet well-
understood. Already in dimension 3, in general there is no coarsest unimodular
refinement of a given strongly convex cone o C R®. However, the set of maximally
coarse refinements is finite, and its classification was carried out by M. Reid and
V. 1. Danilov (see [23] for details and references). However, the Danilov-Reid treat-
ment is non-effective. Algorithmic desingularization of 3-dimensional toric variety
was attained in the paper [1], to which we refer the interested reader for further
information.

"This is different from the usual continued fraction expansion, sometimes called reqular, where
minus signs are replaced by plus signs. See [16].
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3. ABELIAN LATTICE-ORDERED GROUPS AS FUNCTIONS ON FANS

This section is devoted to show that bringing together ordered algebraic structures
and fans is in the nature of things — indeed, there is an intimate connection between
(finitely presented) lattice-ordered groups and integral piecewise linear geometry.
We begin with an admittedly cursory introduction to ordered groups. Some standard
references are [17] and [13].

A partially ordered abelian group is an abelian group G together with a submonoid
G™T of G such that the induced binary relation

a>b iff a—-beG*
is a partial order which is translation invariant with respect to addition, i.e.,
a>b implies a+t>b+t forall a,bteG

The submonoid G is the positive cone of G. Notice that 0 € G*. An element
p € G is positive iff p € G, and it is strictly positive iff p € G — {0} = G,.
Accordingly, ZT = NU {0} and Z; = N.

A partially ordered abelian group G is directed iff any two elements of G have a
lower and an upper bound, and it is unperforated iff ng € G*, n € N, implies g € G™.
Further, G has the Riesz Interpolation Property iff for any 1, xo,y1,12 € G, ; < y;
implies that there exists z € G such that z; < 2z <y; (i,j =1,2). Homomorphisms
of partially ordered abelian groups are order-preserving group homomorphisms. A
subgroup J C G is an o-ideal iff it is convexr (a < b < ¢ and a,c € J imply b € J)
and directed. Kernels of homomorphisms, then, are precisely o-ideals.

A lattice-ordered abelian group (¢-group, for short) is a partially ordered abelian
group which is a lattice with respect to the order relation. Equivalently, an ¢/-group
is a structure (G, +,0, A, V) such that (G, +,0) is an abelian group, (G, A,V) is a
lattice, and + distributes over V and A. By an (-subgroup of an ¢-group we mean a
subgroup which is also a sublattice. Given a subset S C G of an ¢-group, we denote
by (S), [S] and [[S]] the f-subgroup, the subgroup and the submonoid generated by
S.

Homomorphisms of ¢-groups (¢-homomorphisms) are maps preserving both the
group and the lattice structure. We call their kernels ¢-ideals. It is easy to check that
l-ideals are the same thing as convex (-subgroups. One easily deduces appropriate
versions of the usual isomorphisms theorems. Let G be an f-group, J an (-ideal
of G, ¢; the canonical {-homomorphism associated to J. We denote by G/.J the
(-group quotient of G by J, or, equivalently, the image of G under ¢;. We use the
symbol ‘=’ to denote isomorphism of ¢-groups.

FREE /-GROUPS. Since f-groups are equationally definable, they are a variety
and thus admit free (more generally, finitely presented) objects. We denote by Fy
the free (-group over k generators, for any cardinal k. A very strong representation
theorem for F holds. Its interesting but slightly involved history is more thoroughly
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traced in [19], where precise references to the original results can be found — here
we summarize the mathematical facts. Let n € N. By an ¢-function (of n variables)
we mean a continuous piecewise linear homogeneous map f : R* — R with integral
coefficients.® The set ©, of all continuous functions from R* to R is an ¢-group
under pointwise addition and order. Let L, C €, denote the /-subgroup of all /-
functions of n variables. Further, let D,, C €,, denote the /-subgroup generated by
the projection functions m; : R* = R, i = 1,...,n. Clearly, D,, C L,, C C,,. Besides,
a trivial universal-algebraic argument shows that D,, is a homomorphic image of F,,.
Non-trivial geometric and algebraic arguments yield the following strengthening of
the previous statements.’

Weinberg-Beynon/Chang-McNaughton Representation. ¥, = D, = L,,.

Remark. One half of the theorem (F,, = D,,, or Z generates the variety of abelian
(-groups), is due to Weinberg ([26]). The other half (D,, = L,,, or the ¢-group of ¢-
functions is generated by the projection functions) is due to Beynon ([7]). As proved
by the second author ([21]; also see [10] for self-contained proofs), abelian ¢-groups
with strong order unit'® are categorically equivalent to M(any)V(alued)-algebras,
a (natural) generalization of boolean algebras introduced by C. C. Chang in his
algebraic analysis of Lukasiewcz infinite-valued propositional logic. MV-algebraic
versions of Weinberg’s and Beynon’s aforementioned results were proved by Chang
([9]) and McNaughton ([20]), respectively. For the interplay between ordered groups
and MV-algebras see [19] and [10].

On the basis of the above representation theorem, we shall tacitly identify &, and
L, (equivalently, D,,) whenever convenient.

FINITELY PRESENTED (-GROUPS. Let G be an f-group. An /(-ideal J of G is
generated by a set S C G, written J = ((S)), iff the intersection of all ¢-ideals of G
containing S is precisely J. We say that J = ((S)) is finitely generated iff S can be
chosen finite. Further, J is principal iff it is generated by a singleton {¢g} C G. In
this case, we write J = ({(g)). It is an exercise to check that every finitely generated
(-ideal is principal. We call an ¢-group G finitely presented iff G =2 F,,/{{g)) for some
n € N. A useful description of the principal ideal ({(g)) is the following: f € {{g))
iff there is some n € N such that ng > f (in F,). Given f € F,, the zeroset of f
is the set V(f) = {Z € R* | f(&) = 0}. More generally, for any subset S C F,, let
us define V(S) = ;s V(f). From the description of {((g)) given a moment ago,
it follows that V({{(g))) = V(g). We now claim that the zeroset of an ¢-function g

8In detail, a function f : R® — R is an /-function iff it is continuous and there exist finitely many
homogeneous linear functions /; : R* — R (i € {1,...,m}) with integer coefficients, the linear
constituents of f, such that for every & € R™ there is some ¢ € {1,...,m} such that f(Z) = l;(Z).

9Generalization to an arbitrary number of generators is straightforward.

10An element u € G is a strong order unit of the (-group G iff for every p € G there exists
n € N such that nu > p.
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is the support of a fan. Let g € &, be an ¢-function, and let {/;} (i € {1,...,m})
be the set of its linear constituents (cfr. footnote 8). Let §,, denote the group of
permutations of m letters {1,...,m} (the symmetric group). For each o € §,,, we
define the basic cone

C,={7eR"| lg(l)(f) > ... 2 lg(m) (@)} .

It is clear that C, is a closed set; also notice that it may well be the singleton {0}.
In fact, C, is the intersection of finitely many integral half-spaces, as is read off
directly from its definition. Hence, by the Fundamental Theorem of Polyhedra, it
is a (rational polyhedral) cone. Furthermore, the set of all such C, and their finite
intersections Cy, N---NCy,, as 01,...,05 vary in 8,,, is a fan ¥, in Nz = R". Since
g is linear over each C,, its zeroset V(g) can be described as the support of a fan
O, inscribed in ¥4, as we claimed. In analogy with the time-honored tradition of
classical algebraic geometry, it makes sense to investigate the relationship between
the ¢-group of all (-functions in F, restricted to |©,] — a geometric entity — and
the f-group F,/({g)) — an algebraic object. In order to do this at the natural level
of generality, we introduce some further notions from the theory of ordered groups.

Let G be an f-group and J C G an f-ideal. We say that J is mazimal iff for every
l-ideal I C G, J C I implies J = I. Further, J is proper iff J # G. The intersection
of any collection of /-ideals is an f-ideal. The radical of G is the intersection of all
its maximal (-ideals. Finally, G is archimedean iff for every p,q € G, such that
p < g, there is n € N such that np £ ¢. Assume that G is finitely generated. Then
G is archimedean iff its radical is {0}, as is easy to see.

Quite generally, if J C F,, is an f(-ideal of the free ¢-group over n variables, then
V(J) is a closed conical'’ subset of Ng. Conversely, given a closed conical subset
C C Ng, let I(C) denote the set of all (-functions of n variables vanishing over C.
Then I(C) is an (-ideal. Clearly, V(I(C')) = C for any closed conical set C. However,
J C I(V(J)) may well be a strict inclusion. The following result, characterizing those
¢-ideals J such that J = I(V(J)), is the analogue of Hilbert’s Nullstellensatz.

Archimedean representation.'? Let G be a finitely generated (-group, and as-
sume G =2 F,/J. Let F, | V(J) denote the ¢-group of ¢-functions of n variables
restricted to V(J). Then G = F,, | V(J) iff G is archimedean iff J = I(V(J)).

Thus, returning to the finitely presented ¢-group G = F,,/({(g)), we need to ascer-
tain whether G can violate the archimedean condition. It cannot.

Wjcicki-Baker’s Theorem.'® A finitely presented /-group is archimedean.

A subset €' C R™ is conical iff it contains, together with every point Z € C, the ray {pZ | p €
R* } generated by that point.

12F4ir attribution of this result would take up an amount of space we are not ready to devote
to the matter here. See [10] and [19].

13This is due to Baker (¢-group version, [6]) and Wjcicki (MV-algebraic version, [27]).
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As an immediate consequence of the above results, a finitely presented ¢-group can
be identified with the ¢-group of ¢-functions of n-variables restricted to the support
of a fan. Conversely, given a fan X in Ng, it is possible to describe its support as
the zeroset of an (-function g, thus obtaining a finitely presented ¢-group F,/{{g))
associated with X. It turns out that this duality between fans and ¢-groups is the
germ of a full-scale categorical equivalence.

MORPHISMS OF FINITELY PRESENTED /-GROUPS. The maps of fans we have hith-
erto considered are motivated by algebro-geometric considerations — they are the
direct combinatorial translation of the notion of toric morphism. We now introduce
another class of morphisms of fans which is of equal importance for the contents of
this paper. Let N’ be a free abelian group of rank n', Np = R® N', ¥’ a fan in Nj.
Let ¥ be a fan in Ng and ¥/ a fan in Nj. A function ¢ : |X| — |¥'| is an £-map iff
o(Z) = (f1(D), ..., fu (X)) for every T € |X|, where f; is an ¢-function of n variables.
The fan ¥ is £-embedded in X' iff ¢ is injective; X' is an (-homomorphic image of ¥
iff ¢ is surjective; ¥ and X' are ¢-homeomorphic iff there is an f-map 1) : || — |3
such that 1 o ¢ is the identity function on .

Baker-Beynon Duality.*

(1) An abelian ¢-group P is finitely presented iff it is isomorphic to the ¢-group
of /-functions of n € N variables restricted to the support of some fan ¥ in
Ngr. We call ¥ a fan associated with P.

(2) Two finitely presented ¢-groups P;, P, are isomorphic iff for every two fans
31, Yo associated with P;, P,, respectively, one has that ¥; and Y, are
{-homeomorphic.

We add a few remarks on onto and into morphisms to round off the above state-
ment.!> Let P — @Q be a surjective homomorphism of finitely presented ¢-groups P
and Q,'% and let X be a fan associated with P. Then there is a fan ¥/ associated with
@ such that |X'| C |X|, the latter inclusion being an ¢-embedding of fans. (However,
it can also be shown that there exists a surjective -map of fans p : |[X| — |X'| which
retracts 2 onto Y/, i.e., p restricted to ' is the identity.) Conversely, consider an
(-embedding of fans ¢ : |X| »— |¥'|, and let P and @ be the finitely presented (-
groups associated with ¥ and ¥'. We identify |3| with a subset of |¥'|. Restricting
(-functions on |Y'| (= elements of @) to the subset |X|, we obtain that P is a homo-
morphic image of Q. (However, it can indeed be shown that P is also a subalgebra
of @), because there is an {-map p : |¥’| — || which retracts |X'| onto |X| — that is,
po ¢ is the identity on |3|.) Hence we see that (-embeddings in the category of fans

14The original references are [6],[7],[8].

1530me of the assertions we are about to make are not trivial to prove. Some of the material may
be novel, whence the absence of detailed references. What is not new can be found in [6],[7],[8].

16Notice that it is not possible to do without the assumption that Q be finitely presented — P
may have non-archimedean (let alone non-finitely presentable) homomorphic images.
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correspond to surjections of finitely presented ¢-groups. The analogous results for
onto f-maps of fans can also be established. Finally, in the light of (2) above, these
statements hold for any two fans associated with P and ). The foregoing could be
easily recast into a categorical equivalence between fans and their /~-maps, on the
one hand, and finitely presented /-groups and their homomorphisms, on the other.

A-LINEAR SUPPORT FUNCTIONS. Perusal of any textbook on toric varieties will
reveal no reference to lattice-ordered groups — in its long and distinguished history,
geometry has seldom taken advantage of order-theoretical considerations.!” We shall
now argue that finitely presented f-groups do arise in a natural manner from the
theory of toric varieties.

Let A be a fan in Ng. Let |Alz = N N |A| be the set of integral points in
|A|. A function f : |A| — R is a A-linear support function iff it is linear on each
o € A, and f [ |Alz is integer-valued. We shall denote by SF(A) the set of A-
linear support functions. It is an abelian group under addition. (We remark in
passing that each element of the dual lattice M yields an integral linear — a fortior:
A-linear — support function, but this correspondence is injective iff |A| spans the
whole space Ng.) (From what we expounded above, up to isomorphism there is a
unique finitely presented ¢-group P associated with A, namely Pn = F,,/I(|A]).
It is easy to check that a A-linear support function is the same thing as an /-
function on |A| which is linear over each ¢ € X. In other words, SF(A) C Pa.
We thus see that SF(A) inherits a partial order from Pa turning SF(A) into a
partially ordered abelian group. Notice that SF(A) is not an ¢-subgroup of P
— it is not closed under lattice operations. Given s € SF(A), to each ray (=
1-dimensional cone) p; = (7;) € A generated by its (unique) vertex 7, we can
associate the integral value s(7;); if the 1-skeleton A®) has cardinality ¢, we thus
obtain for each s an element (s(7}),...,s(r)) of the free abelian group Z!. Further,
the sum of two A-linear support functions corresponds to the coordinatewise sum
of the associated elements of Z'. In other words, we have an embedding of abelian
groups ¢ : SF(A) — Z' An (-group is simplicial iff it is isomorphic (as an (-
group) to (ZF, <), where (vi,...,v) < (w1,...,wy) iff v; < w; for all i € {1,...,k}
(coordinatewise or simplicial order). Through the group embedding ¢, the simplicial
order on Z' induces a partial order on SF(A). It is an exercise to check that the latter
coincides with the order induced on SF(A) by the inclusion SF(A) C Pa. Thus ¢ is
naturally an embedding of partially ordered abelian groups. It is not hard to show
that ¢ is onto iff A is unimodular. To put it differently, when A is unimodular,
for every assignment a: {7y,...,7x} — Z of integral values to the vertices 7;, there
is a unique A-linear support function s, € SF(A) such that s,(7;) = «a(7;) for all
i € {1,...,k}; whereas when A is not unimodular, there exists an assignment «
which cannot be thus realized by any s € SF(A).

170ne notable exception being real semi-algebraic geometry.
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(e}

Now assume A is unimodular and complete, that is, |[A| = Ng, whence Py =
F, is the free abelian ¢-group over n generators. We remark in passing that any
(unimodular) fan ¥ can be extended to a complete (unimodular) fan — intuitive
as this may sound, the proof is not trivial, see [15].'® Then ¢ : SF(A) — Z! is an
isomorphism of partially ordered groups. In any simplicial group S, there exists a
unique set of strictly positive linearly independent generators. We call such a set
the simplicial basis of S. Let {711, ce l_it} C Z! be the simplicial basis of Z!. Via
the injection SF(A) C Pa and the isomorphism ¢, we identify {l_il} with a subset of
P, of which we are now going to provide an explicit combinatorial description. Let
p= () € AN where ' is the vertex of p. The Schauder hat at p ([22], [10]) is the
unique continuous piecewise-linear homogeneous function h,: Ng — R such that

(1) hy(?) =1,
(2) h,(7) = 0 for every vertex @ # 7 of any cone in AM)
(3) h, is homogeneous linear on each cone of X.

As a consequence of the unimodularity of A, a Schauder hat is guaranteed to have
linear pieces with integral coefficients. Thus, h, is an element of JF,. We denote
by Ha the set of all Schauder hats at the rays of the complete unimodular fan A,
and call it a Schauder basis of F,.'° The subgroup [Ha| generated by Ha in F,
is easily seen to be free (as a group). In fact, SF(A) = [Ha] & Z' as groups. But
[HA] inherits a partial order from F,, and SF(A) = [Ha] & Z! as simplicial groups.
The positive cone in [Ha] is precisely the monoid [[Ha]]. Notice that from Ha it
is possible to recover A completely, and conversely. Further, this correspondence is
algorithmic — see [10] and references therein. Thus Schauder bases are the exact
(-group-theoretical analogue of complete unimodular fans.

SIMPLICIAL APPROXIMATIONS.  We remark that A-linear support functions are
the combinatorial counterpart of linear systems and divisors — formal integral lin-
ear combinations of subvarieties of codimension 1 — on toric varieties (see [23] or
[15]). Thus, we are considering a partial order on (what essentially is) the group of
divisors SF(A) of a toric variety. This is not entirely foreign to algebraic geome-
ters, who call an element of SF(A) effective iff, in our terminology, it is positive
in the simplicial order of SF(A). However, we are also order-embedding®® SF(A)
into a larger lattice-ordered group P, associated with A, something which, to the
best of our knowledge, has no established counterpart in the algebro-geometric lan-
guage. We shall now show fan-theoretically that Po — a finitely presented structure
amenable to computation — completely encodes the birational geometry of the as-
sociated toric variety. We continue to use the notation introduced in the previous

BCompleteness is the exact counterpart of algebro-geometric compactness, and completion of
a fan corresponds to compactification of the associated toric variety.

9Generalizing this construction to finitely presented (-groups is straightforward.

20But not lattice-embedding.
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subsection, and to assume that A is complete and unimodular. Let p € F be a
positive (-function such that p ¢ SF(A), and suppose ¥ is a complete fan in Nk such
that p € SF(X). As we have seen, there exists a complete unimodular refinement
¥ < X¥. Clearly, p € SF(X'). By the De Concini-Procesi Lemma, there exists a
complete unimodular fan A; <9 A such that A; < ¥/ < X, whence p € SF(AI).21
Equivalently, p € [[Ha,]]- In any ¢-group G, every g € G decomposes uniquely as
g =g — g for elements ¢g*, g~ € GT such that g™ A g~ = 0; thus, the fact that we
have argued for p € F; is not restrictive. Iterating this construction we obtain:

Let A be a complete unimodular fan in Ng. There exists a sequence of complete
unimodular fans {A;};cz+ such that
(1) Ap=A;
(2) AH—I jg Al for all 7 € Z+ )
(3) For all p € F;f, there exists i € Z* such that p € [[Ha,]], hence for all f € F,
there is ¢ € Z" such that f € [Ha,] .

We call a sequence {A;};cz+ satisfying the properties of the above statement a De
Concini-Procest sequence for A.
A moment’s reflection shows that [[Ha,]] C [[Ha,]], whence [Ha,] C [Ha,].

Let ¢y and t; be the cardinalities of A(()l) and AM| respectively. Since [Ha,| =
Z' and [Ha,] & Z", we obtain an embedding of free abelian groups ¢, : Z® —
Z'; since [[Ha,]] C [[Ha,]], ¢1 is order-preserving (with respect to the simplicial
order), that is, it sends positive elements to positive elements. In other words,
with respect to simplicial bases in Z% and Z", ¢, is represented by a unique full-
rank integral ¢; x ¢y matrix with nonnegative entries. Given a De Concini-Procesi
sequence {A;} as in the above, we thus obtain a sequence of simplicial groups {Z'}
and injective order-preserving group homomorphisms {¢;,1 : Z% — Z'%+1}. Quite
generally, given a sequence of partially ordered abelian groups {G;} and order-
preserving (not necessarily injective) group homomorphisms {¢;11 : Gy — Gy},
the couple

(Gi, pis1)

is called a direct system of partially ordered abelian groups. Every such direct system
admits a unique limit group G = lim G;, which is again a partially ordered abelian
group. When all homomorphisms are injective, the limit is simply the group G =
Uicz+ Gi, with positive cone Gt = ;o + G . In this case, G is called ultrasimplicial.
Thus:

Simplicial approximations of free /-groups. Let A be a complete unimodular
fan in Ng. The f-group Pn = F, is ultrasimplicial. More precisely, given any De
Concini-Procesi sequence {A;} for A, Py is the limit group of the direct system

21 As shown in [24], such a A; can be effectively computed.



COMBINATORIAL FANS AND LATTICE-ORDERED GROUPS 15

(SF(A;), Gir1)
of simplicial groups of A;-linear support functions and injective order preserving
homomorphisms (; : SF(A;) = SF(A;41) induced by binary starrings A;;1 <o A;.

Remarks.

1. Amongst other things, simplicial approximations of free ¢-groups via groups of
support functions give rise to a very interesting combinatorics of positive integral
matrices. The key point is that the connecting morphisms ;11 : SF(A;) — SF(A41)
are of a very special kind indeed — geometrically, they are binary starrings. This
allows for the definition of a purely matrix-theoretical analogue of binary starring
which is the subject of current research, and still far from being well-understood.

2. The above result admits far-reaching generalizations. Techniques already devel-
oped in [22] allow to prove that every finitely presented ¢-group P is the limit of a
direct system of simplicial groups of support functions, in close analogy with what
we have just shown. The first author proved that, quite generally, every abelian
¢-group is ultrasimplicial ([18]). While the fan-theoretic interpretation of the latter
result is the subject of ongoing research, applications of the ultrasimplicial property
to other mathematical realms are described in [19].

3. Direct systems of simplicial groups were originally investigated by functional
analysts because of their relevance for the classification of certain C*-algebras. In
general, the limit need not be lattice-ordered — not even when all maps are binary
starrings. However, the limit of a direct systems of simplicial groups always is a
dimension group, namely a directed, unperforated partially ordered abelian group
with the Riesz Interpolation Property. See [19] for more details and references.

4. TORIC VARIETIES

We briefly introduce the basic correspondence between algebraic varieties and
fans. See [23], [15] and [16] for a comprehensive account. Our terminology and
notation for commutative algebra follows [5].

We shall work over a fixed algebraically closed ground field k& = k of characteristic
zero, even though it is known that many results remain true in positive characteristic.
We continue to use our previous notation — recall that N is a free abelian group of
rank n, M is its dual Z-module, Nx = R® N and My is the dual of Ng.

A lattice in R™ is a free abelian group L C R” of rank n. A lattice point (with
respect to L) in R™ is simply an element of L. In this terminology — a legacy of
Minkowski’s geometry of numbers — N is a lattice in Ng. Let o be a cone in Vg,
and consider the set L, = 0 N N C Ny of lattice points in ¢. Since o is convex, S
is a semigroup under addition. More is true.

Gordan’s Lemma. The lattice points L, within a cone o are a finitely generated
semigroup.
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FIGURE 3. A cone o = ((0,1),(1,1)) and its dual ¢ = {(1,0), (—=1,1)).

While Gordan’s Lemma is not difficult to prove (see e.g. [15]), it is an essential
result for the definition of affine toric varieties, as we now show.

Again, let 0 = (¥,...,7U,) be a cone in Ng, and set L, = 0 N N. By Gordan’s
Lemma, L, is in an additive finitely generated semigroup; let gi,...,gs be a set
of generators of S. (Each g; is a vector in Ng, but we drop the vector notation
for simplicity.) We switch to multiplicative notation, so that an element of L, is a
Laurent monomial g™ - - - g7 for (not necessarily unique) natural numbers m; € N.
(Since m; € N, it might seem sufficient to speak of monomials. However, the g;’s
are not free variables, and because of possible relations amongst them it is actually
necessary to deal with Laurent monomials — cfr. Example 4 below.) Consider
the semigroup ring k[L,|. Elements of k[L,] are Laurent polynomials, that is, finite
sums of Laurent monomials in L, with coefficients in k. Clearly, then, k[L,] is
a k-algebra.?? In fact, it is a finitely generated k-algebra, because L, is finitely
generated. It is almost immediate that k[L,] is reduced. (Indeed, if the n-th power
of a nonzero Laurent monomial is zero, then the nm;-th power of some variable g;
appearing in that monomial must be zero; but this implies that g; is the zero vector,
a contradiction. Extension to Laurent polynomials is trivial.) Thus we can define
the affine toric variety

X, = MaxSpec k[L,] .

Ezxamples.

1. If o = (€1,...,6,) is the cone generated by the canonical basis of Ng, X, =
MaxSpec k[L,] = MaxSpec k[x1, . . ., x| is affine n-space k".

2. If 0 = {(a,b)) CR?, (a,b) # 0, X, = MaxSpec k[L,] = MaxSpec k[z] is the affine
line k.

3. If o = {(1,0),(1,2)) C R?%, then {(1,0),(1,2)} is not a set of generators for L,,
because e.g. (1,1) is not in the submonoid spanned by {(1,0),(1,2)}. However,
{(1,0),(1,1),(1,2)} is a set of generators for L,. Hence, X, = MaxSpeck[L,| =
MaxSpec k[z1, x129, T1235). But k[z1, x129, v123] 2 k[X,Y, Z]/J, where J is the ideal

22Recall that a ring R is a k-algebra iff k is a subring of R; that R is reduced iff it has no nilpotent
elements; and that MaxSpec is a categorical equivalence between finitely generated reduced k-
algebras and affine algebraic varieties over k ([5], [12]).
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COMBINATORIAL CONVEXITY

ALGEBRAIC GEOMETRY

cone affine toric variety

face subvariety

lattice N C Ng torus = MaxSpec k[xl,ml_l, R
fan toric variety

— complete — compact

— unimodular — smooth

— simplicial — quasi-smooth

— induced by a polytope — projective

barycentric stellar subdivision

unimodular map

map of fans

cardinality of ©(®), ¥ a
complete unimodular fan

equivariant blow up
algebraic isomorphism
equivariant toric morphism
Euler characteristic y(Xx)

of a smooth compact variety

17

TABLE 1. Fan-Toric Vocabulary.

of k[X,Y, Z] generated by the polynomial Y? — X Z. Thus, X, is the standard cone
with vertex at the origin. In particular, X, is not “smooth” (at the origin) in any
reasonable sense of the word. We shall not define smoothness in this paper; as we
already mentioned, an affine toric variety X, is smooth iff ¢ is unimodular.

4. If 0 = Ng, X, = MaxSpec k[x1,2,",...,2,,2;']. The latter is known as the
n-dimensional algebraic torus, and it plays an important role in the theory of toric
varieties — see [23]. If o is not strongly convex, it contains a nontrivial linear
subspace V' C Ng of dimension d > 1. In this case, it is not hard to see that the
d-dimensional torus Xy splits off as a direct factor of X,, whence the widespread
technical device of restricting attention to strongly convex cones.

The next natural step is to construct general toric varieties gluing together affine
toric varieties. The data for the gluing morphisms come from a fan . In carrying
out this programme, it turns out that it is convenient to consider dual cones of the
elements of 3.

Let 0 C Ni be an m-dimensional cone. We set

o' ={f € Mg | f(i&) >0 for every @ € o}

It is not hard to check that if o = (¥, ...,%,), then ¢V is the intersection of the
half-spaces {f € Mg | f(v;) > 0} C Mg. Thus, by the Fundamental Theorem of
Polyhedra, it is a cone in Mg, the dual cone of o. The terminology is appropriate
in that ¥V = o for any cone o. Notice that faces 7 of o coincide with sets of the
form 7 = o Nker f, for some f € V.

If 0 C Ny is an n-dimensional strongly convex cone, its dual ¢V can be geometri-
cally constructed as follows. For each facet (= maximal proper face) F; of o, let p;
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be the inner normal to F;. Then ¢V is the positive linear hull of the finite set {p;},
that is, 0¥ = (p1, ..., D), where r is the number of facets of o. Further, 0" is itself
n-dimensional and strongly convex (see Figure 3).

Let X C Ng be a fan of strongly convex cones. For any o € X, we defined
L, = o0 N N; now, dually, set L = ¢ N M. For o, 7 € ¥, consider the affine
toric varieties X,v and X,v — again, notice that we are passing to duals. If 7 is
a face of o, then L? C L7, so that k[L?] is a subalgebra of k[L7], and X,v is an
open subset of X,v. Thus, in general, the common face ¢ N 7 corresponds to a
common open subset Xnr)v of Xov and X,v, along which we can glue these two
affine varieties together. The fan Y, then, encodes a recipe to patch together the
affine pieces X,v corresponding to the dual cones of cones o € X2, thus yielding (the
most general instance of) a toric variety, denoted Xy. This construction can be
carried out without passing to duals, and produces an algebraic variety, say X~.
However, the combinatorics of the faces of the cones in ¥ would be contravariant
with respect to the structure of subvarieties of X* — that is, cones of smaller
dimension in ¥ would correspond to larger subvarieties of X*. Dualization gives
a covariant correspondence: cones of smaller dimension in ¥ correspond to smaller
subvarieties of Xx.

Building on this basic construction, it is possible to carry out an extensive trans-
lation of algebro-geometric concepts into fan-theoretical language, and vice-versa.
This has been done in the last decades. While we refer to [15], [23] and [16] for
further information, we collect the very first few entries of the fan-toric dictionary
in Table 1.
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