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Binary strings without zigzags

Emanuele Munarini - Norma Zagaglia Salvi

Summary. We study several enumerative properties of the set of all binary strings
without zigzags, i.e., without substrings equal to 101 or 010 . Specifically we give the
generating series, a recurrence and two explicit formulas for the number wm,n of these
strings with m 1’s and n 0’s and in particular for the numbers wn = wn,n of central
strings. We also consider two matrices generated by the numbers wm,n and we prove that
one is a Riordan matrix and the other one has a decomposition LTLt where L is a lower
triangular matrix and T is a tridiagonal matrix, both with integer entries. Finally, we give
a combinatorial interpretation of the strings under consideration as binomial lattice paths
without zigzags. Then we consider the more general case of Motzkin, Catalan, and trinomial
paths without zigzags.
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1 Introduction

We say that a binary string has a zigzag when 010 or 101 occur as substrings. Here σ
is a substring, or a factor, of a string α when there exist two strings α1 and α2 such
that α = α1σα2 . For instance, the strings 011001 and 1100111 are without zigzags, while
the strings 110100 and 010011 both present a zigzag.

Our aim is to obtain enumerative and combinatorial properties of the set W of all
binary strings without zigzags. Specifically we obtain the generating series, a recurrence and
two explicit formulas for the numbers wm,n of all strings in W with m 0’s and n 1’s, and
in particular for the numbers wn = wn,n of central strings in W , i.e., strings with an equal
number of zeros and ones.

Then we consider the infinite matrix W = [wi,j]i,j≥0 and we prove that it admits a
decomposition LTLt where L is a lower triangular matrix and T is a tridiagonal
matrix. Both the matrices L and T have nonnegative integer entries and those of L
have a combinatorial interpretation as connection constants between two suitable persistent
polynomial sequences.

We also consider the matrix R = [ri,j]i,j≥0 , where ri,j = wi,i−j for i ≥ j and ri,j = 0
otherwise, and we prove that it is a Riordan matrix [16]. This means that the generating



series of the columns of such a matrix have the form
∑

n≥0 rn,k t
n = g(t)f(t)k for suitable

series g(t) and f(t) . In our case g(t) is the generating series for the numbers wn and
f(t) is the generating series for the numbers of irreducible secondary structures [19].

Our interest in binary strings without zigzags stems out also from the fact they can be
interpreted as particular lattice paths considering 0 as the step (1,−1) and 1 as the step
(1, 1) . This interpretation leads us to consider also the case of Motzkin, Catalan (or Dyck)
and trinomial paths without zigzags [1, 2, 6]. In particular we give the generating series and
a recurrence for the numbers un of all central trinomial paths without zigzags ending on
the x-axis at (n, 0) . Finally we give the first-order asymptotic formula for wn and un .

The analogous problem for circular strings has been studied in a separate work [14]. Both
the problems, for linear and circular strings, were posed by Jie Wu in the particular case in
which the number of 1’s equals the number of 0’s. In [21] the problem for linear strings is
solved algorithmically, but no explicit formula is given.

2 Generating series

We say that a binary string has a zigzag when it has a substring equal to 101 or 010 .
Let W be the set of all binary strings without zigzags and let Wm,n be the set of all
strings in W with m 1’s and n 0’s. Let vn be the number of all strings in W of length
n and let wm,n = |Wm,n| . Then consider the generating series

v(t) =
∑
n≥0

vn t
n , w(x, y) =

∑
m,n≥0

wm,n x
myn .

A closed form for these series can be easily obtained in the following way (see [10, 15] for
a general approach to this kind of problems). Let W0 (W1 ) be the set of all strings in W
starting with 0 (with 1 ). Then W = ε +W0 +W1 , where ε is the empty string. The
sets W0 and W1 can be easily decomposed. Indeed, any string α ∈ W0 is exactly of one
of the following forms: i) α = 0α′ with α′ = ε or α′ ∈ W0 , ii) α = 01α′′ with α′′ = ε or
α′′ ∈ W1 . Dually, any string α ∈ W1 is exactly of one of the following forms: i) α = 1α′

with α′ = ε or α′ ∈ W1 , ii) α = 10α′′ with α′′ = ε or α′′ ∈ W0 . Hence{
W0 = 0 + 0 W0 + 01 + 01 W1

W1 = 1 + 1 W1 + 10 + 10 W0 .
(1)

To obtain the series v(t) consider the morphism ϕ : {0, 1}∗ → Z[[t]] defined by
ϕ(1) = ϕ(0) = t . Then system (1) becomes the following system in Z[[t]]{

(1− t) w0(t)− t2 w1(t) = t+ t2

−t2 w0(t) + (1− t) w1(t) = t+ t2

whose solution is

w0(t) = w1(t) =
t+ t2

1− t− t2
=

1

1− t− t2
− 1 =

∑
n≥0

fn t
n − 1
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where the fn’s are the Fibonacci numbers (with f0 = f1 = 1 ). Then

v(t) = 1 + w0(t) + w1(t) =
1 + t+ t2

1− t− t2
=

2

1− t− t2
− 1

and hence vn = 2fn − δn,0 , where δi,j is the usual Kronecker delta. Since W0 and W1

are sets of complementary strings, there is a bijection between them. Then system (1) allow
to prove directly that fn is the number of all strings in W of length n not starting
with 0 (or, equivalently, not starting with 1 ) and the identity vn = 2fn − δn,0 . This
last identity can also be explained combinatorially in the following way. It is well known
that the Fibonacci numbers fn+1 count all binary strings of length n not containing the
pattern 11 . For n ≥ 1 to any binary string α = a1 · · · an associate the binary string
β = b1 · · · bn−1 where bk = xor(ak, ak+1) . This is a 2-1-mapping where complementary
strings are mapped onto the same string. Moreover α does not contain the patterns 101
and 010 if and only if β does not contain the pattern 11 .

To obtain the series w(x, y) consider the morphism ψ : {0, 1}∗ → Z[[x, y]] defined by
ψ(1) = x and ψ(0) = y . In this case system (1) becomes the following system in Z[[x, y]]{

(1− y) w0(x, y)− xy w1(x, y) = y + xy
−xy w0(x, y) + (1− x) w1(x, y) = x+ xy

whose solution is

w0(x, y) =
y + x2y2

1− x− y + xy − x2y2
, w1(x, y) =

x+ x2y2

1− x− y + xy − x2y2
.

Since w(x, y) = 1 + w0(x, y) + w1(x, y) , we have

w(x, y) =
1 + xy + x2y2

1− x− y + xy − x2y2
. (2)

Notice that the form of this series implies the linear recurrence

wm+2,n+2 = wm+1,n+2 + wm+2,n+1 − wm+1,n+1 + wm,n + δm,0δn,0 . (3)

Finally, since Wm,n and Wn,m are sets of complementary strings, it immediately follows
the symmetry wm,n = wn,m .

3 Explicit formulas

In this section we will give two explicit formulas for the numbers wm,n . One is obtained
formally by expanding the generating series (2) while the other one is obtained combinato-
rially giving an explicit canonical decomposition of the strings in W .
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First formula. The first formula is obtained expanding series (2) in the following way:

w(x, y) =
1 + xy + x2y2

(1− x)(1− y)

1

1− x2y2

(1− x)(1− y)

= (1 + xy + x2y2)
∑
k≥0

x2k

(1− x)k+1

y2k

(1− y)k+1

=
∑
k≥0

xk−bk/3c

(1− x)bk/3c+1

yk−bk/3c

(1− y)bk/3c+1
.

Since
tr

(1− t)s+1
=
∑
n≥0

(
n− r + s

s

)
tn ,

we have the expansion

w(x, y) =
∑
k≥0

(∑
m≥0

(
m− k + 2bk/3c

bk/3c

)
xm

)(∑
n≥0

(
n− k + 2bk/3c

bk/3c

)
yn

)

=
∑

m,n,k≥0

(
m− k + 2bk/3c

bk/3c

)(
n− k + 2bk/3c

bk/3c

)
xmyn

which yields the identity

wm,n =
∑
k≥0

(
m− k + 2bk/3c

bk/3c

)(
n− k + 2bk/3c

bk/3c

)
(4)

where the index k in the summation is at most min(m+ bm/2c, n+ bn/2c) .

Second formula. A second expression for wm,n can be obtained by keeping track of
the number of factors 01 and 10 (“switches”) in words without zigzags. Note that
occurrences of these factors cannot overlap, which leads to a simple description in terms of
regular expressions. Indeed, let A be the set of words denoted by the regular expression
0+1+10 . We then have W0 =

∑
k≥0W

(k)
0 , where

W(0)
0 = 0+ , W(2k)

0 = Ak0∗ (k > 0) , W(2k+1)
0 = Ak0+1+ (k ≥ 0) ,

and similarly for W1 . The generating function for A w.r.t. the number of zeros and ones
is x2y2/((1− x)(1− y)) , so that by binomial expansion of the obvious generating functions

for the W(k)
i (i = 0, 1) one finds the following expressions for the numbers w

(k)
m,n of strings
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without zigzags with m ones and n zeros and with precisely k occurrences of “switches”:

w(0)
m,n = δm,0 + δn,0 − δm,0δn,0

w(2k)
m,n =

(
m− k

k

)(
n− k − 1

k − 1

)
+

(
m− k − 1

k − 1

)(
n− k − 1

k

)
=

k (m+ n− 2k)

(m− k)(n− k)

(
m− k

k

)(
n− k

k

)
(k > 0)

w(2k+1)
m,n = 2

(
m− k − 1

k

)(
n− k − 1

k

)
= 2

(m− 2k)(n− 2k)

(m− k)(n− k)

(
m− k

k

)(
n− k

k

)
(k ≥ 0) .

This leads to

wm,n =
∑
k≥0

(
m− k

k

)(
n− k

k

)
2mn− 3(m+ n)k + 6k2

(m− k)(n− k)
(m,n > 0) . (5)

The generating function∑
m,n,k≥0

w(k)
m,n x

mynzk =
(1− xyz)2 − xy

(1− x)(1− y)− (xyz)2

can be obtained by routine calculation from

W = ε+
∑
k≥0

(
W(k)

0 +W(k)
1

)
or from an obvious generalization of the system of equations given in Section 2.

4 Central strings

We say that a binary string is central when the number of 1’s is equal to the number of
0’s. Let wn = wn,n be the number of all central binary strings without zigzags. The first
values of wn are 1, 2, 4, 8, 18, 42, 100, 242, 592, 1460, 3624, 9042, 22656, 56970, 143688
(sequence #A078678 in [17]).

Of course the explicit formulas (4) and (5) for the numbers wm,n yield explicit formulas
for the numbers wn . Specifically

wn =

n+bn/2c∑
k=0

(
n− k + 2bk/3c

bk/3c

)2
, wn =

bn/2c∑
k≥0

(
n− k

k

)2
2n2 − 6nk + 6k2

(n− k)2
.

The generating function for the numbers wn is the diagonal of the double series w(x, y) .
By Cauchy’s integral theorem [5, 11, 19] it is given by

w(t) =
∑
n≥0

wn t
n =

1

2πi

∮
w

(
z,
t

z

)
dz

z
=

1

2πi

∮
1 + t+ t2

−z2 + (1 + t− t2)z − t
dz
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where the integral is taken over a simple contour containing all the singularities s(t) of
the series such that s(t) → 0 as t → 0 . The polynomial z2 − (1 + t − t2)z + t at the
denominator has roots

z± =
1 + t− t2 ±

√
(1 + t− t2)2 − 4t

2
.

Notice that under the radical we have the polynomial

(1 + t− t2)2 − 4t = 1− 2t− t2 − 2t3 + t4 = (1 + t+ t2)(1− 3t+ t2) .

Since only z− → 0 as t→ 0 , by the residue theorem, we have

w(t) = lim
z→z−

1 + t+ t2

−(z − z+)
=

1 + t+ t2

z+ − z−

that is

w(t) =
1 + t+ t2√

1− 2t− t2 − 2t3 + t4
=

√
1 + t+ t2

1− 3t+ t2
. (6)

Since
1 + t+ t2

1− 3t+ t2
= 1 +

4t

1− 3t+ t2
= 1 + 4t

∑
n≥0

f2n+1 t
n ,

one has, from identity (6), a convolution representation of the odd-indexed Fibonacci num-
bers in terms of the wn

4f2n−1 =
n∑

k=0

wkwn−k (n > 0)

which is very much reminiscent of the familiar

4n =
n∑

k=0

(
2k

k

)(
2(n− k)

n− k

)
.

Finally, taking the logarithmic derivative of w(t) , we obtain the identity

(1− 2t− t2 − 2t3 + t4) w′(t) = 2(1− x2) w(t)

which implies the following linear recurrence for the numbers wn

(n+ 4)wn+4 − 2(n+ 4)wn+3 − (n+ 2)wn+2 − 2nwn+1 + nwn = 0 .
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5 The matrix W

We now turn to consider the infinite matrix

W = [wi,j]i,j≥0 =



1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2
1 2 4 5 6 7 8 9 10
1 2 5 8 11 14 17 20 23
1 2 6 11 18 26 35 45 56
1 2 7 14 26 42 62 86 114
1 2 8 17 35 62 100 150 213
1 2 9 20 45 86 150 242 367
1 2 10 23 56 114 213 367 592
. . .


.

We will prove that it can be decomposed as LTLt where L is the lower triangular matrix

L = [li,j]i,j≥0 =



1
1 1
1 1 1
1 1 1 1
1 1 1 2 1
1 1 1 3 2 1
1 1 1 4 3 3 1
1 1 1 5 4 6 3 1
1 1 1 6 5 10 6 4 1
. . .


with entries given by

li,0 = 1 , li+1,j+1 =

(
i− dj/2e
i− j

)
=

(
i− dj/2e
bj/2c

)
,

Lt is the transpose of L and T is the tridiagonal matrix

T = [ti,j]i,j≥0 =



1 0
0 1 0

0 2 1
1 2 0

0 2 1
1 2 0

0 2 1
. . .


with entries

ti,j = [j mod 2 = 0, j 6= 0] δi,j+1 + (2− [i = 0, 1]) δi,j + [i mod 2 = 0, i 6= 0] δi+1,j
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where the square brackets denote the Iverson notation for the characteristic function of a
proposition [9] and δi,j = [i = j] is the usual Kronecker delta.

The decomposition W = LTLt is equivalent to the identity∑
h,k≥0

li,hth,klj,k = wi,j . (7)

To prove such an identity we consider the series

S(x, y) =
∑
i,j≥0

(∑
h,k≥0

li,hth,klj,k

)
xiyj .

Substituting th,k with its explicit expression and using the formulas∑
i≥0

li,0 x
i =

1

1− x
,

∑
i≥0

li,k x
i =

xk

(1− x)dk/2e ,

after some straightforward computations we obtain S(x, y) = w(x, y) , proving identity (7).
The stated decomposition for the matrix W also holds for the finite matrix Wn =

[wi,j]
n
i,j=0 . More precisely Wn = LnTnL

t
n where Ln = [li,j]

n
i,j=0 and Tn = [ti,j]

n
i,j=0 . Hence

detWn = detTn and detTn = detT ′n−2 where T ′n−2 is the matrix obtained deleting the first
two rows and columns of Tn . Moreover, if dn = detT ′n it is easy to see that dn+2 = 3dn

and d0 = 2 , d1 = 3 . Hence it follows that dn = 5−(−1)n

2
3bn/2c . So detWn = 1 for

n = 0, 1 and detWn = dn−2 for n ≥ 2 . Since the entries of the matrix W count certain
lattice paths (see Section 7) it could be interesting to prove the above result combinatorially
in the style of Gessel-Viennot theorem for the number of configurations of non-intersecting
lattice paths [8].

We conclude this section noticing that the coefficients li+1,j+1 are connection constants
between two persistent polynomial sequences. Specifically

xn =
n∑

k=0

(
n− dk/2e
n− k

)
xbk/2c(x− 1)dk/2e .

6 A Riordan matrix

Let rn,k = wn,n−k for k ≤ n and rn,k = 0 otherwise. Then the matrix

R = [rn,k]n,k≥0 =



1
2 1
4 2 1
8 5 2 1

18 11 6 2 1
42 26 14 7 2 1

100 62 35 17 8 2 1
242 150 86 45 20 9 2 1
592 367 213 114 56 23 10 2 1
. . .
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is a Riordan matrix [16, 12]. Indeed recurrence (3) yields the following recurrence for the
coefficients rn,k :

rn+2,k+1 = rn+1,k + rn+2,k+2 − rn+1,k+1 + rn,k+1 . (8)

Considering the series rk(t) =
∑

n≥k rn,k t
n , recurrence (8) becomes

rk+2(t)− (1 + t− t2) rk+1(t) + t rk(t) = 0 .

Now suppose there exist two series g(t) and f(t) such that rk(t) = g(t)f(t)k for all
k ∈ N . Then g(t) = r0(t) = w(t) and f(t) is defined by the quadratic equation

f(t)2 − (1 + t− t2)f(t) + t = 0

whose solution is

f(t) =
1 + t− t2 −

√
1− 2t− t2 − 2t3 + t4

2
.

Then

rk(t) =

√
1 + t+ t2

1− 3t+ t2

(
1 + t− t2 −

√
1− 2t− t2 − 2t3 + t4

2

)k

.

In conclusion, since g0 = 1 , f0 = 0 and f1 6= 0 , R is the Riordan matrix(√
1 + t+ t2

1− 3t+ t2
,
1 + t− t2 −

√
1− 2t− t2 − 2t3 + t4

2

)
.

The first few coefficients in the expansion of f(t) are

f(t) = t+ t3 + t4 + 2t5 + 4t6 + 8t7 + 17t8 + 37t9 + 82t10 + · · ·
which suggests (looking at entry A004148, formerly M1141, of [17]) that these coefficients
are the numbers of (irreducible) secondary structures in the sense of [20, 19]. Indeed, while
f(t) is the generating function for irreducible secondary structures, the generating function
s(t) for all secondary structures is simply the iteration of f(t) , i.e.,

s(t) =
∑
n≥0

sn t
n =

1

1− f(t)
=

1− t+ t2 −
√

1− 2t− t2 − 2t3 + t4

2t2

Consider now the row sums rn =
∑n

k=0 rn,k of the matrix R . The first values of rn

are 1, 3, 7, 16, 38, 92, 225, 555, 1378, 3439, 8619, 21678, 54687, and their generating series
is given by

r(t) =
∑
n≥0

rn t
n =

w(t)

1− f(t)
= w(t)s(t) .

This implies the convolution identity

rn =
n∑

k=0

wksn−k .

Finally we notice that the matrix R is completely determined by the recurrences{
rn+2,k+1 = rn+1,k + rn,k+1 + rn,k+2 + · · ·+ rn,n

rn+2,0 = rn+1,0 + rn,0 + 2rn,1 + · · ·+ 2rn,n

and by the initial condition r0,0 = 1 .
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7 Lattice paths

A Motzkin path [2] of length n is a lattice path in N × Z which starts at (0, 0) and
ends at (n, 0) , has steps (1, 1) , (1, 0) , (1,−1) and never falls below y = 0 . A Catalan,
or Dyck, path is a Motzkin path without horizontal steps. A central trinomial path is defined
as a Motzkin path with the possibility to go below y = 0 , while a central binomial path is
a central trinomial path without horizontal steps.

Binary strings with m 1’s and n 0’s can be interpreted as lattice paths in N × Z
from the origin (0, 0) to the point (m + n,m − n) considering 1 and 0 as the unitary
diagonal steps (1, 1) and (1,−1) , respectively. For instance the string α = 110001101100
corresponds to the path

-

6

s s s s s s s s s s s s s�
�

�@
@

@
@@�

�
�@@�

�
�@

@
@

This implies that the strings in W can be interpreted as binomial paths without zigzags,

i.e., without a sequence of consecutive steps of the form r r r r
��@@�� and

r r r r@@��@@ . In particular
wm,n is the number of all binomial paths without zigzags ending at (m + n,m − n) , and
wn is the number of all central binomial paths without zigzags ending at (2n, 0) . In the
above example α is central but is not without zigzags.

This interpretation leads to consider the more general problem to enumerate all Motzkin,
Catalan and central trinomial paths without zigzags.

Motzkin paths. Let Zn be the set of all Motzkin paths of length n without zigzags.
To each horizontal step we assign a weight s . For any γ ∈ Zn define the weight w(γ) as
the product of the weights of all its steps. Then let

Z(s)
n =

∑
γ∈Zn

w(γ) and Z(s)(t) =
∑
n≥0

Z(s)
n tn .

For s = 1 we have the Motzkin paths while for s = 0 we have the Catalan paths.
Any Motzkin path can be uniquely decomposed in the product of horizontal steps on the
x-axis and elevated Motzkin paths, i.e., paths of the form (1, 1) γ (1,−1) where γ is any
Motzkin path. Such a decomposition holds also for the Motzkin paths without zigzags, even
though clearly not all the possible patterns are allowed. Let Zhs , Zhill and Zep be the
sets of all Motzkin paths without zigzags whose final factor is a horizonal step, a hill (i.e.,
(1, 1)(1,−1) ) or an elevated path respectively. It is easy to see that

Z(s)(t) = 1 + Z
(s)
hs (t) + Z

(s)
hill(t) + Z

(s)
ep (t)

Z
(s)
hs (t) = stZ(s)(t)

Z
(s)
hill(t) = t2 + st3Z(s)(t)

Z
(s)
ep (t) = (1 + Z

(s)
hs (t) + Z

(s)
ep (t)) (Z(s)(t)− 1) t2 .
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Solving this system it is easy to obtain the equation

(1− st3)Z(s)(t)2 − (1− st+ t2 − st3 + t4 − st5)Z(s)(t) + 1 + t2 + t4 = 0 .

Then

Z(s)(t) =
1− st+ t2 − st3 + t4 − st5 −

√
∆

2t2(1− st3)

where ∆ = 1−2st+(s2−2)t2−4st3+(2s2−1)t4−2st5+(3s2−2)t6+(2s2+1)t8+2st9+s2t10 .
Moreover we have the recurrence

Z
(s)
n+5 = sZ

(s)
n+4 − Z

(s)
n+3 + sZ

(s)
n+2 − Z

(s)
n+1 + sZ(s)

n +
n+3∑
k=0

Z
(s)
k Z

(s)
n+3−k − s

n∑
k=0

Z
(s)
k Z

(s)
n−k .

This result can be generalized to the case in which we assign a weight a to all horizontal
steps on x-axis and a weight s to all other horizontal steps. In this way, for instance, for
a = 0 and s = 1 we have all Riordan paths [2, 1, 4] without zigzags while for a = 0 and
s = 2 we have all Fine paths [2, 1, 7] without zigzags. In this (generalized) case we have
the system 

Z(a,s)(t) = 1 + Z
(a,s)
hs (t) + Z

(a,s)
hill (t) + Z

(a,s)
ep (t)

Z
(a,s)
hs (t) = atZ(a,s)(t)

Z
(a,s)
hill (t) = t2 + at3Z(a,s)(t)

Z
(a,s)
ep (t) = (1 + Z

(a,s)
hs (t) + Z

(a,s)
ep (t)) (Z(s)(t)− 1) t2

which yield the generating function

Z(a,s)(t) =
1− (2a− s)t+ t2 − (2a− s)t3 + t4 − (2a− s)t5 −

√
∆

s− a+ (a2 − as+ 1)t+ (s− a)t2 + a(a− s)t3 − at4 + a(a− s)t5
.

Central trinomial paths. To study these paths when they avoid zigzags it seems more
convenient to consider them as trinomial strings and use the results obtained on binary
strings without zigzags. Specifically we see a trinomial path as a word on the alphabet
{0, 1, h} , considering 1 and 0 as unitary diagonal steps as before and h as the unitary
horizontal step (1, 0) . A zigzag is still one of the strings 101 or 010 . Let U be the set of
all ternary strings without zigzags. Since, in terms of regular expressions, U = W(hW)∗ ,
we obtain from the morphism ν : {0, 1, h}∗ → Z[[x, y, z]] , defined by ν(1) = x , ν(0) = y
and ν(h) = z , the generating function

u(x, y, z) =
∑
n≥0

w(x, y)n+1zn =
w(x, y)

1− w(x, y)z

that is

u(x, y, z) =
1 + xy + x2y2

1− x− y + xy − x2y2 − (1 + xy + x2y2)z

where the coefficient ui,j,k of xiyjzk in u(x, y, z) is the number of all strings in U with
i 1’s, j 0’s and k h’s.
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We say that a string in U is central when the number of 1’s is equal to the number of
0’s. Hence the central strings in U correspond to trinomial paths without zigzags ending on
the x-axis. Let un be the number of such paths ending at (n, 0) . To obtain the generating
function for these numbers we consider first the series

u(x, y) =
∑
i,j≥0

ui,i,j x
iyj .

By Cauchy’s integral theorem we have

u(x, y) =
1

2πi

∮
u
(
z,
x

z
, y
) dz

z
=

1

2πi

∮
1 + x+ x2

−z2 + (1 + x− y − x2 − xy − x2y)z − x
dz .

The polynomial at the denominator has roots

z± =
1 + x− y − x2 − xy − x2y ±

√
(1 + x− y − x2 − xy − x2y)2 − 4x

2

of which only z− → 0 as x→ 0 . Hence, by the residue theorem, we have

u(x, y) = lim
z→z−

1 + x+ x2

−(z − z+)
=

1 + x+ x2

z+ − z−

that is

u(x, y) =
1 + x+ x2√

(1 + x− y − x2 − xy − x2y)2 − 4x
.

Then the generating function for the numbers un is given by u(t) = u(t2, t) , that is

u(t) =

√
1− t+ t2

(1− t)(1− 2t− 2t2 − t3)
=

√
1− t+ t2

1− 3t+ t3 + t4
.

Taking the logarithmic derivative of this series we obtain the identity

(1− 4t+ 4t2 − 2t3 + t6) u′(t) = (1 + t− 3t2 − t3 + t4 − t5) u(t)

which yields the recurrence

(n+6)un+6− (4n+21)un+5 +(4n+15)un+4− (2n+3)un+3 +un+2−un+1 +(n+1)un = 0 .

The first few values of un are 1, 1, 3, 7, 17, 43, 111, 291, 771, 2059, 5533, 14943, 40523
(sequence #A078079 in [17]).

We can treat the case in which each horizontal step has weight s in the same way. We
have only to define ν(h) = sz . In particular

u(s)(t) =

√
1 + t2 + t4

1− 2st+ (s2 − 3)t2 − 2st3 + (s2 + 1)t4 + 2st5 + s2t6
.
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8 Asymptotics

In this final section we give the first-order asymptotic formulas for wn and un . To
obtain such a formula we use the following theorem ([3], p. 252): given a complex number
ξ 6= 0 and a complex function f(t) analytic at the origin, if f(t) = (1− t/ξ)−αψ(t) where
ψ(t) is a series with radius of convergence R > |ξ| and α 6∈ {0,−1,−2, . . .} , then

[tn]f(t) ∼ ψ(ξ)

ξn

nα−1

Γ(α)

where Γ is Euler’s gamma function. For the series w(t) we have

w(t) =

(
1− t

ξ

)−α
√

1 + t+ t2

1− ξt

with ξ = (3−
√

5)/2 and α = 1/2 . Hence, since Γ(1/2) =
√
π , it follows that

wn ∼
2√
nπ
√

5

(
3 +

√
5

2

)n

=
2 ϕ2n√
nπ
√

5

where ϕ = (1 +
√

5)/2 is the golden ratio. In particular

lim
n→∞

wn+1

wn

=
3 +

√
5

2
= ϕ2 .

It could be interesting to explain combinatorially the appearance of ϕ .
Since for the numbers of the secondary structures we have the asymptotic formula [20]

sn ∼

√
15 + 7

√
5

8π

(
3 +

√
5

2

)n
1

n3/2

it follows that

lim
n→+∞

nsn

wn

=
5 + 3

√
5

8
.

Finally, the series u(t) can be written as

u(t) =

(
1− t

ξ

)−1/2
√

1− t+ t2

(1− t)(1− t/ξ1)(1− t/ξ2)

where

ξ =
1

6

3

√
188 + 12

√
249− 4

3

1
3
√

188 + 12
√

249
− 2

3
' 0.353 .

Then un ∼ abn/
√
nπ , where a = ψ(ξ) ' 0.944 and b = 1/ξ ' 2.831 .
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