
Séminaire Lotharingien de Combinatoire 47 (2002), Article B47h

Computing Tournament Sequence Numbers

efficiently

with Matrix Techniques

Erich Neuwirth

Department of Statistics and Decision Support Systems
University of Vienna

erich.neuwirth@univie.ac.at

Abstract

We give a new, “almost explicit” formula for tournament numbers, representing
them as upper left elements of the nth power of a matrix with an explicit formula for
elements of the original matrix. Using this representation, we show how to compute
tournament numbers in time complexity O(n6).

1 Main results

Tournament sequences are defined as sequences (t1, t2,) with t1 = 1 and
ti < ti+1 ≤ 2ti. Defining Tk-sequences as sequences with (t1, t2,) with t1 = k
and ti < ti+1 ≤ 2ti we see that tournament sequences are T1-sequences. Now
let T (n, k) denote the number of Tk-sequences of length n. It is obvious that
T (1, k) = 1 for all k. To compute T (n, k) for n > 1 we note that Tk-sequences
of length n are produced by taking t1 = k, and appending all Ti-sequences of
length n− 1 which are “admissible” extensions of a sequence starting with k.
It is obvious that k + 1 ≤ i ≤ 2k are the only possible choices for the first
element of the extension sequence. Therefore, we have the recursion

T (n, k) =
2k∑

j=k+1

T (n− 1, j). (1)

We call T the tournament matrix.

The tournament numbers we want to compute are T (n) = T (n, 1), and T (n)
is the number of tournament sequences of length n.
The values for T (n) for n = 1, 2, . . . 16 are

1, 1, 2, 7, 41, 397, 6377, 171886, 7892642, 627340987, 87635138366,
21808110976027, 9780286524758582, 7981750158298108606,
11950197013167283686587, 33046443615914736611839942.

Capelli and Narayana introduced tournament sequences in [2]. Further re-
sults about T (n) can be found in Sloane’s On-Line Encyclopedia of Integer
Sequences [7] (sequence A008934). Tournament numbers have been studied
by Torelli (see [9]) in connection with the Goldbach conjecture. Kleber and
Cook studied algorithmic aspects of computing T (n) extensively in [5]. They
showed that T (n) can be computed in time complexity O(n6) by transforming
the original recursive equations, which by themselves would lead to exponen-
tial time complexity.

In this paper, we present an “almost explicit” formula for computing T (n),
and we show that this formula computes T (n) with time complexity O(n6),
similar to the Kleber-Cook results. We then discuss why for practical purposes
our method works noticeably faster than their method.

Here are our two main results.

Theorem 1 Let n ≥ 2. Then T (n) is the upper left element of the matrix
power Cn−1

n−1 where Cm is the m×m-matrix with elements

C(i, j) = 22i−j−2
((

i−1
j−i+1

)
+ 4

(
i−1
j−i

)
+ 4

(
i−1

j−i−1

))
,

for i 6= j and i− 1 6= j;

C(i + 1, i) = 2i − 1;

C(i, i) = 2i−2(i + 3)− 1;

(2)

for 1 ≤ i, j ≤ m.

Here are the first few lines and columns of this matrix:

1 1 0 0 0 0 0 . . .

1 4 4 1 0 0 0 . . .

0 3 11 13 6 1 0 . . .

0 0 7 27 38 25 8 . . .

0 0 0 15 63 104 88 . . .

0 0 0 0 31 143 272 . . .

0 0 0 0 0 63 319 . . .
...

...
...

...
...

...
...

. . .



2

Theorem 2 Using the representation of Theorem 1, T (n) can be computed
in time complexity O(n6).

2 Matrix preliminaries

The key for applying matrix techniques to our problem is the observation that
Equation (1) can be interpreted in the following way:
Let U be the matrix with elements T (i, j), i ≥ 1, j ≥ 1. Then each row of U
can be obtained by multiplying the previous row with the matrix W from the
right, where W has the elements W (i, j) = 1 for j < i ≤ 2j and W (i, j) = 0
everywhere else. Writing the matrices U and W elementwise, we have


T (2, 1) T (2, 2) T (2, 3) T (2, 4) T (2, 5) . . .

T (3, 1) T (3, 2) T (3, 3) T (3, 4) T (3, 5) . . .

T (4, 1) T (4, 2) T (4, 3) T (4, 4) T (4, 5) . . .

T (5, 1) T (5, 2) T (5, 3) T (5, 4) T (5, 5) . . .

T (6, 1) T (6, 2) T (6, 3) T (6, 4) T (6, 5) . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

 =


T (1, 1) T (1, 2) T (1, 3) T (1, 4) T (1, 5) . . .

T (2, 1) T (2, 2) T (2, 3) T (2, 4) T (2, 5) . . .

T (3, 1) T (3, 2) T (3, 3) T (3, 4) T (3, 5) . . .

T (4, 1) T (4, 2) T (4, 3) T (4, 4) T (4, 5) . . .

T (5, 1) T (5, 2) T (5, 3) T (5, 4) T (5, 5) . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .




0 0 0 0 0 . . .

1 0 0 0 0 . . .

0 1 0 0 0 . . .

0 1 1 0 0 . . .

0 0 1 0 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .



U and W are infinite matrices, and for infinite matrices multiplication is not
always well defined. Matrix multiplication for infinite matrices is, however,
well defined, if either all the rows of the left factor have only finitely many
nonzero elements, or if all the columns of the right factor have only finitely
many nonzero elements. We call a matrix with rows with only finitely many
nonzero elements a matrix with finite rows, and we call a matrix with columns
with only finitely many nonzero elements a matrix with finite columns.

In our case, matrix W has finite rows and finite columns, and therefore rewrit-
ing recursion (1) as matrix equation is possible. Furthermore, any infinite
matrix can be multiplied with W from the left and from the right.

In the rest of this paper, we will use matrix techniques for operations on re-
cursively defined functions. These techniques have been pioneered by Kemeny
in [4] and extensively used by Neuwirth in [6].

For our proof, we will need some “helper matrices”. We will use infinite ma-
trices.
All our matrices start with row 1 and column 1.
δi,j is the standard Kronecker symbol, defined by δi,i = 1 and δi,j = 0 fori 6= j.
I defined by I(n, k) = δn,k is the identity matrix.
S defined by S(n, k) = δn+1,k is a matrix with 1s just above the main diagonal
and 0s everywhere else.

3

T defined by T (n, k) = δn,k+1 is a matrix with 1s just below the main diagonal
and 0s everywhere else.
On defined by On(m, k) = δm,k for m ≤ n and On(m, k) = 0 for m > n is a
“cut off” identity matrix.
J defined by J (n, k) = 1 for n ≥ k and J (n, k) = 0 for n < k is a lower
triangular matrix with 1s everywhere on and below the main diagonal.
B defined by B(n, k) =

(
n−1
k−1

)
is the triangular matrix consisting of the bino-

mial coefficients.
We note that with the exception of S all these matrices are lower triangular.
M ′ denotes the transpose of M for any matrix M .
We will need the following identities for these matrices:

ST = I (3)

(I − T)−1 = J (4)

For a (lower) triangular matrix D we have

OnD = OnDOn (5)

Furthermore we also have

OnOm = Omin(m,n) (6)

OnSk = SkOn+k (7)

and
JB = (I − T)−1B = SBT (8)

The last equation is just “the matrix way” of rewriting
∑n

i=0

(
i
k

)
=

(
n+1
k+1

)
.

B = B−1, the inverse of B, has the elements B(n, k) =
(

n−1
k−1

)
(−1)n+k, so it

may be described as “the binomials with a checkerboard sign pattern”.

For a triangular matrix D the matrix OnDOn is the “left upper n×n-block” of
the matrix. To compute the upper left block of the power of a triangular ma-
trix, we only need the block of the same size of the original matrix. Translated
into our matrix techniques, this becomes the following lemma:

Lemma 3 Let D be triangular. Then OnD
kOn = (OnDOn)k.

PROOF. This is an immediate consequence of Equation (5). �

The situation becomes more complicated when we allow matrices with some

4

diagonals above the main diagonal having nonzero elements. We will study a
special class of matrices.

Definition 4 A matrix M is called d-supertriangular if M(n, k) = 0 for
k > n + d.

Lemma 5 M is d-supertriangular iff there exists a triangular matrix D with
M = SdD.

PROOF. Trivial. �

Lemma 6 For a d-supertriangular matrix M we have OnM = OnMOn+d.

PROOF. According to Lemma 5 we have M = SdD with a triangular matrix
D.
Therefore, using Equation (7) we have OnM = OnS

dD = SdOn+dD.
Using Equation (5) we have SdOn+dD = SdOn+dDOn+d.
Using Equation (7) again we have SdOn+dDOn+d = OnSdDOn+d = OnMOn+d.

�

Lemma 7 For a d-supertriangular matrix M we have
OnM

kOn = On(On+(k−1)dMOn+(k−1)d)
kOn.

PROOF. Using Lemma 6 we have
OnM

kOn = OnMMk−1On = OnMOn+dM
k−1On.

Applying Lemma 6 repeatedly from left to right following this pattern we have
OnM

kOn = OnMOn+dMOn+2dMOn+3d · · · On+(k−1)dMOn+kdOn.
Replacing the terms On+id by On+(k−1)dOn+idOn+(k−1)d for i ≤ k − 1 and
replacing the last term On by On+(k−1)d)On we have
OnM

kOn = OnOn+(k−1)dMOn+(k−1)dOn+d

· On+(k−1)dMOn+(k−1)dOn+2d

· On+(k−1)dMOn+(k−1)dOn+3d · · ·
· On+(k−1)dMOn+kdOn+(k−1)dOn

Since M = On+(k−1)dMOn+(k−1)d is d-supertriangular and
On+kdOn+(k−1)d = On+(k−1)d we have
OnM

kOn = OnMOn+dMOn+2dMOn+3d · · ·MOn.
Applying Lemma 6 repeatedly (from right to left) we have

OnM
kOn = OnMdOn+dMOn+2dMOn+3d · · ·MOn = OnM

kOn

which finishes the proof. �

We also need the following technical lemma, translating certain recursion equa-
tions into matrix equations and deriving a recursion for a matrix product.

5

Lemma 8 Let F (n, k) be defined by

F (1, k) = δ1,k;

F (n, 1) = α0F (n− 1, 1), for n ≥ 2;

F (n, k) = α0F (n− 1, k) + α1F (n− 1, k − 1), for n ≥ 2 and k ≥ 2.

(9)

Let furthermore G(n, k) for all n ≥ 2 be defined by

G(n, 1) = β0G(n− 1, 1);

G(n, 2) = β0G(n− 1, 2) + β1G(n− 1, 1);

G(n, k) = β0G(n− 1, k) + β1G(n− 1, k − 1)

+β2G(n− 1, k − 2), for k ≥ 3.

(10)

Then H = FG satisfies the equations

H(1, k) = G(1, k), for all k ≥ 1;

H(n, 1) = (α0 + α1β0)H(n− 1, 1), for n ≥ 2;

H(n, 2) = (α0 + α1β0)H(n− 1, 2)+

α1β1H(n− 1, 1), for n ≥ 2;

H(n, k) = (α0 + α1β0)H(n− 1, k)+

α1β1H(n− 1, k − 1)+

α1β2H(n− 1, k − 2), for n ≥ 2 and k ≥ 3.

(11)

PROOF. The recursion for F can be rewritten as SF = α0F + α1FS.
Defining the matrix B = β0I + β1S + β2S2 the recursion for G can be
written as SG = GB. Since F has the (1, 0, 0, . . .) as its first row, we have
H(1, k) = G(1, k).

Using the matrix representation, we have

SFG = (α0F + α1FS)G = α0FG + α1FGB

= α0FG + α1β0FG + α1β1FGS + α1β2FGS2

and this is the matrix form of Equation (11). �

We need the following row sum inequality for recursively defined functions.

6

Lemma 9 Let F (n, k) be defined for n ≥ 1 and k ≥ 1 such that only finitely

many of the F (1, k) are nonzero and F (n, k) =
∑min(d,k−1)

j=0 αjF (n− 1, k − j).

Then we have
∑

j F (n, j) ≤ (
∑

j |F (1, j)|)(∑d
l=0 |αl|)n−1.

PROOF. The assertion is trivial for n = 1.
For n > 1 we have

∑
j F (n, j) ≤ ∑

j |F (n, j)| ≤ ∑
j

∑d
l=0 |F (n − 1, j − l)||αl|.

�

Remark 10 Later, we will also use the following fact: Let the recursively de-
fined matrices Fi(n, k) (defined for 1 ≤ i ≤ N) all fulfill the same recursion,

Fi(n, k) =
∑min(p,k−1)

j=0 αjFi(n− 1, k − j).

Then the linear combination F (n, k) =
∑N

i=1 γiFi(n, k) also fulfills the re-

cursion F (n, k) =
∑min(p,k−1)

j=0 αjF (n− 1, k − j). We will use this fact with
“shifted” functions, defined for i > 0 by Fi(n, k) = F0(n, k − i) for k ≥ i and
Fi(n, k) = 0 for k < i.

Remark 11 We will also make use of the following well known fact:
Let pd(x) be a polynomial of degree d. Then for arbitrary integers k and n > d

we have
∑n

i=0 pd(k + i)
(

n
i

)
(−1)i = 0.

This is another way of expressing the fact that a polynomial of degree d has
vanishing finite differences of any order higher than d.
In matrix notation, we can rewrite this fact in the following way: Let X be a
matrix with rows generated by polynomials, i.e., X(n, k) = pn−1(k), with pn

being polynomials of degree n. Then XB′−1 = X(B−1)′ is a (lower) triangular
matrix.

3 The proof

We start with a few more or less technical lemmata, which finally will result
in a proof of Theorems 1 and 2. The main technique used is the translation of
recursion equations into matrix equations.

Lemma 12 Let the infinite matrix W be defined by
W (n, k) = 1 for k + 1 ≤ n ≤ 2k and W (n, k) = 0 everywhere else. Then the
tournament matrix U satisfies the equation

SU = UW. (12)

PROOF. Equation (12) is just a matrix version of Equation (1). �

7

Lemma 13 V = UB′−1 is a lower triangular matrix, and the first columns
of V and U are equal.

PROOF. As Cook and Kleber have shown in [5], T (n, k) can be written as
T (n, k) = pn−1(k) with pn being polynomials of degree n. Using Remark 11
proves the first part of our lemma. Since the first column of B′−1 is (1, 0, 0, 0, . . .)′,
the second assertion of the lemma is trivial. �

Lemma 14 V defined in Lemma 13 satisfies the equation SV = VD
with D = B′WB′−1, and D is 1-supertriangular.

PROOF. Since we have SU = UW we also have SUB′−1 = UWB′−1.
By Lemma 13 V = UB′−1 is lower triangular. Therefore, multiplying it with
the upper triangular matrix B′ from the right is a well defined operation and
we have VB′ = U.
Now we want to apply the associative law, which in general is not applicable
for multiplication of infinite matrices. Nevertheless, the associative law can be
applied if all the matrix products involved are well defined. Therefore we have
SV = SUB′−1 = UWB′−1 = (U(B′−1B′))(WB′−1) = ((UB′−1)B′)(WB′−1) =
(UB′−1)(B′(WB′−1)) = VD. �

Lemma 15 For D defined in Lemma 14 we have D = C ′ with C defined by
Equations 2.

PROOF. Using matrix notation we note that W can be written as
W = J ′(I2 − I) with I2(n, k) = δn,2k. Therefore we have
C = D′ = (B′WB′−1)′ = (B′J ′(I2 − I)B′−1)′ = B−1(I ′2 − I)JB.
Using Remark 11 we have
C = B−1(I ′2 − I)SBT = (B−1I ′2SB − B−1SB)T .
Now we use Lemma 8 to simplify B−1SB and B−1I ′2SB.
Setting α0 = −1, α1 = 1, β0 = 1, β1 = 1, G(1, 1) = 1 and G(1, 2) = 1 allows
us to compute the recursion equation for H1 = B−1(SB). The resulting array
H1 in this case has H1(1, 1) = 1, H1(1, 2) = 1, H1(1, k) = 0 for k ≥ 2 and
fulfills the simple recursion H1(n, k) = H1(n − 1, k − 1). Therefore, we have
H1(n, k) = δn,k + δn+1,k.
To get the recursion equation for B−1I ′2SB from Lemma 8 we note that I ′2SB
is the matrix with rows 3, 5, 7, ... from the binomial triangle B. Therefore, to
apply Lemma 8, we set G(1, k) =

(
2

k−1

)
, β0 = 1, β1 = 2 and β2 = 1. For F

we use α0 = −1 and α1 = 1. Then H2 = FG for n ≥ 2 and k ≥ 3 fulfills the
recursion

H2(n, k) = 2H2(n− 1, k − 1) + H2(n− 1, k − 2) (13)

8

Additionally, we have H2(1, 1) = 1, H2(1, 2) = 2, H2(1, 3) = 1, and H2(1, k) =

0 for k ≥ 4. It is easy to see that H3(n, k) = 22n−k−1
(

n−1
k−n

)
satisfies Equation

(13) with H2 replaced by H3 and therefore (using Remark 10) any linear
combination H(n, k) =

∑d
i=0 γiH3(n, k − n− i) satisfies Equation (13) with

H2 replaced by H.
Since we have H3(1, k) = δ1,k, H4 defined by
H4(n, k) = H3(n, k)+2H3(n, k−1)+H3(n, k−2) satisfies H4(1, k) = G(1, k),
the boundary conditions for H2. Since H4 also fulfills the (adapted) recursion
(13), we have H2 = H4.
Rewriting H2 = H4 we have
H2(n, k) = H3(n, k) + 2H3(n, k − 1) + H3(n, k − 1)

= 22n−k−1
(

n−1
k−n

)
+ 2.22n−k

(
n−1

k−n−1

)
+ 22n−k+1

(
n−1

k−n−2

)
= 22n−k−1

((
n−1
k−n

)
+ 4

(
n−1

k−n−1

)
+ 4

(
n−1

k−n−2

))
Combining our formulas for H2B−1I ′2SB and H1B−1SB
we have C = (H2 − H1)T . Using the fact that multiplying any matrix with
T from the right is the same as “cutting off” the first column of this matrix,
and combining C = (H2 −H1)T with the elementwise representations for H1

and H2 this gives Equations (2) for C. �

Now we are finally ready to prove Theorem 1.

Proof of Theorem 1
According to Lemma 13 the T (n) are the first column of V. So T (n) is the
upper left element of Sn−1V. Since SV = VC ′ we have Sn−1V = V(C ′)n−1.
Since V is lower triangular and V(1, 1) = 1, the upper left element of V(C ′)n−1

is also the upper left element of (C ′)n−1, and, by transposing, the upper left
element of Cn−1. Applying Lemma 7 with n = 1, d = 1, and k = n−1 finishes
the proof of Theorem 1.

Proof of Theorem 2
We will discuss computing T (n + 1) instead of computing T (n) because then
the equations become somewhat simpler.
We note that to compute T (n+1) it is not necessary to compute the complete
matrix Cn

n . It is sufficient to compute the first column of Cn
n . Defining a vector

sequence vi by v0=e1 (the vector (1, 0, 0, 0, . . .)′ of length n) and vi+1 = Cnvi

we see that vn is the first column of Cn
n and T (n + 1) is the first element of

vn.

The following algorithm computes vk:

(1) For 1 ≤ i ≤ n let v0(i) = δ1,i

(2) For j = 1, 2, . . . n let vj(i) =
∑n

l=1 C(i, l)vj−1(l)

9

Each single execution of step (2) involves n2 multiplications and n(n−1) addi-
tions, and this step is repeated n times. So the total number of multiplications
and additions for all repeated executions of step (2) is O(n3).
To be able to perform these steps we have to calculate the n2 elements of
matrix C. C essentially contains sums of binomial coeffients

(
N
k

)
with N ≤ 2n

multiplied by powers of 2, and therefore can be calculated in time n3.

Using the fact that C = (H2 −H1)T we see that C(i, j) ≤ H2(i, j + 1) for all
i and j.
Applying Lemma 9 and the recursion 13 to H2 gives∑

j H2(n, j) ≤ 8 · 3n−1 and therefore trivially maxi,j≤n H2(i, j) ≤ 8 · 3n−1.
Therefore we also have

∑
j C(n, j) ≤ 8 · 3n−1 and maxi,j≤n C(i, j) ≤ 8 · 3n−1.

Therefore, by induction we have vk(i) ≤ 8k−13(n−1)(k−1) and as a consequence
vk(i) ≤ 8n−13(n−1)(n−1) ≤ 3n2

. So all the multiplications in step (2) have one
factor bounded by 8 · 3n−1 ≤ 3n+1 and the other factor bounded by 3n2

, and
for all additions the two summands are bounded by 3n2

.

To give an estimate for the upper bound for the time needed to compute T (n),
we will use naive bit complexity (as introduced by Bach and Shallit in [1]),
i.e., we assume that the time needed for addition of large numbers x and y is
bounded by O(max(log(x), log(y))), i.e., the number of digits of x and y, and
that the time needed for multiplication of large numbers x and y is bounded
by O(log(x) log(y)).
So, to compute the nth tournament number, we need O(n3) operations with
naive bit complexity bounded by O(n3) for each of these operations, and there-
fore naive bit complexity for computation is O(n6). �

Remark 16 The derivation of our complexity bound uses naive bit complex-
ity, assuming O(log(x) log(y)) as the bound for the multiplication of two num-
bers x and y. Faster methods for multiplying large numbers are known. Using
Karatsuba’s multiplication algorithm (see [3]) we get a bound of O(n4+log 3),
or approximately O(n5.6) for complexity, and using Strassen’s method (see [8])
we even could get O(n5 log n log log n).

4 Practical considerations

For practical computation purposes it is convenient to use matrix computation
as implemented in modern computer algebra systems. Matrix calculations are
implemented much faster than loops for calculating sums of products. Here is
Mathematica code implementing our algorithm.

TourCoeff[n_, k_] :=

2^(2*n - k - 2)*(Binomial[n - 1, k - n + 1] +

10

4*Binomial[n - 1, k - n] +

4*Binomial[n - 1, k - n - 1]) -

KroneckerDelta[n, k] -

KroneckerDelta[n, k + 1]

CoeffMat[N_] := Transpose[Table[TourCoeff[i, j],

{i, 1, N}, {j, 1, N}]]

Tour[n_] :=

Module[{C}, C = CoeffMat[n - 1];

v = Table[KroneckerDelta[i, 1], {i, 1, n - 1}];

Do[v = v.C, {i, 1, n - 1}]; v[[1]]]

And here is Mathematica code implementing the algorithm of Kleber and
Cook.

TourKleb[1, k_] := TourKleb[1, k] = 1

TourKleb[n_, k_] /; k <= n :=

TourKleb[n, k] =

If[k > 1, TourKleb[n, k - 1], 0] - TourKleb[n - 1, k] +

TourKleb[n - 1, 2*k - 1] + TourKleb[n - 1, 2*k]

TourKleb[n_, k_] /; k > n :=

TourKleb[n, k] =

Sum[TourKleb[n, k - j]*Binomial[n, j]*(-1)^(j + 1),

{j, 1, n}]

TourKleb[n_] := TourKleb[n, 1]

Computing T (n) for selected values of n needed the following time (in seconds)
on a PC with a 1 GHz Pentium processor, Windows 98, and Mathematica 4.1

n 100 150 200 300

Kleber-Cook 24 145 2344

Neuwirth 2 16 88 6107

We did not compute T (300) with the Kleber-Cook method since that would
have taken far too long.
These results might be somewhat surprising since the Kleber-Cook algorithm
and our algorithm have the same asymptotic complexity. Two facts at least
partially explain why our algorithm is much faster: T (n, k) increases in k,
and the Kleber-Cook algorithm computes T (n, k) for k = 1, 2, . . . 2n. Our
algorithm only uses numbers occurring in V as defined in Lemma 13 and the
elements of V are much smaller than the elements of U. When calculating
the product sums in the recursion equations, we calculate (n − 1)2 sums of
n − 1 terms each in our algorithms. The Kleber-Cook algorithm has n − 1

11

steps and in step i computes i sums for 3 terms and i sums of i terms. So this
algorithm computes fewer sums than our algorithm at the beginning and more
sums at the end. At the end, however, the numbers are larger and therefore
the computations are more time-consuming. Additionally, rewriting product
sums as matrix product speeds up computation considerably.

References

[1] E. Bach and J. Shallit, Algorithmic Number Theory. MIT Press, 1996.

[2] P. Capelli and T. V. Narayana, On Knock-Out Tournaments. Canad. Math. Bull.
13 (1970), 105-109.

[3] A. Karatsuba and Yu. Ofman, Multiplication of Many-Digital Numbers by
Automatic Computers. Doklady Akad. Nauk SSSR 145 (1962) 293-294.
Translation in Physics-Doklady 7 (1963), 595-596.

[4] J. G. Kemeny, Matrix representation for combinatorics, J. Comb. Theory Ser. A
36, (1984), 279-306.

[5] M. Cook and M. Kleber, Tournament sequences and Meeussen sequences,
Electron. J. Combin. 7 (2000), Research Paper 44, 16 pp. (electronic).

[6] E. Neuwirth, Recursively defined combinatorial functions: extending Galton’s
board. Discrete Math. 239 (2001), 33-51.

[7] N. J. A. Sloane, Sloane’s On-Line Encyclopedia of Integer Sequences.
http://www.research.att.com/~njas/sequences/

[8] A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen. Computing
7 (1971), 281-292.

[9] M. Torelli, Increasing Integer Sequences and Goldbach’s Conjecture. Preprint,
(1996).

12

