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Abstract. We study generating functions for the number of involutions of length n
avoiding (or containing exactly once) 132 and avoiding (or containing exactly once)
an arbitrary permutation τ of length k. In several interesting cases these generating
functions depend only on k and can be expressed via Chebyshev polynomials of the
second kind. In particular, we show that involutions of length n avoiding both 132
and 12 . . . k are equinumerous with involutions of length n avoiding both 132 and any
extended double-wedge pattern of length k. We use combinatorial methods to prove
several of our results.

1. Introduction

The main goal of this paper is to give analogues of enumerative results on certain
classes of permutations characterized by pattern-avoidance in the symmetric group
Sn. In In = {π ∈ Sn : π = π−1} we identify classes of restricted involutions with
enumerative properties analogous to results on permutations. More precisely, we study
generating functions for the number of n-involutions (that is, involutions of length n)
avoiding (or containing exactly once) 132, and avoiding (or containing exactly once) an
arbitrary pattern τ ∈ Sk. In the remainder of this section, we present a brief account
of earlier works which motivated our investigation, we give the basic definitions used
throughout the paper, and we summarize our main results.

Let π ∈ Sn and τ ∈ Sk be two permutations. We say that π contains τ whenever there
exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that (πi1 , πi2 , . . . , πik) is order-
isomorphic to τ ; in such a context τ is usually called a pattern. We say that π avoids
τ , or is τ -avoiding , whenever no such subsequence exists. The set of all τ -avoiding
n-permutations is denoted Sn(τ). For an arbitrary finite collection of patterns T , we
say that π avoids T whenever π avoids every τ ∈ T ; the corresponding subset of Sn is
denoted Sn(T ). For example, 562314 ∈ S6(132) whereas 51243 6∈ S5(132) because it
contains two subsequences (which are 143 and 243) order-isomorphic to 132; moreover,
453612 ∈ S6(132, 1234).

While the case of permutations avoiding a single pattern has attracted much attention,
the case of multiple pattern avoidance remains less investigated. In particular, a natural
next step is to consider permutations avoiding pairs of patterns τ1, τ2. This problem
has been solved completely for τ1, τ2 ∈ S3 (see [SS]), for τ1 ∈ S3 and τ2 ∈ S4 (see
[W2]), and for τ1, τ2 ∈ S4 (see [B1, Km] and references therein). Several recent papers
[CW, MV1, Kt, MV2, MV3, MV4] deal with the case τ1 ∈ S3, τ2 ∈ Sk for various pairs
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τ1, τ2. Another natural question is to study permutations avoiding τ1 and containing
τ2 exactly r times. This problem has been investigated for certain τ1, τ2 ∈ S3 and
r = 1 in [Ro], and for certain τ1 ∈ S3, τ2 ∈ Sk in [RWZ, MV1, Kt, MV3, MV4]. The
tools involved in these papers include continued fractions, Chebyshev polynomials, and
Dyck words. We now recall some of these tools in more detail, along with the method
of generating trees.

Chebyshev polynomials of the second kind (or Chebyshev polynomials, for short) are
defined by

(1.1) Ur(cos θ) =
sin(r + 1)θ

sin θ

for r ≥ 0. The Chebyshev polynomials satisfy the recurrence

(1.2) Ur(t) = 2tUr−1(t)− Ur−2(t)

for r ≥ 2 together with U0(t) = 1 and U1(t) = 2t. Evidently, Ur(x) is a polynomial
of degree r in x with integer coefficients. Chebyshev polynomials were invented to
meet the needs of approximation theory, but are also widely used in various other
branches of mathematics, including algebra, combinatorics, and number theory (see
[Ri]). The relationship between restricted permutations and Chebyshev polynomials
was first discovered by Chow and West [CW], and later by Mansour and Vainshtein
[MV1, MV2, MV3, MV4] and Krattenthaler [Kt]. These results are related to the
rational function

(1.3) Rk(x) =
Uk−1

(
1

2
√
x

)
√
xUk

(
1

2
√
x

)
for all k ≥ 1. For example, R1(x) = 1, R2(x) = 1

1−x , and R3(x) = 1−x
1−2x

. It is easy
to see that for any k, Rk(x) is rational in x and satisfies the following equation (see
[MV1, MV3, MV4])

(1.4) Rk(x) =
1

1− xRk−1(x)
.

Following [CGHK] (see also the Ph.D.-theses [Gi, Gu, P, W1]), a generating tree for a
set of objects is a tree subject to the conditions that each object of length n appears
once and only once on a vertex of level n, and that the edges correspond to the manner
in which the objects increase. In order to characterize a generating tree by a succession
system, we associate to each object a label such that any two nodes have the same label
if and only if their subtrees are isomorphic. Therefore to characterize a generating tree
it suffices to specify the label of the root and a set of succession rules explaining how
to derive from the label of a parent the labels of all of its children.

Example 1.1. (see [W2]) The generating tree of 132-avoiding permutations can be
characterized by the following succession system:

Root: (2)
Succession rule: (t) ; (2), (3), . . . , (t+ 1).
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Here t = 1 + |{πi, 1 ≤ i ≤ n : πi > πj,∀i < j ≤ n}| for any π ∈ Sn(132), and the
children of a given permutation of length n are the permutations obtained by inserting
an n+ 1 in all locations which do not result in a forbidden pattern.

The Catalan sequence is the sequence {Cn}n≥0, where Cn = 1
n+1

(
2n
n

)
is called the nth

Catalan number. The generating function for the Catalan numbers is given by

(1.5) C(x) =
1−
√

1− 4x

2x
.

The Catalan numbers provide a complete answer to the problem of counting more than
66 different families of combinatorial structures (see Stanley [S, Page 219 and Exer-
cise 6.19]). As an example, we consider Dyck words and 132-avoiding permutations.

Let L be a set of letters; we write L∗ to denote the set of all words on L. We write |w|
to denote the length of a word w, which is the number of letters in w. We write |w|l
to denote the number of occurences of a given letter l ∈ L in w. We write ε to denote
the empty word (which has length 0).

Let Px,x = {w ∈ {x, x}∗ : for all w = w′w′′, |w′|x ≥ |w′|x} be the set of all Dyck word
prefixes. For example, xxxx, xxxx, xxxx, xxxx, xxxx, and xxxx are the Dyck word
prefixes of length 4. Dyck word prefixes in Px,x of length n are enumerated by the
central binomial coefficient

(
n

[n/2]

)
for all n ≥ 0. Dyck words are Dyck word prefixes w

in {x, x}∗ such that |w|x = |w|x. For example, xxxx and xxxx are the two Dyck words
of length 4. Dyck words of length 2n are enumerated by Cn, the nth Catalan number.

One of the numerous bijections between 132-avoiding permutations and Dyck words can
be obtained by characterizing the generating tree for Dyck words by the same succession
system given in Example 1.1. Guibert [Gu, Example 2.1] has exhibited such a charac-
terization, in which the label t of any Dyck word w satisfies w = xw1xxw2x . . . xwt−1x,
where wi is a Dyck word for all 1 ≤ i < t.

We also consider words in {a, b2}∗ of length n, which are enumerated by the nth
Fibonacci number Fn. Recall that the Fibonacci numbers are given by F0 = F1 = 1
and Fn = Fn−1 + Fn−2, and have the generating function F (x) = 1

1−x−x2 .

An involution π is a permutation such that π = π−1; let In denote the set of all
n-involutions. Several authors have given enumerations of sets of involutions which
avoid certain patterns. In [Re] Regev provided an asymptotic formula for In(12 . . . k)

and showed that In(1234) is enumerated by the nth Motzkin number
∑[n/2]

i=0

(
n
2i

)
Ci. In

[Ge] Gessel enumerated In(12 . . . k). In [G-B] Gouyou–Beauchamps gave an entirely
bijective proof of some very nice exact formulas for In(12345) and In(123456).

Pattern-avoiding involutions have also been linked with other combinatorial objects.
Gire [Gi] has established a one-to-one correspondence between 1-2 trees having n edges
and Sn(321, 3142) (this is the set of n-permutations avoiding patterns 321 and 231,
except that the latter is allowed when it is a subsequence of the pattern 3142). On
the other hand, Guibert [Gu] has established bijections between 1-2 trees having n
edges and each of the sets Sn(231, 4132), In(3412), and In(4321) (and therefore with
In(1234), by transposing the corresponding Young tableaux obtained by applying the
Robinson-Schensted algorithm). In addition, Guibert [Gu] has established a bijection
between In(2143) (these involutions are sometimes called vexillary involutions) and
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In(1243). More recently, Guibert, Pergola, and Pinzani [GPP] have given a one-to-one
correspondence between 1-2 trees having n edges and vexillary n-involutions. It follows
that all these sets are enumerated by the nth Motzkin number. It remains an open
problem to prove the conjecture of Guibert (in [Gu]) that In(1432) is also enumerated
by the nth Motzkin number.

In this paper we present a general approach to the study of n-involutions avoiding 132
(or containing 132 exactly once), and avoiding (or containing exactly once) an arbitrary
pattern τ ∈ Sk. As a consequence, we derive all of the previously known results for
this kind of problem, as well as many new results. We also prove many of our results
using combinatorial (sometimes entirely bijective) methods.

The paper is organized as follows. The case of involutions avoiding both 132 and
τ is treated in Section 2, where we derive a simple structure for any given 132-
avoiding involution. This structure gives a complete answer for several interesting
cases of τ , including the cases τ = 12 . . . k (see Subsection 2.2), τ = 2134 . . . k (see
Subsection 2.3), τ is an extended double-wedge pattern (see Subsection 2.4), and
τ = (d+1)(d+2) . . . k12 . . . d (see Subsection 2.5). In particular, we give a bijection be-
tween involutions avoiding both 132 and 12 . . . k and involutions avoiding both 132 and
2134 . . . k (see Subsection 2.3). We also show that involutions avoiding both 132 and
any extended double-wedge pattern of length k (see Subsection 2.4) are equinumerous
with involutions avoiding 132 and 12 . . . k.

We treat the case of involutions avoiding 132 and containing τ exactly once in Section 3.
Here again we start with a general structure for 132-avoiding involutions, and then
obtain a complete answer for several particular cases. For instance, we find a recurrence
relation for the generating function for the number of involutions avoiding 132 and
containing 12 . . . k exactly r times (see Theorem 3.4).

In Sections 4 and 5 we consider those involutions which contain 132 exactly once.
In particular, we establish by bijective arguments that n-involutions containing 132
exactly once and having p fixed points are equinumerous with (n − 2)-involutions
avoiding 132 and having p fixed points (see Theorem 4.1).

2. Avoiding 132 and another pattern

Let IT (n) = |In(132, T )|, and let IT (x) =
∑

n≥0 IT (n)xn be the corresponding gener-
ating function. The following proposition is the basis for all of the other results in this
section; it follows immediately from our definitions.

Proposition 2.1. For any π ∈ In(132) such that πj = n, exactly one of the following
holds:

(1) if 1 ≤ j ≤ [n/2] then π = (β, n, γ, δ, j), where
(1.1) β is a 132-avoiding permutation of the numbers n− j+ 1, . . . , n− 2, n− 1,
(1.2) δ ∈ Sj−1(132) such that δ · β = 12 . . . (j − 1); sometimes we will write

δ−1 + n− j for β,
(1.3) γ is a 132-avoiding involution of the numbers j + 1, . . . , n− j − 1, n− j;

(2) if j = n then π = (β, n) where β ∈ In−1(132).
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For example, π = 18 16 17 19 12 13 10 9 8 7 11 5 6 14 15 2 3 1 4 is a 132-
avoiding involution for which case (1) occurs: n = 19, j = 4, β = 18 16 17, γ =
12 13 10 9 8 7 11 5 6 14 15 and δ = 2 3 1. In particular, β = δ−1 + 15 =
(3+15) (1+15) (2+15).

Observe that applying Proposition 2.1 repeatedly leads to the following decomposition
of a given 132-avoiding involution:

π = (β1, n1, β2, n2, . . . , βk, nk, αk+1, δk, jk, αk, . . . , δ2, j2, α2, δ1, j1, α1).

Here ni and ji form a cycle for all 1 ≤ i ≤ k, the elements of βi form cycles with
the elements of δi for all 1 ≤ i ≤ k, and the elements of αi are fixed points for
1 ≤ i ≤ k + 1. For the permutation π given in the previous example we find that
β1 = 18 16 17, n1 = 19, β2 = 12, n2 = 13, β3 = ε, n3 = 10, β4 = ε, n4 = 9, α5 = ε,
δ4 = ε, j4 = 8, α4 = ε, δ3 = ε, j3 = 7, α3 = 11, δ2 = 5, j2 = 6, α2 = 14 15, δ1 = 2 3 1,
j1 = 4, and α1 = ε.

2.1. Avoiding 132. We will use the following remark.

Remark 2.2. Let {yn}n≥0 and {zn}n≥0 be two sequences, and denote the corresponding
generating functions by y(x) and z(x) respectively. Then∑

n≥0

n∑
j=0

yjz2n−2jx
2n = 1

2
y(x2)(z(x) + z(−x));∑

n≥0

n∑
j=0

yjz2n+1−2jx
2n+1 = 1

2
y(x2)(z(x)− z(−x)).

As a corollary of Proposition 2.1, we obtain the generating function for |In(132)|.

Theorem 2.3. (see [SS, Proposition 5]) The generating function for the number of
132-avoiding n-involutions is given by

I∅(x) =
1

1− x− x2C(x2)
.

Proof. Knuth [Kn] proved that |Sn(132)| = Cn, where Cn is the nth Catalan number,
and by Proposition 2.1 we find that for all n ≥ 1,

I∅(n) =

[n/2]∑
j=1

Cj−1I∅(n− 2j) + I∅(n− 1).

Moreover, I∅(0) = 1. Restating this in terms of generating functions and using Re-
mark 2.2, we find that

I∅(x) = 1 + x2C(x2)I∅(x) + xI∅(x).

�

We can also prove this result bijectively. The number of Dyck word prefixes of length
n is the central binomial coefficient

(
n

[n/2]

)
when n ≥ 0. Indeed, for any Dyck word

prefix w ∈ Px,x there exist unique Dyck words wi such that w = w0xw1x . . . xwp, and
w is in bijection (see the Catalan factorization of any word in {x, x}∗ due to Chottin
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and Cori [CC]) with w0xw1x . . . xw[(p−1)/2]xw[(p+1)/2]xw[(p+3)/2]x . . . xwp. Therefore Dyck
word prefixes of length n are in bijection with bilateral words of length n in

{w ∈ {x, x}∗ : |w|x = |w|x or |w|x = |w|x − 1},

which are trivially enumerated by
(

n
[n/2]

)
.

Theorem 2.4. There is a bijection Φ between 132-avoiding n-involutions and Dyck
word prefixes in Px,x of length n. Moreover, the number of fixed points of the involution
corresponds to the difference between the number of letters x and x in the Dyck word
prefix.

Proof. Let π ∈ In(132) have p fixed points. By Proposition 2.1 (and the associated
remark), we have π = π′π′′xπ′′′ with |π′| = n−p

2
(π′ has no fixed points and consists

of cycles with π′′ or π′′′), π′′ does not contain a fixed point and π(x) = x (x is the
first fixed point). We obtain two 132-avoiding (n + 1)-involutions from π. The first
one is given by inserting a fixed point between π′ and π′′, and the second one (if and
only if π has at least one fixed point) is given by modifying the first fixed point x by
a cycle between π′ and π′′. All 132-avoiding involutions can be obtained exactly once
by applying this rule, starting from ε.

Let w ∈ Px,x have length n and satisfy |w|x − |w|x = p. Then w = w0xw1x . . . xwp
where wi are Dyck words for all 0 ≤ i ≤ p. We obtain two Dyck word prefixes of length
n + 1 from w: xw and xw0xw1x · · ·xwp (if and only if p > 0). All Dyck word prefixes
can be obtained exactly once by applying this rule, starting from ε. �

Clearly, these two generating trees for the 132-avoiding involutions and the Dyck word
prefixes can be characterized by the following succession system:

(2.1)

 (0)
(0) ; (1)
(p) ; (p+ 1), (p− 1) if p ≥ 1

Figure 1 shows the bijection Φ between 132-avoiding involutions and Dyck word prefixes
(and the labels of the succession system which characterizes them) for the first values.

Corollary 2.5. The number of 132-avoiding n-involutions is given by(
n

[n/2]

)
.

Moreover, the number of 132-avoiding n-involutions having exactly p fixed points with
0 ≤ p ≤ n (and p is odd if and only if n is odd) is given by the ballot number(

n
n+p

2

)
−
(

n
n+p

2
+ 1

)
.

Proof. Indeed, the number of Dyck word prefixes w of length n with |w|x− |w|x = p is
given by the ballot number (or Delannoy number [E], or distribution α of the Catalan
number [Kw]). �
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Figure 1. The generating trees of the 132-avoiding involutions and the
Dyck word prefixes, with the labels of the succession system which char-
acterizes them.

In particular, the number of 132-avoiding 2n-involutions without fixed points is given
by Cn, the nth Catalan number.

The following theorem is the basis for all of the other results in this section.

Theorem 2.6. Let T be a set of patterns, T ′ = {(τ1, . . . , τk, k + 1) : (τ1, . . . , τk) ∈ T},
and let ST (x) be the generating function for |Sn(132, T )|. Then

(2.2) IT ′(x) =
1

1− x2ST (x2)
+

x

1− x2ST (x2)
IT (x).

Proof. Proposition 2.1, together with the definition of T ′, yields for n ≥ 1

IT ′(n) = IT (n− 1) +

[n/2]∑
j=1

ST (j − 1)IT ′(n− 2j),
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where ST (j−1) = |Sj−1(132, T )|. Hence, in terms of generating functions, Remark 2.2
yields

IT ′(x)− 1 = xIT (x) + x2ST (x2)
IT ′(x) + IT ′(−x)

2
+ x2ST (x2)

IT ′(x)− IT ′(−x)

2
,

which is equivalent to Equation 2.2. �

2.2. Avoiding 132 and 12 . . . k. In this subsection we consider involutions which avoid
both 132 and 12 . . . k. We start with an example.

Example 2.7. (see [SS]) Let T ′ = {123} and T = {12}. Equation 2.2 gives

I123(x) =
1

1− x2S12(x2)
+

x

1− x2S12(x2)
I12(x),

and by definition we have S12(x) = I12(x) = 1
1−x ; hence

I123(x) =
1 + x

1− 2x2
.

It follows that |I123(n)| = 2[n/2] for all n ≥ 0. Similarly, I1234(x) = 1
1−x−x2 , which

means that |I1234(n)| = Fn, the nth Fibonacci number.

As an extension of Example 2.7, we consider the case T = {12 . . . k}.

Theorem 2.8. For all k ≥ 1,

I12...k(x) =
1

xUk
(

1
2x

) k−1∑
j=0

Uj

(
1

2x

)
.

Proof. The theorem is immediate for k = 1. Let k ≥ 2; Theorem 2.6 gives

I12...k(x) =
1

1− x2S12...(k−1)(x2)
+

x

1− x2S12...(k−1)(x2)
I12...(k−1)(x).

On the other hand, the generating function for |Sn(132, 12 . . . (k− 1))| is Rk−1(x) (see
[CW, Theorem 1]); combining this with Identity 1.4, we have

I12...k(x) = Rk(x
2) + xRk(x

2)I12...(k−1)(x).

Clearly I1(x) = R0(x) = 1, so by induction on k and Identity 1.3, we get the desired
result. �

We now give a combinatorial explanation for this result. Let π be a 132-avoiding invo-
lution. Observe that if π avoids 12 . . . k then π has less than k fixed points. Moreover,
if π (of length n) has less than k fixed points and is obtained from a 132-avoiding in-
volution σ of length less than n having k fixed points (taking σ as large as possible) by
applying the rules described for the bijection Φ given in Theorem 2.4, then π contains
a subsequence 12 . . . k. This is because the first fixed points of σ become cycles in π
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such that the beginning of these cycles and the last remaining fixed points of σ in π
constitute a subsequence of type 12 . . . k. It follows that the succession system

(2.3)


(0)
(0) ; (1)
(p) ; (p+ 1), (p− 1) 1 ≤ p ≤ k − 2
(k − 1) ; (k − 2)

characterizes the generating tree for the involutions which avoid both 132 and 12 . . . k.

It is easy to see that |I2n(132, 12 . . . k)| = 2|I2n−1(132, 12 . . . k)| for any odd k. More-
over, observe that the set of labels of succession system 2.3 is finite, so the correspond-
ing generating function is rational. More precisely, we immediately deduce from the
succession system 2.3 that the number of n-involutions avoiding both 132 and 12 . . . k
having p fixed points is given by the (p+1)th component of the vector given by Vk.M

n
k ,

where Vk = ( 1 0 0 . . . 0 ) is a vector of k elements and

Mk =



0 1 0 0 0 · · · 0 0 0
1 0 1 0 0 · · · 0 0 0
0 1 0 1 0 · · · 0 0 0
0 0 1 0 1 · · · 0 0 0

. . .
0 0 0 0 0 · · · 1 0 1
0 0 0 0 0 · · · 0 1 0


is a k×k matrix. This is equivalent to an automaton in which the states are 0, 1, . . . , k−
1 and the transitions are arrows from i to i + 1 for 0 ≤ i < k − 1 and from i to i − 1
for 0 < i ≤ k − 1.

The bijection Φ establishes a one-to-one correspondence between n-involutions avoiding
both 132 and 12 . . . k having p fixed points and Dyck word prefixes w = w0xw1x . . . xwp
of length n such that wi is a Dyck word of height less than k− p+ i (that is, wi ∈ Px,x,
|wi|x = |wi|x, and for all wi = w′w′′, |w′|x − |w′|x < k − p + i) for all 0 ≤ i ≤ p. In
particular, 2n-involutions avoiding both 132 and 12 . . . k without fixed points are in
bijection by Φ with Dyck words of length 2n of height less than k.

These Dyck words of bounded height were considered by Kreweras [Kw] and Viennot
[V]. In particular, Dyck words of length 2n with height less than 1, 2, 3, 4, 5 are

enumerated by 0, 1, 2n−1, Fn−2, 3n−1+1
2

respectively. We provide some simple bijections
for special cases k = 3, 4, 5 (related to Example 2.7) by generating some well known
words in the same way as involutions which avoid both 132 and 12 . . . k.

First we consider the case k = 3. The words of the form {a, b}∗ or a{a, b}∗, which are
enumerated by the powers of 2, can be generated from the empty word (labeled (0))
by the rules:

(2.4)

 w(0) ; aw(1)
aw(1) ; aw(2), bw(0)
w(2) ; aw(1)
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Here the words labeled (0) start with b and the words labeled (1) or (2) start with a.
It follows that {a, b}n (respectively a{a, b}n) is in bijection with I2n(132, 123) (respec-
tively I2n+1(132, 123)), which is therefore enumerated by 2n (respectively 2n).

Next we consider the case k = 4 and the words of the form {a, b2}∗ enumerated by the
Fibonacci numbers. We can generate these from the empty word (labeled (0)) by the
rules:

(2.5)


w(0) ; aw(1)
aw(1) ; aaw(2), b2w(0)
aw(2) ; b2w(3), aaw(1)
w(3) ; aw(2)

Here the words labeled (0) or (3) start with b2 and the words labeled (1) or (2) start
with a. It follows that {a, b2}n is in bijection with In(132, 1234), which is therefore
enumerated by Fn, the nth Fibonacci number.

Finally, let us consider the case k = 5 and the words of the form {a, b, c}∗a or
{a, b, c}∗a ∪ b{a, b, c}∗a, which are enumerated by the powers of 3. We can generate
these words from the empty word (labeled (0)) by the rules:

(2.6)



w(0) ; aw(1)
w(1) ; bw(2), w(0)
w = bw′ = bb∗cw(2) ; w(3), aw′(1)
w = bw′ = bb∗aw(2) ; cw′(3), w(1)
w(3) ; w(4), bw(2)
w(4) ; cw(3)

Here the words labeled (0) or (1) start with b∗a, the words labeled (3) or (4) start
with b∗c, and the words labeled (2) start with b (and have one letter more than words
labeled (0) or (4) at the same level). It follows that {a, b, c}na (respectively {a, b, c}na∪
b{a, b, c}na) is in bijection with I2n+1(132, 12345) (respectively I2n+2(132, 12345)),
which is therefore enumerated by 3n (respectively 2 · 3n).

Figure 2 (which is output of the software forbid [Gu]) shows the first values of
|In(132, 12 . . . k)| for 3 ≤ k ≤ 5 according to the number p of fixed points.

Some of the integer sequences we have considered also appear in [SP]. In particular, the
entry M1458 corresponds to involutions avoiding both 132 and 12345 having exactly
one fixed point whereas the entry M2847 corresponds to involutions avoiding both 132
and 1234567 of odd length. Moreover, these two entries refer to [HM, Tables I and III];
it will be interesting to relate 132-involutions to order-consecutive partitions.

2.3. Avoiding 132 and 2134 . . . k. In this subsection we consider involutions which
avoid both 132 and 2134 . . . k. We begin with an example.

Example 2.9. Let T ′ = {213} and T = {21}. Equation 2.2 gives

I213(x) =
1

1− x2S21(x2)
+

x

1− x2S21(x2)
I21(x).

Clearly S21(x) = I21(x) = 1
1−x ; hence

I213(x) =
1 + x

1− 2x2
.
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Involutions π ∈ In(132, 123) according to |{π(x) = x}| = p for 1 ≤ n ≤ 13

p \ n 1 2 3 4 5 6 7 8 9 10 11 12 13

2 1 2 4 8 16 32
1 1 2 4 8 16 32 64
0 1 2 4 8 16 32

1 2 2 4 4 8 8 16 16 32 32 64 64

Involutions π ∈ In(132, 1234) according to |{π(x) = x}| = p for 1 ≤ n ≤ 13

p \ n 1 2 3 4 5 6 7 8 9 10 11 12 13

3 1 3 8 21 55 144
2 1 3 8 21 55 144
1 1 2 5 13 34 89 233
0 1 2 5 13 34 89

1 2 3 5 8 13 21 34 55 89 144 233 377

Involutions π ∈ In(132, 12345) according to |{π(x) = x}| = p for 1 ≤ n ≤ 15

p \ n 1 2 3 4 5 6 7 8 9 10 11 12 13

4 1 4 13 40 121
3 1 4 13 40 121 364
2 1 3 9 27 81 243
1 1 2 5 14 41 122 365
0 1 2 5 14 41 122

1 2 3 6 9 18 27 54 81 162 243 486 729

Figure 2. |In(132, 12 . . . k)| for 3 ≤ k ≤ 5 according to the number p
of fixed points.

Therefore |I213(n)| = 2[n/2] for all n ≥ 0. Similarly, I2134(x) = 1
1−x−x2 , so |I2134(n)| =

Fn, the nth Fibonacci number.

We can easily give a bijective proof of the fact that |I213(n)| = 2[n/2]. Any π ∈
In(132, 213) is either 12 . . . n or (n+ 1− i)(n+ 2− i) . . . nπ′12 . . . i (i ≥ 1), where π′ is
(upon subtracting i from each element) also an involution avoiding both 132 and 213.
We map this recursive decomposition of an involution π avoiding both 132 and 213 to
a word of nonnegative integers formed by the successive positive numbers i (first we
treat π which gives i, next we consider the same decomposition for π′ − i, and so on)
and whose last nonnegative integer is [p/2], where p is the number of the fixed points
in π. We also add a symbol ˜ to the word when n is odd. This mapping is clearly
bijective.

For example, the involutions ε, 1, 12, 21, 123, 321, 1234, 4231, 3412 and 4321 are
mapped to 0, 0˜, 1, 10, 1˜, 10˜, 2, 11, 20 and 110 respectively. Moreover, the involution
21 19 20 16 17 18 15 14 9 10 11 12 13 8 7 4 5 6 2 3 1 in I21(132, 213) is mapped to
123112˜, because we first successively consider the element 1 (with 21), the elements
2 and 3 (with 19 and 20), the elements 4, 5 and 6 (with 16, 17 and 18), the element 7
(with 15), the element 8 (with 14) which give us the letters 1, 2, 3, 1, 1, respectively.
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The five remaining fixed points (the elements 9, 10, 11, 12 and 13) give us the last
letter 2. Since the length of π is odd, we add the symbol ˜ to the end.

Thus, involutions in In(132, 213) are mapped onto words w = w1w2 . . . wl−1wl (with
an extra symbol ˜ if n is odd), where l ≥ 1, wj ≥ 1 for all 1 ≤ j < l, wl ≥ 0

and
∑l

j=1 wj = [n/2]. Trivially, these words are in bijection with words of the form

w1w2 . . . wl−1(wl + 1), which are compositions of [n/2] + 1 into l positive parts, which
are enumerated by 2[n/2].

The case of varying k is more interesting. As an extension of Example 2.9, we consider
the case T = {2134 . . . k}. As with Theorem 2.8, we have

Theorem 2.10. For all k ≥ 1,

I2134...k(x) =
1

x · Uk
(

1
2x

) k−1∑
j=0

Uj

(
1

2x

)
.

Therefore, Theorems 2.8 and 2.10 yield I12...k(n) = I2134...k(n). We give a bijective
proof of this result.

Theorem 2.11. There is a bijection between n-involutions avoiding both 132 and
12 . . . k and n-involutions avoiding both 132 and 2134 . . . k, for any k ≥ 3. Moreover,
two involutions in bijection have the same number of fixed points p for all 0 ≤ p ≤ k−3.
Involutions which avoid both 132 and 12 . . . k and have k−2 or k−1 fixed points corre-
spond to involutions which avoid both 132 and 2134 . . . k and have k − 2 or more fixed
points.

Proof. To prove this result, we characterize the generating tree for the involutions
avoiding both 132 and 2134 . . . k by the same succession system 2.3 established for a
generating tree for the involutions avoiding both 132 and 12 . . . k.

If π ∈ In(132, 2134 . . . k) and q is the number of fixed points of π, then the label (p) of
π is given by

(2.7) p =

 q if q ≤ k − 3
k − 2 if q ≥ k − 2 and (n+ k) mod 2 = 0
k − 1 if q ≥ k − 2 and (n+ k) mod 2 = 1

.

The empty involution has label (0). We obtain σ ∈ In+1(132, 2134 . . . k) by applying
the following rules:

(i) If 0 ≤ p ≤ k − 3, we have π = π′π′′ with |π′| = n−p
2

, and then σ is obtained by
inserting a fixed point between π′ and π′′; observe σ has label (p+ 1).

(ii) If p = k− 2, we have π = π′xπ′′ with π(x) = x = n+4−k
2

, and then σ is obtained
by inserting a fixed point between π′ and x; observe σ has label (k − 1).

(iii) If 1 ≤ p ≤ k− 3, we have π = π′π′′xπ′′′ with |π′| = n−p
2

, π(x) = x and π(y) 6= y
for all 1 ≤ y < x. Then σ is obtained by modifying the first fixed point x by a
cycle starting between π′ and π′′ (and ending in x); observe σ has label (p− 1).

(iv) If p = k − 1, we have π = π′x(x + 1)π′′ with π(x) = x = n+3−k
2

, and then σ
is obtained by inserting a fixed point between π′ and x; observe σ has label
(k − 2).
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(v) If p = k − 2, we have π = π′(x − j)(x − j + 1) . . . (x + j)π′′ with j ≥ 0,
π(x) = x = n+4−k

2
, |π′| = n−k

2
+ 1 − j and e > x for all e ∈ π′. Then σ

is obtained by modifying the 2j + 1 fixed points between π′ and π′′ by j + 1
consecutive cycles each of difference (between the index and the value) j + 1
that is (π′1 +1)(π′2 +1) . . . (π′n−k

2
+1−j+1)(n−k

2
+3)(n−k

2
+4) . . . (n−k

2
+3+j)(n−k

2
−

j + 2)(n−k
2
− j + 3) . . . (n−k

2
+ 2)π′′; observe σ has label (k − 3).

Thus we obtain the following succession system:

(2.8)


(0)
(0) ; (1) by (i)
(p) ; (p+ 1) by (i) , (p− 1) by (iii) 1 ≤ p ≤ k − 3
(k − 2) ; (k − 1) by (ii) , (k − 3) by (v)
(k − 1) ; (k − 2) by (iv)

This is equivalent to succession system 2.3. �

Corollary 2.12. There is a bijection between Sn(132, 12 . . . k) and Sn(132, 2134 . . . k)
for any k ≥ 3.

Proof. By Proposition 2.1, we deduce that n-permutations π avoiding both 132 and
12 . . . k (respectively 2134 . . . k) are in bijection with 2n-involutions without fixed points
(π−1+n)π = (π−1

1 +n, π−1
2 +n, . . . , π−1

n +n, π1, π2, . . . , πn) avoiding both 132 and 12 . . . k
(respectively 2134 . . . k). Moreover, a particular case of Theorem 2.11 establishes a one-
to-one correspondence between involutions avoiding both 132 and 12 . . . k without fixed
points and involutions avoiding both 132 and 2134 . . . k without fixed points. �

2.4. Avoiding 132 and an extended double-wedge pattern. In this subsection
we construct a wide class of patterns which are equinumerous with involutions which
avoid 132 and either 12 . . . k or 2134 . . . k, which we studied in Subsections 2.2 and
2.3 respectively. Following [MV2], we say that τ ∈ Sk is a wedge pattern whenever
it can be represented as τ = (τ 1, ρ1, . . . , τ r, ρr), where each of τ i is nonempty, ρj is
an increasing subsequence such every element of ρj is greater than every element of
ρj+1 for all j, and (τ 1, τ 2, . . . , τ r) = (s + 1, s + 2, . . . , k). For example, 645783912 and
456378129 are wedge patterns.

For a further generalization of Theorem 2.8, Theorem 2.10, and [MV2, Theorem 2.6],
we consider the following definition. We say that τ ∈ I2l is a double-wedge pattern
whenever there exists a wedge pattern σ ∈ Sl−1 such that

τ = (σ−1 + l, 2l, σ, l) or τ = (σ + l, 2l, σ−1, l).

For example, the double-wedge patterns in S10 are 6789(10)12345, 7689(10)21345,
7869(10)31245, 7896(10)41235, 8679(10)23145, 8796(10)42135, 8967(10)34125,
9678(10)23415, and 9768(10)32415.

Theorem 2.13. For any double-wedge pattern τ ∈ I2l(132),

Iτ (x) = I12...(2l)(x) =
Rl(x

2)

1− xRl(x2)
.
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Proof. By Proposition 2.1 we have two possibilities for the block decomposition of an
arbitrary π ∈ In(132). Let us write an equation for Iρ(x) where ρ = (σ−1, 2l, σ, l). The
contribution of the first decomposition above (using Remark 2.2) is given by xIρ(x).
The contribution of the second decomposition above (using Remark 2.2) is given by
x2Sσ(x2)Iρ(x) where Sσ(x2) is the generating function for |Sn(132, σ)|. Therefore
(with a 1 for the empty permutation),

Iρ(x) = 1 + xIρ(x) + x2Sσ(x2)Iρ(x).

On the other hand, Mansour and Vainshtein [MV2, Theorem 2.6] have shown that
Sσ(x) = Rl−1(x) for any wedge pattern σ, so

Iρ(x) =
1

1− x− x2Rl−1(x2)
,

and using Identity 1.4 we have

Iρ(x) =
Rl(x)

1− xRl(x2)
.

Using the identity
2l∑
j=0

Uj(t) =
U2l(t)Ul−1(t)

Ul(t)− Ul−1(t)

together with Theorem 2.8, we now obtain Iρ(x) = I12...(2l)(x). �

We say that τ ∈ Ik is an extended double-wedge pattern whenever τ = τ ′τ ′′ ,where τ ′

is a double-wedge pattern and τ ′′ = (|τ ′|+ 1, |τ ′|+ 2, . . . , k).

Theorem 2.14. For any extended double-wedge pattern τ of length k, where k ≥ 2l,
the generating function for |Sn(132, τ)| is given by Rk(x).

Proof. By definition we have either τ = (σ−1 + l, 2l, σ, l, 2l + 1, 2l + 2, . . . , k) or τ =
(σ+ l, 2l, σ−1, l, 2l+ 1, 2l+ 2, . . . , k) where σ is a wedge pattern in Sl−1(132). Suppose
τ = (σ−1 + l, 2l, σ, l) and let Sτ (x) be the generating function for |Sn(132, τ)|. By
[MV2, Theorem 1] we have

Sτ (x) = 1 + x(Sτ (x)−Sσ−1(x))Sσ(x) + xSσ−1(x)Sτ (x).

On the other hand, by [MV2, Theorem 2.6], and since σ is a wedge pattern in Sl−1(132),
we have Sσ−1(x) = Sσ(x) = Rl−1(x). Therefore, by use of Identity 1.4 we get

Sτ (x) =
Rl(x)(1− xRl−1(x)Rl(x))

1− xR2
l (x)

,

and use of the identity

Rl(x)(1− xRl−1(x)Rl(x))

1− xR2
l (x)

= R2l(x)

together with [MV2, Theorem 1], we have S(τ,2l+1,...,k)(x) = Rk(x). The proof in the
other case is similar. �

As a corollary of Theorem 2.13 we have the following result.



RESTRICTED 132-INVOLUTIONS 15

Theorem 2.15. For any extended double-wedge pattern τ ∈ Ik(132),

Iτ (x) = I12...k(x).

Proof. Observe that if Sβ(x) = Sγ(x) and Iβ(x) = Iγ(x) then Theorem 2.6 yields
Iτ ′(x) = Iβ′(x) and [MV2, Theorem 1] yields Sτ ′(x) = Sρ′(x), where τ ′ = (τ1, . . . , τp,
p + 1) and ρ′ = (ρ1, . . . , ρp, p + 1) are two patterns in Sp+1. Arguing by induction on
p and using Theorems 2.13 and 2.14, we obtain the desired result. �

It would be interesting to find bijective proofs of Theorems 2.13 and 2.15.

2.5. Avoiding 132 and (d + 1)(d + 2) . . . k12 . . . d. In this subsection we consider
involutions which avoid 132 and (d+ 1)(d+ 2) . . . k12 . . . d.

Example 2.16. By Proposition 2.1 we find that for n ≥ 1,

I231(n) = n; I321(n) = [n/2] + 1.

We remark that the n-involutions which avoid both 132 and 231 are the permutations
of the form i(i− 1) . . . 1(i+ 1)(i+ 2) . . . n, 1 ≤ i ≤ n, and that the n-involutions which
avoid both 132 and 321 are the permutations of the form (i+1)(i+2) . . . (2i)12 . . . i(2i+
1)(2i+ 2) . . . n, 0 ≤ i ≤ [n/2].

As an extension of Example 2.16, we consider the case T = {< k, d >}, where <
k, d >= (d+ 1, d+ 2, . . . , k, 1, 2, . . . , d).

Theorem 2.17. For any k ≥ 2, k/2 ≥ d ≥ 1,

I<k,d>(x) =
1

x(Ud(t)− Ud−1(t))

[
Ud−1(t) +

Uk−2d−1(t)

Uk−d(t)Uk−d−1(t)

k−d−1∑
j=0

Uj(t)

]
, t =

1

2x
.

Proof. By Proposition 2.1, we have two possibilities for the block decomposition of an
arbitrary π ∈ In(132). Let us use Remark 2.2 to write an equation for I<k,d>(x). The
contribution of the second decomposition above is xI<k,d>(x). The contribution of the
first decomposition above is given in two cases. First, if γ avoids 12 . . . (k− d), then β
and δ avoid 12 . . . (k− d− 1), so we have x2Rk−d−1(x2)I12...(k−d)(x), as in Theorem 2.8.
Second, if γ contains 12 . . . (k − d) at least once then β and δ avoid 12 . . . (d − 1),
so we have x2Rd−1(x2)(I<k,d>(x) − I12...(k−d)(x)). Here we have used the fact that
the generating function for those permutations in In(132, < k, d >) which contain
12 . . . (k − d) at least once is given by I<k,d>(x)− I12...(k−d)(x). We now have

I<k,d>(x) = 1 + xI<k,d>(x) + x2Rk−d−1(x2)I12...(k−d)(x)

+ x2Rd−1(x2)(I<k,d>(x)− I12...(k−d)(x)),

which means that

I<k,d>(x) =
1

1− x− x2Rk−d−1(x2)
· (1 + x2I12...(k−d)(x)(Rk−d−1(x2)−Rd−1(x2))).

Hence, by Identity 1.4 together with the identity Ra(x) − Rb(x) = Ua−b−1(t)√
xUa(t)Ub(t)

, we get

the desired result. �

Example 2.18. For all n ≥ 1, |I3412(n)| = Fn, the nth Fibonacci number.
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We now give a bijective proof of Example 2.18. Any π ∈ Sn(132, 3412) can be written
iπ′1(i+1)(i+2) · · ·n, where 1 ≤ i ≤ n and π′ is (upon subtracting 1 from each element)
also an involution avoiding both 132 and 3412. We map π to a word in {a, b2}∗ of length
n in the following way: a if πi = i, b2 if πi < i and nothing if πi > i for all 1 ≤ i ≤ n.
This mapping is clearly bijective.

2.6. Avoiding 132 and two other patterns. In this subsection we consider involu-
tions which avoid 132 and two other patterns. We begin with an example.

Example 2.19. Let T ′ = {123, 213} and T = {12, 21}. Equation 2.2 gives

I123,213(x) =
1

1− x2S12,21(x2)
+

x

1− x2S12,21(x2)
I12,21(x),

and S12,21(x) = I12,21(x) = 1 + x; hence

I123,213(x) =
1 + x+ x2

1− x2 − x4

which means that I123,213(2n) = Fn+1 and I123,213(2n + 1) = Fn for all n ≥ 0, where
Fm is the mth Fibonacci number.

We prove Example 2.19 by a bijective argument, in which we distinguish the cases of
odd length from those of even length.

Any π ∈ I2n+1(132, 123, 213) can be written either (2n+1)π′1 or (2n)(2n+1)π′′21 or 1
(if n = 0), where π′ (upon subtracting 1 from each element) and π′′ (upon subtracting
2 from each element) are also involutions avoiding 132, 123 and 213 . We map π to a
word of {a, b2}∗ of length n in the following way: a if πi = 2n+2−i, b2 if πi = 2n+1−i,
and nothing if πi = 2n+ 3− i for all 1 ≤ i ≤ n. This mapping is clearly bijective.

Any π ∈ I2n(132, 123, 213) can be written either (2n)π′1 (this case includes 21, when
n = 1) or (2n−1)(2n)π′′21 or 12 (if n = 1) or the empty involution (if n = 0), where π′

(upon subtracting 1 from each element) and π′′ (upon subtracting 2 from each element)
are also involutions avoiding 132, 123 and 213. We map π to a word of {a, b2}∗ of length
n+ 1 in the following way: a if πi = 2n+ 1− i for all 1 ≤ i ≤ n− 1, b2 if πn = n+ 1,
b2 if πi = 2n− i for all 1 ≤ i ≤ n− 2, b2a if πn−1 = n+ 1, and aa if πn = n. Moreover,
the empty involution is mapped to a. This mapping is clearly bijective.

Using Proposition 2.1 and Theorem 2.6 it is easy to see the following.

Corollary 2.20. For all k ≥ 1,

I12...k,213(x) = I(k−1)...21k,123(x) =
1 + x+ x2 + · · ·+ xk−1

1− x2 − x4 − · · · − x2(k−1)
.

Example 2.21. Using Proposition 2.1 it is easy to see, for all n ≥ 1,

I213,321(n) =
1

2
(3 + (−1)n) and I213,4321(n) = [n/2] + 1.

Observe that the n-involutions avoiding 132, 213, and 321 which are not equal to 12 . . . n
are the permutations of the form (m+1)(m+2) . . . n12 . . .m, where n = 2m and m ≥ 1.
Similarly, the n-involutions avoiding 132, 213, and 4321 are the permutations of the
form (n+ 1− i)(n+ 2− i) . . . n(i+ 1)(i+ 2) . . . (n− i)12 . . . i, where 0 ≤ i ≤ [n/2].
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3. Avoiding 132 and containing another pattern

Let Irτ (n) = |{π ∈ In(132) : π contains τ exactly r times}| and let

Irτ (x) =
∑
n≥0

Irτ (n)xn

be the corresponding generating function. We begin with an example.

Example 3.1. By Proposition 2.1 it is easy to see

I1
12(x) = xI1

1(x) + x2I1
12(x),

which means that I1
12(x) = x2

1−x2 .

As extension of Example 3.1, we consider the case τ = 12 . . . k.

Theorem 3.2. For all k ≥ 1,

I1
12...k =

1

Uk
(

1
2x

) .
Proof. By Proposition 2.1, for all n ≥ k we have

I1
12...k(n) = I1

12...(k−1)(n− 1) +

[n/2]∑
j=1

S12...(k−1)(j − 1)I1
12...k(n− 2j),

where S12...k(j − 1) = |Sj−1(132, 12 . . . k)|. Moreover, I1
12...k(n) = 0 for all n ≤ k − 1,

and I1
12...k(k) = 1. As in the proof of Theorem 2.8, we have

I1
12...k(x) = xRk(x

2)I1
12...(k−1)(x).

Now the result follows by induction on k, with the initial condition I1
1(x) = x. �

We also have explicit formulas for the cases τ = 2134 . . . k and τ = 23 . . . k1.

Theorem 3.3. For all k ≥ 2,

I1
2134...k =

1− x2

Uk
(

1
2x

) , I1
23...k1(x) =

x3

(1− x)Uk−2

(
1

2x

) .
More generally, using Proposition 2.1 and an argument similar to that given in the
proof of Theorem 2.8, we obtain the following result.

Theorem 3.4. For any k, r ≥ 1,

Ir12...k(x) = xIr12...(k−1)(x) + x2
∑

2a+b=r

Sa
12...(k−1)(x

2)Ib12...k(x),

where Sa
12...(k−1)(x) is the generating function for the number of n-permutations con-

taining 12 . . . (k − 1) exactly a times.

Krattenthaler [Kt] has found an explicit formula for the generating function Sr
12...k(x)

for the number of 132-avoiding n-permutations containing 12 . . . k exactly r times,
so Theorem 3.4 yields a recurrence for Ir12...k(x). Using Krattenthaler’s result [Kt]
(see also [MV1, Theorem 3.1]), we obtain the following recurrence for Ir12...k(x) where
r = 1, 2, . . . , 2k.
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Theorem 3.5. Let k ≥ 1; for all r = 1, 2, . . . , 2k,

Ir12...k(x) = xIr12...(k−1)(x) + x2Rk−1(x2)Ir12...k(x) +
∑

2a+b=r, a>0

xa+1Ib12...k(x)
Ua−1
k−1

(
1

2x

)
Ua+1
k

(
1

2x

) .
When r = 2, the above Theorem yields an explicit formula for I2

12...k(x).

Corollary 3.6. For all k ≥ 1,

I2
12...k(x) =

1

Uk
(

1
2x

) k∑
i=1

∑k−i
j=0 Uj

(
1

2x

)
Uk+1−i

(
1

2x

)
Uk−i

(
1

2x

) .
4. Containing 132 once and avoiding another pattern

In this section we consider involutions which contain 132 exactly once and avoid an-
other pattern. We first relate involutions containing 132 exactly once to 132-avoiding
involutions.

Theorem 4.1. There is a bijection Ψ between n-involutions containing 132 exactly
once having p fixed points (1 ≤ p ≤ n) and 132-avoiding (n − 2)-involutions having p
fixed points.

Proof. Let π = π′xzπ′′yπ′′′ with π(x) = x, π(y) = z and 1 + x = y < z be an n-
involution containing 132 exactly once, where the subsequence xzy is of type 132 and
π has p fixed points. We replace the subsequence xzy with a fixed point between π′′

and π′′′ in order to obtain a 132-avoiding (n−2)-involution having p fixed points. Note
that the only way to have exactly one 132 subsequence in π is to have a cycle with a
fixed point just to its left. Moreover, we must have y = x+1 in order to forbid another
132 subsequence, cycles are only allowed from π′ to π′′ and from π′ to π′′′ (and not
from π′′, π′, π′′, π′′′ respectively to π′′′, π′, π′′, π′′′) and fixed points can only be into
π′′′. Clearly the involution we obtain avoids 132 and in particular, the fixed point z−2
cannot be a part of a 132-subsequence because it cannot be the 3 or 2 (all the elements
on its left are greater than it) and it cannot be the 1 (there is no cycle starting on its
right).

Let σ = σ′σ′′σ′′′tσ′′′′ be an involution with p fixed points, where σ(t) = t and σ(i) 6= i
for all 1 ≤ i < t (that is, t is the first fixed point), σ′(i) > t for all 1 ≤ i ≤ |σ′| (all the
elements of σ′ are cycles ending within σ′′′′), σ′′(i) ∈ [|σ′σ′′|+1, t−1] for all 1 ≤ i ≤ |σ′′|
and σ′′′(i) ∈ [|σ′|+ 1, |σ′σ′′|] for all 1 ≤ i ≤ |σ′′′| (σ′′σ′′′ consists entirely of cycles from
σ′′ to σ′′′). We modify the fixed point t by inserting a cycle starting between σ′′ and
σ′′′ (and ending between σ′′′ and σ′′′′) and by adding a fixed point just to the right of
σ′′ in order to obtain an involution of length n containing 132 once and having p fixed
points. Proposition 2.1 leads immediately to the decomposition of σ. The involution
we obtain contains 132 exactly once, in the form of the subsequence we modify and
insert. There is no other 132-subsequence and in particular, the fixed point inserted
and the start of the new cycle cannot be the 3 or 2 of another 132-subsequence (all the
elements on their left are greater than them), the fixed point inserted and the start of
the new cycle and the end of the new cycle cannot be the 1 of another 132-subsequence
(there is no cycle starting on their right), the end of the new cycle cannot be the 3 of
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another 132-subsequence (because in that case the 2 must be connected to σ′ and the
1 must be the fixed point inserted or an element of σ′′′ that forms a 231-subsequence),
and the end of the new cycle cannot be the 2 of another 132-subsequence (because in
that case the 1 must be an element of σ′σ′′ or the start of the new cycle and the 3 must
be the fixed point inserted or an element of σ′′′ that forms a 312-subsequence).

So we have established a bijection between an involution π containing 132 once and a
132-avoiding involution σ of the forms given above, where t = z − 2, π′ corresponds to
σ′σ′′, π′′ = σ′′′ and π′′′ corresponds to σ′′′′. �

For example, the involution 22 19 17 18 16 12 11 13 9 14 7 6 8 10 15 5 3 4 2 20 21
1 23, which contains 132 exactly once (the subsequence 9 14 10), corresponds to the
132-avoiding involution 20 17 15 16 14 10 9 11 7 6 8 12 13 5 3 4 2 18 19 1 21.

Corollary 4.2. The number of n-involutions containing 132 exactly once which have
p fixed points, 1 ≤ p ≤ n, is the ballot number(

n− 2
n+p

2
− 1

)
−
(
n− 2
n+p

2

)
.

Moreover, the number of n-involutions containing 132 exactly once is given by(
n− 2[
n−3

2

]).
Proof. This result is immediate from the bijection Ψ of Theorem 4.1 and Corollary 2.5.
In fact, the number of n-involutions containing 132 exactly once is |In−2(132)| if n is
odd and
|{π ∈ In−2(132) having more than one fixed point }| if n is even. �

Of course, some of the following results can immediately be obtained from the bijection
Ψ of Theorem 4.1 and the results of Section 2.

Let Lτ (n) be the number of τ -avoiding n-involutions containing 132 exactly once, and
let Lτ (x) =

∑
n≥0 Lτ (n)xn be the corresponding generating function. The following

proposition, which is immediate from our definitions, is the basis for all of the other
results in this section.

Proposition 4.3. Suppose π ∈ In contains 132 exactly once and has πj = n. Then
exactly one of the following holds.

(1) π = (α, n) where α ∈ In−1 contains 132 exactly once;
(2) π = (α, n, β, γ, j) where 1 ≤ j ≤ n/2, γ = α−1, α is an 132-avoiding permuta-

tion of the numbers n − 1, n − 2, . . . , n − j + 1, and β is an involution of the
numbers j + 1, j + 2, . . . , n− j which contains 132 exactly once;

(3) π = (α,m, 2m + 1, γ,m + 1) where n = 2m + 1, γ = α−1 + m + 1, and
γ ∈ Sm−1(132).

For example, for n = 5, the only three involutions containing 132 exactly once are
13245, 52431 and 42513. These illustrate the cases (1), (2) and (3) of Proposition 4.3,
respectively.

We can use Proposition 4.3 to find the generating function for the number of n-
involutions containing 132 exactly once.
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Theorem 4.4. The generating function for the number of n-involutions containing 132
exactly once is given by

L∅(x) =
x3C(x2)

1− x− x2C(x2)
.

Proof. By Proposition 4.3, we have three possibilities for the block decomposition of
an arbitrary π ∈ In containing 132 exactly once. Let us use Remark 2.2 to write an
equation for L∅(x). The contribution of the first decomposition above is xL∅(x), the
contribution of the second decomposition above is x2C(x2)L∅(x), and the contribution
of the third decomposition above is x3C(x2). Hence L∅(x) = xL∅(x)+x2C(x2)L∅(x)+
x3C(x2). �

Example 4.5. By Proposition 4.3, |L123(n)| = 2(n−3)/2 when n is odd and |L123(n)| =
0 otherwise. In addition, |L1234(n)| = Fn−3, the (n − 3)th Fibonacci number, and
L12345(n) = 3[(n−3)/2].

Again, the case of varying k is more interesting. As an extension of Example 4.5, we
consider the case τ = 12 . . . k.

Theorem 4.6. For all k ≥ 1,

L12...k(x) =
x

Uk
(

1
2x

) k−2∑
j=1

Uj

(
1

2x

)
.

Proof. By Proposition 4.3 and Remark 2.2 (as in the proof of Theorem 4.4), together
with the fact that the generating function for |Sn(132, 12 . . . k)| is given by Rk(x) (see
[CW]), we have

L12...k(x) = xL12...(k−1) + x2Rk−1(x2)L12...k(x) + x3Rk−1(x2).

By Identity 1.4, we get

L12...k(x) = xRk(x
2)L12...(k−1)(x) + x3Rk−1(x2)Rk(x

2).

Hence, by induction on k together with Example 4.5, we get the desired result. �

The case τ = 2134 . . . k is similar to the case τ = 12 . . . k.

Theorem 4.7. For all k ≥ 3,

L2134...k(x) =
x

Uk
(

1
2x

) [xU2

(
1

2x

)
+

k−2∑
j=2

Uj

(
1

2x

)]
.

Proof. Arguing as in the proof of Theorem 4.6, we use the fact that the generating
function for |Sn(132, 2134 . . . k)| is given by Rk(x) (see [MV2]) to obtain

L2134...k(x) = xRk(x
2)L2134...(k−1)(x) + x3Rk−1(x2)Rk(x

2).

Hence, by induction on k with the initial value L213(x) = x4R3(x2), we easily have the
desired result. �

Example 4.8. Theorem 4.7 yields L2134(2n + 3) = L2134(2n + 4) = F2n, the (2n)th
Fibonacci number, for all n ≥ 0.
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Example 4.9. Proposition 4.3 yields L231(n) = 1 and L2341(n) = 2[(n−1)/2] − 1 for all
n ≥ 1.

As an extension of Example 4.9, we consider the case τ = 23 . . . k1.

Theorem 4.10. For all k ≥ 3,

L23...k1(x) =
x2Uk−3

(
1

2x

)
(1− x)Uk−2

(
1

2x

) [1 +
1

Uk−1

(
1

2x

) k−3∑
j=1

Uj

(
1

2x

)]
.

Proof. As in the proof of Theorem 4.6, we have

L23...k1(x) = xL23...k1(x) + x2Rk−2(x2)L12...(k−1)(x) + x3Rk−2(x2).

By using Theorem 4.6 we get the desired result. �

More generally, we present the following explicit expression when τ =< k, d >.

Theorem 4.11. For k ≥ 4 and 2 ≤ d ≤ k/2 we have

L<k,d>(x)

=
Rd(x

2)

1− xRd(x2)

[
x2Rk−d−1(x2) +

x2(Rk−d−1(x2)−Rd−1(x2))

Uk−d
(

1
2x

) k−d−2∑
j=1

Uj

(
1

2x

)]
.

Proof. By Proposition 4.3, we have three possibilities for the block decomposition
of an arbitrary π ∈ In containing 132 exactly once. Let us use Remark 2.2 to
write an equation for L<k,d>(x). The contribution of the first decomposition above
is xL<k,d>(x). The contribution of the second decomposition above is as follows: if
π′ contains 12 . . . (k − d − 1) then π contains < k, d > which is a contradiction,
so π′ avoids 12 . . . (k − d − 1). Therefore the contribution of the second decompo-
sition is x3Rk−d−1(x2). Finally, the contribution of the third decomposition above
involves two cases: π′′ contains 12 . . . (k − d) or avoids 12 . . . (k − d). In the first
case we have x2Rd−1(x2)(L<k,d>(x) − L12...(k−d)(x)), and in the second case we have
x2Rk−d−1(x)L12...(k−d)(x). Therefore, if we use Theorem 4.6 to write an equation for
L<k,d>(x) we obtain the desired result. �

5. Containing 132 once and containing another pattern

Let Lr
τ (n) denote the number of n-involutions containing 132 exactly once and con-

taining τ exactly r times. Let Lr
τ (x) =

∑
n≥0 Lr

τ (n)xn be the corresponding generating
function. We begin with the following result.

Theorem 5.1. For all k ≥ 1,
L1

12...k(x) = 0.

Proof. By Proposition 4.3 and by Remark 2.2, it is easy to see

L1
12...k(x) = xL1

12...(k−1)(x) + x2Rk−1(x2)L1
12...k(x).

Moreover, L1
12(x) = 0 by definition, hence the theorem holds by induction on k. �
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Next we consider the case τ = 23 . . . k1.

Theorem 5.2. For all k ≥ 1,
L1

23...k1(x) = 0.

Example 5.3. Proposition 4.3 yields that L1
21(n) = 1 for n ≥ 3.

As an extension of Example 5.3, we consider the case τ = 2134 . . . k.

Theorem 5.4. For all k ≥ 3,

L1
2134...k(x) =

x(1− x2)

Uk
(

1
2x

) .
Proof. Using Proposition 4.3 and Remark 2.2, it is easy to see that

L1
2134...k(x) = xL1

2134...(k−1)(x) + x2Rk−1(x2)L2134...k(x)

and L1
21(x) = x3/(1− x). The result follows by induction on k. �
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