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Abstract. New combinatorial statistics on colored permutation
groups are introduced here. We present two different generaliza-
tions of major index and descent number, one of them is com-
binatorial in nature and the other is algebraic. We also present
Euler-Mahonian type joint distributions of our parameters.

1. Introduction

One of the most active branches in Enumerative Combinatorics is
the study of permutation statistics. Let Sn be the symmetric group on
n letters and let fi : Sn −→ Z+, (1 ≤ i ≤ t) be (non-negative, integer
valued) combinatorial parameters. Then one is interested in the refined
enumeration of permutations according to these parameters:∑

π∈Sn

q
f1(π)
1 · · · qft(π)

t ,

where qi are variables. Some of the most important parameters are the
following: A descent in a permutation π = π1, . . . , πn is a position i such
that π(i + 1) < π(i), an inversion is a pair i < j such that π(i) > π(j),
and the major index of π is the sum of its descents. The last parameter
was introduced by MacMahon in [9] and [10]. He called it the “greater
index” . He proved algebraically that the major index and the inversion
number are equi-distributed over the symmetric group. In other words:∑

π∈Sn

qinv(π) =
∑
π∈Sn

qmaj(π) = [n]q!,

where [n]q = 1−qn

1−q
. (In fact, MacMahon proved the same result for the

more general case where Sn is replaced by the set of all rearrangements
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of a given word - see [11]. The first combinatorial proof of this result
was given by Foata [5]).

A permutation statistic that is equi-distributed with the number of
descents is called Eulerian, while a permutation statistic that is equi-
distributed with the inversion number is called Mahonian.

A natural extension of the study of permutation statistics is the
study of pairs of permutation statistics and their joint distributions.
Of particular interest is the joint distribution of the descent number
and the major index. The generating function for this joint distribution
is given by Carlitz’s q-Eulerian polynomial:

An(t, q) =
∑
π∈Sn

tdes(π)qmaj(π) =
n∏

i=0

(1− tqi)
∑
k≥0

[k + 1]nq t
k.

(See [4], [7]).
The following problem was first suggested by Foata:

Problem 1.1. (Foata), Extend the Euler-Mahonian distribution of de-
scent number and major index to the hyperoctahedral group Bn.

A solution of this problem was given by Adin, Brenti and Roichman
[1] meanwhile generalizing the concept of major index in two different
ways, one of them algebraic in nature (fmaj) and the other combina-
torial in nature (nmaj). Let Gr,n = Zr o Sn be the group of colored
permutations (see Section 2.2 below). In this paper we further extend
the major index to Gr,n in two different ways:

• The parameter lmaj is equi-distributed with the length function
of Gr,n. We prove the following (See Theorem 5.2):

Theorem. ∑
π∈Gr,n

qlmaj(π) =
∑

π∈Gr,n

q`(π)

where ` is the length function with respect to the standard generators
of Gr,n (see Section 2.2 below).

We define also the parameter ldes which is a length-oriented gener-
alization of the descent number. The parameters ldes and lmaj have
Euler-Mahonian type joint distribution. We prove (see Theorem 5.3):

Theorem. ∑
π∈Gr,n

qlmaj(π)tldes(π)

n∏
i=0

(1− tqi)Πn
k=1(1 + qkt[r − 1]qt)

=
∑
k≥0

[k + 1]nq t
k.
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• The second direction is to generalize the negative descent number,
ndes, and the negative major index, nmaj, defined for Bn in [1]. The
pair (ndes, nmaj) has a simpler Euler-Mahonian type joint distribu-
tion. We prove (see Theorem 6.8):

Theorem. ∑
π∈Gr,n

qnmaj(π)tndes(π) =
(tr; qr)n+1

[r]t

∑
k≥0

[k + 1]nq t
k

The notation (tr; qr)n+1 will be explained in Section 2.1.

The rest of this paper is organized as follows: In the next section we
present some needed notations to be used in the sequel, including the
colored permutation groups. In Section 3 we present some basic statis-
tics on them. In Section 4 we present a formula for the length function
of Gr,n (see also [13]). In Section 5 we introduce the parameters ldes
and lmaj and find their joint distributions. The parameters nmaj and
ndes will be presented in Section 6 along with their joint distribution.
It should be noted that, unlike lmaj, nmaj is not equi-distributed with
the standard length function.

2. Preliminaries

2.1. Notations. Let N := {0, 1, 2, 3, . . . } and let Z be the ring of
integers, Q be the field of rational numbers and C the field of complex
numbers.

For a ∈ N let [a] := {1, 2, . . . , a} (where [0] := ∅). The cardinality
of a set A will be denoted by |A|. More generally, given a multiset

M = {1a1 , 2a2 , . . . , rar}, denote by |M | its cardinality, so |M | =
r∑

i=1

ai.

Given a variable q and a commutative ring R, denote by R[q] (re-
spectively, R[[q]]) the ring of polynomials (respectively, formal power
series) in q with coefficients in R.

Define:

(a; q)n :=

{
1 if n = 0;

(1− a)(1− aq) · · · (1− aqn−1) otherwise.

Also, let:

[n]q :=
1− qn

1− q
= 1 + q + · · ·+ qn−1

(so [0]q = 0) and

[n]q! :=
(q; q)n

(1− q)n
= [n]q · [n− 1]q · · · [1]q.
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Let n be a non-negative integer. A partition of n is an infinite
sequence of non-negative integers with finitely many non-zero terms

λ = (λ1, λ2, . . .), where λ1 ≥ λ2 ≥ · · · and
∞∑
i=1

λi = n.

The sum
∑

λi = n is called the size of λ, denoted |λ|; write also λ `
n. The number of parts of λ, `(λ), is the maximal j for which λj > 0.
The unique partition of n = 0 is the empty partition ∅ = (0, 0, . . . ),
which has length `(∅) := 0.

For any partition λ with at most n positive parts let

mj(λ) := | {1 ≤ i ≤ n | λi = j} | (for all j ≥ 0),

and let
(

n
m̄(λ)

)
denote the multinomial coefficient

(
n

m0(λ),m1(λ),...

)
.

2.2. The Group of Colored Permutations.

Definition 2.1. Let r and n be positive integers. The group of colored
permutations of n digits with r colors is the wreath product Gr,n =
Zr oSn = Zn

r oSn, consisting of all the pairs (z, τ) where z is an n-tuple
of integers between 0 and r − 1 and τ ∈ Sn. The multiplication is
defined by the following rule: For z = (z1, . . . , zn) and z′ = (z′1, . . . , z

′
n)

(z, τ) · (z′, τ ′) = ((z1 + z′τ−1(1), . . . , zn + z′τ−1(n)), τ ◦ τ ′)

(here + is taken mod r).

Here are some conventions we use along this paper:
For an element π = (z, τ) ∈ Gr,n with z = (z1, . . . , zn) we write

zi(π) = zi. For π = (z, τ), we write |π| = (0, τ), (0 ∈ Zn
r ).

A much more natural way to present Gr,n is the following: Consider
the alphabet Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]} as the set [n]
colored by the colors 0, . . . , r− 1. Then an element of Gr,n is a colored

permutation, i.e., a bijection π : Σ → Σ such that π(̄i) = π(i). In
this manner we write, for example, the colored permutation (z, τ) =

((1, 0, 3, 2), (2, 1, 4, 3)) ∈ G3,4 as

(
1 2 3 4

2̄ 1 ¯̄̄4 ¯̄3

)
or even just as: 2̄1¯̄̄4¯̄3.

The group Gr,n is generated by the set SGr,n = {s0, s1, . . . , sn−1}
defined by their action on the set [n] as follows:

si(j) :=


i + 1, if j = i;

i, if j = i + 1;

j, otherwise.



EULER-MAHONIAN PARAMETERS 5

whereas the exceptional generator s0 is defined by

s0(j) :=

{
1̄, if j = 1;

j, otherwise.

Note that, unlike the case of Coxeter groups, here the set of genera-
tors is not symmetric. Note also that G1,n = C1 o Sn is the symmetric
group Sn while G2,n = C2 oSn is the group of signed permutations, also
known as the hyperoctahedral group, or the classical Weyl group of
type B.

Returning now to the view of Gr,n as a semidirect product: Zn
r oSn,

we note that it would be worthwhile to consider Zn
r in another way:

Given any order on the alphabet Σ, Zn
r can be identified with the

subgroup T of Gr,n consisting of the ordered permutations, i.e. those
satisfying: i < j =⇒ π(i) < π(j) with respect to the given order. (This
is done by sending a vector z = (z1, . . . , zn) ∈ Zn

r to the unique ordered
permutation π ∈ Gr,n satisfying zi(π) = zi. For example, given the
order 3̄ < 2̄ < 1̄ < 1 < 2 < 3 on the set {1, 2, 3, 1̄, 2̄, 3̄}, the vector
(0, 1, 1) ∈ Z3

2 corresponds to the colored permutation (3̄2̄1) ∈ G2,3).
Note that if we denote by S the group, isomorphic to Sn, generated
by S = SGr,n − {s0}, then T is just a set of coset representatives of S.
(Indeed, any colored permutation π ∈ Gr,n can be written uniquely in
the following way: π = σ · u where σ is an ordered permutation and
u ∈ S).

3. Basic Statistics on Gr,n

For π ∈ Gr,n we define the negative set of π by :

Neg(π) = {i|zi(π) 6= 0}. (1)

The size of the set Neg(π) will be denoted by neg(π). The following
parameters we define on Gr,n depend on the assumption that we have
some order on the alphabet Σ.
Let π ∈ Gr,n. We say that the pair i < j is an inversion of π if
π(i) > π(j). The number of inversions in π is denoted by inv(π).

i ∈ [n− 1] is a descent of π if π(i) > π(i + 1). We define:

Des(π) := {1 ≤ i ≤ n− 1 | π(i) > π(i + 1)}
to be the descent set of π and we denote by des(π) the size of Des(π).
We also let

maj(π) :=
∑

i∈Des(π)

i

and call it the major index of π.
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For example, consider the order 1̄ < 2̄ < 3̄ < 1 < 2 < 3 defined on
the set {1, 2, 3, 1̄, 2̄, 3̄}. Also consider the colored permutation:

π =

(
1 2 3
3̄ 2 1̄

)
.

Then one has inv(π) = 2, des(π) = 1 and maj(π) = 2.
Now, given any order on the alphabet Σ, we write π = σ · u where

σ ∈ T and u ∈ S (T and S were defined at the end of Section 2.2). We
present a few simple facts concerning this coset decomposition which
will be used later.

des(π) = des(u). (2)

neg(π) = neg(σ). (3)
n∑

i=1

zi(π) =
n∑

i=1

zi(σ). (4)

maj(π) = maj(u). (5)∑
zi(π) 6=0

|π(i)| =
∑

zi(σ) 6=0

|σ(i)|. (6)

4. A Length function for Gr,n

In this section we present a formula for the length of Gr,n with respect
to SGr,n . A similar expression appears in [13]. The proof of our formula
depends on the length order we define next although the length function
itself is independent of order. We start with the definition of a length
function for Gr,n:

Definition 4.1. For every π ∈ Gr,n define the length of π with respect
to the set of the generators SGr,n = {s0, s1, . . . , sn−1} to be the minimal
number of generators satisfying that their product is π. Formally:

`(π) = min{r ∈ N : π = si1 · · · sir , for some i1, . . . , ir ∈ [0, n− 1]}.

Definition 4.2. The length order on the alphabet

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}
is defined as follows:

n[r−1] < · · · < n̄ < · · · < 1[r−1] < · · · < 1̄ < 1 < · · · < n.

Theorem 4.3. For every π ∈ Gr,n:

`(π) = inv(π) +
∑

zi(π) 6=0

(|π(i)|+ zi(π)− 1)

where inv(π) is calculated with respect to the length order defined above.
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Proof. Denote

L(π) = inv(π) +
∑

zi(π) 6=0

(|π(i)|+ zi(π)− 1).

We prove first that `(π) ≤ L(π) by presenting an algorithm which
expresses π as a product of L(π) generators. For π ∈ Gr,n write π = σu
where σ ∈ T, u ∈ S. Our algorithm sends the identity permutation first
to σ and then from σ to σu = π. This is done by multiplying on the
right by Coxeter generators.

Start with the identity permutation.

• For every j = |π(i)| such that i ∈ Neg(π), in increasing order
of j:

– Move j to place 1 by multiplying on the right by the j − 1
successive decreasing generators: sj−1, . . . , s1.

– Equip j with zi(π) bars, to get π(i). This will be done by

multiplying on the right by s
zi(π)
0 and thus will cost exactly

zi(π) steps.
After doing this process once for every ‘colored digit‘ we get

σ ∈ T , i.e., σ is increasing according to the length order.
• Mix the permutation σ in order to get π out of it. This will

cost inv(π) steps.

Example: π = ¯̄32̄41̄. Here σ = ¯̄32̄1̄4, and u = 1243.
The process is (Multiplication is always on the right):

1234
s0→ 1̄234

s1→ 21̄34
s0→ 2̄1̄34

s2→ 2̄31̄4
s1→ 32̄1̄4

s0→ 3̄2̄1̄4
s0→ ¯̄32̄1̄4 = σ.

Now, we are left with an increasing ordered permutation which we
have to mix. This will be done by inv(π) elements of the generating
set S = SGr,n − {s0} which form u and thus we have π = σu. In

summary, we used inv(π)+
∑

zi(π) 6=0

(|π(i)| − 1)+
n∑

i=1

zi steps. This proves

`(π) ≤ L(π).
We prove now the other direction. For r = 2, Zr o Sn is the Coxeter

group of type B. In this case it is known that L(π) = `(π) (See for
example [3]).

Take r > 2 and let π = ((z1, . . . , zn), τ) ∈ Gr,n. We construct π′ =
((z′1, . . . , z

′
n), τ) ∈ G2,n by defining:

z′i =

{
0 zi = 0;
1 zi > 0.

For example, if π = ¯̄43̄21̄ ∈ G3,4 then π′ = 4̄3̄21̄ ∈ G2,4.
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Denoting k =
n∑

i=1

zi −
n∑

i=1

z′i we have, by the construction of π′, that

L(π) = L(π′) + k. Now, assume to the contrary that L(π) > `(π). We
have `(π) ≥ `(π′) + k. (Indeed, take any reduced word representing
π and delete from it the k occurrences of the generator s0, which are
responsible for coloring the digits in π that are reducing colors in the
passage to π′. This will give us a word representing π′).

We have now:

L(π′) + k = L(π) > `(π) ≥ `(π′) + k

which contradicts the fact that L(π′) = `(π′) in G2,n. �

We proceed to the calculation of the generating function of the length
function.

Theorem 4.4. ∑
π∈Gr,n

q`(π) = [n]q! ·
n∏

i=1

(1 + qi[r − 1]q).

Proof. If π ∈ Gr,n then using the coset decomposition we can write
π = σ · u where σ ∈ T, u ∈ S. As can be easily deduced by the proof of
Theorem 4.3, the length function can also be written as:

`(π) = inv(u) + `(σ)

where `(σ) =
∑

zi(σ) 6=0

(|σ(i)| − 1 + zi(σ)) is the length function of σ.

Now, it is well known that
∑
u∈S

qinv(u) = [n]q!. Thus,

∑
π∈Gr,n

q`(π) =
∑
u∈S

qinv(u) ·
∑
σ∈T

q`(π) = [n]q!An

where by induction

An = (1 + qn−1+1 + qn−1+2 + · · ·+ qn−1+r−1)An−1.

We have in summary:

∑
π∈Gr,n

q`(π) = [n]q!
n∏

i=1

(1 + qi[r − 1]q).

�
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5. The Parameter lmaj

In this section we introduce the first generalization of the parameter
maj defined for the symmetric groups and prove its equi-distribution
with the length function of Gr,n. We introduce also the parameter ldes
which is a generalization of the parameter des defined for the symmetric
groups. We start with the following definitions:

Definition 5.1. For every π ∈ Gr,n we define:

ldes(π) = des(π) +
n∑

i=1

zi(π)

and

lmaj(π) = maj(π) +
∑

zi(π) 6=0

(|π(i)| − 1) +
n∑

i=1

zi(π)

where the descents are computed with respect to the length order.

Theorem 5.2. The parameter lmaj equi distributes with the length
function over Gr,n, i.e.,∑

π∈Gr,n

q`(π) =
∑

π∈Gr,n

qlmaj(π).

Proof. We use the semidirect decomposition of Gr,n and the equations
(3), (4), (5) and (6) to get:∑

π∈Gr,n

qlmaj(π) =
∑

σu∈Gr,n

q
maj(σu)+

P
zi(σu) 6=0

(|σu(i)|−1+zi(σu))

=
∑
u∈S

qmaj(u)
∑
σ∈T

q

P
zi(σ) 6=0

(|σ(i)|−1+zi(σ))

=
∑
u∈S

qinv(u)
∑
σ∈T

q

P
zi(σ) 6=0

(|σ(i)|−1+zi(σ))

=
∑

π∈Gr,n

q`(π).

�

5.1. Euler-Mahonian Type Distribution. In this section we pre-
sent an Euler-Mahonian type bi-distribution for the parameters lmaj
and ldes over Gr,n.
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Theorem 5.3. ∑
π∈Gr,n

tldes(π)qlmaj(π)

(t; q)n+1(1 + qkt[r − 1]qt)
=

∑
k≥0

[k + 1]nq t
k.

Proof. We use the semidirect decomposition of Gr,n and the equations
(2), (3), (4), (5) and (6) to get:∑
π∈Gr,n

tldes(π)qlmaj(π) =
∑

π∈Gr,n

t
des(π)+

nP
i=1

zi(π)
q

maj(π)+
P

zi(π) 6=0

(|π(i)|−1+zi(π))

=
∑
σ∈T

∑
u∈S

t
des(u)+

nP
i=1

zi(σ)
q

maj(u)+
P

zi(σ) 6=0

(|σ(i)|−1+zi(σ))

=
∑
σ∈T

t

nP
i=1

zi(σ)
q

P
zi(σ) 6=0

(|σ(i)|−1+zi(σ)) ∑
u∈S

tdes(u)qmaj(u).

By [1, Theorem 2.2], we have:∑
u∈S

tdes(u)qmaj(u) =
n∏

i=0

(1− tqi)
∑
k≥0

[k + 1]nq t
k, (7)

so we are left with the sum :∑
σ∈T

t

nP
i=1

zi(σ)
q

P
zi(σ) 6=0

(|σ(i)|−1+zi(σ))

.

By the same technique we adopted in the proof of Theorem 4.4 we
can prove that∑

σ∈T

t

nP
i=1

zi(σ)
q

P
zi(σ) 6=0

(|σ(i)|−1+zi(σ))

=
n∏

i=1

(1 + qit[r − 1]qt).

Combining this with equation (7) we get:∑
π∈Gr,n

tldes(π)qlmaj(π) =

n∏
k=1

(1 + qkt[r − 1]qt)
n∏

i=0

(1− tqi)
∑
k≥0

[k + 1]nq t
k,

and thus ∑
π∈ZroSn

tldes(π)qlmaj(π)

Πn
i=0(1− tqi)Πn

k=1(1 + qkt[r − 1]qt)
=

∑
k≥0

[k + 1]nq t
k.

�
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6. The Parameter nmaj

In this section we define another parameter on ZroSn. This parameter
is a generalization of the parameter nmaj defined in [2]. The results
of this section do not depend depend on the order one chooses on the
alphabet Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}.

Definition 6.1. For π ∈ Zr o Sn define the multiset:

NNeg(π) = {izi(π)}.
Note that each i with zi(π) > 0 appears zi(π) times.

Definition 6.2. For π ∈ Gr,n define the multiset:

NDes(π) = Des(π) ]NNeg(π−1).

We define also ndes(π) = |NDes(π)|.

Definition 6.3. For π ∈ Gr,n define

nmaj(π) =
∑

i∈NDes(π)

i,

and also

ndes(π) = |NDes(π)|.

Example 6.4. Consider the order 1̄ < 2̄ < 3̄ < 1 < 2 < 3 and take
π = 3̄¯̄12. Here Des(π) = {1}, π−1 = 2̄3¯̄1, NNeg(π−1) = {1, 3, 3},
NDes(π) = {1, 1, 3, 3}, nmaj(π) = 1+1 +3+3 = 8 and ndes(π) = 4.

We define also some refinements of the parameters ndes and nmaj.
They will be used in the proof of the main result of this section.

Definition 6.5. For every π ∈ Gr,n define

di(π) := |{j ∈ Des(π) : j ≥ i}| (1 ≤ i ≤ n).

This is the number of descents in π from position i on.
Define also for every π ∈ Gr,n

ni(π) = |{j ∈ NNeg(π) : j ≥ i}|.
Note that ni(π) counts the number of colors from position i on.

Observation 6.6. Let π ∈ Gr,n. Then

ndes(π) = d1(π) + n1(π
−1),

nmaj(π) =
n∑

i=1

[di(π) + ni(π
−1)].
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6.1. Euler-Mahonian Distribution. In what follows we present an
Euler-Mahonian type distribution of the parameters ndes and nmaj de-
fined earlier. We use here the Hilbert series of the algebra C[q1, . . . , qn]
with respect to multi-degree rearranged into a weakly decreasing se-
quence, i.e., a partition. The right-hand side in the following result is
the Hilbert series of the above algebra.

Theorem 6.7.

∑
`(λ)≤n

(
n

m̄(λ)

) n∏
i=1

qλi
i =

∑
π∈Gr,n

n∏
i=1

q
di(π)+ni(π

−1)
i

n∏
i=1

(1− qr
1 · · · qr

i )

in C[[q1, . . . , qn]].

Proof. Recall from Section 3 the definition of T ⊆ Gr,n as the set of
ordered permutations. As already shown in Section 3, T can be seen as
a copy of Zn

r and thus the fact that Gr,n = Zn
r o Sn implies that every

π ∈ Gr,n can be uniquely written as π = σu where σ ∈ T and u ∈ S,
where S is the subgroup of Gr,n generated by SGr,n − {s0}.

It is clear from the definitions that di(σu) = di(u) and ni(u
−1σ−1) =

ni(σ
−1) for all σ ∈ T , u ∈ Sn and 1 ≤ i ≤ n. Therefore∑

π∈Gr,n

n∏
i=1

q
di(π)+ni(π

−1)
i =

∑
u∈S

∑
σ∈T

n∏
i=1

q
di(σu)+ni((σu)−1)
i

=
∑
u∈S

∑
σ∈T

n∏
i=1

q
di(u)+ni(σ

−1)
i

=
∑
u∈S

n∏
i=1

q
di(u)
i ·

∑
σ∈T

n∏
i=1

q
ni(σ

−1)
i .

In [2, Theorem 6.2], it is proven that the Hilbert series with respect
to multi-degree of C[q1, . . . , qn] can be written as a product of the gen-
erating function of the descent basis for type A and the generating
function of the symmetric functions. Explicitly:

∑
`(λ)≤n

(
n

m̄(λ)

) n∏
i=1

qλi
i =

∑
π∈Sn

n∏
i=1

q
di(π)
i

n∏
i=1

(1− q1 · · · qi)

(8)
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in C[[q1, . . . , qn]], where the sum on the left-hand side is taken over all
partitions with at most n parts.

Thus, in order to complete the proof we have to prove that:

∑
σ∈T

n∏
i=1

q
ni(σ

−1)
i =

n∏
i=1

(1− qr
1 · · · qr

i )

n∏
i=1

(1− q1 · · · qi)
. (9)

Define a function φ : {0, . . . , r − 1} → {0, .., r − 1} by

φ(i) =

{
0 i = 0

r − i i 6= 0
.

Note that there is a bijection between the elements σ ∈ T and the
multisets of the form {1j1 , . . . , njn} where 0 ≤ ji ≤ r − 1, given by

σ 7→ NNeg(σ−1) = {|σ(i)|φ(zi)(σ)}.
(Indeed, given any multiset A = {1j1 , . . . , njn}, define τ by τ(i) = iφ(ji)

for every 1 ≤ i ≤ n and then order τ to get σ. For example, given
A = {1, 1, 2, 2, 3}, we form τ = 1̄2̄¯̄34 and then σ = ¯̄32̄1̄4).

Now, in order to calculate the sum
∑
σ∈T

n∏
i=1

q
ni(σ

−1)
i , we can run over

the multisets of the form {1j1 , . . . , njn} where 0 ≤ ji ≤ r − 1. Here,
every i, inserted to such a multiset ji times, contributes the monomial
(q1 · · · qi)

ji to our sum. This gives us:∑
σ∈T

n∏
i=1

q
ni(σ

−1)
i

= (1 + q1 + · · ·+ qr−1
1 )(1 + q1q2 + (q1q2)

2 + · · ·+ (q1q2)
r−1)

· · · (1 + q1 · · · qn + (q1 · · · qn)2 + · · ·+ (q1 · · · qn)r−1)

=

n∏
i=1

(1− qr
1 · · · qr

i )

n∏
i=1

(1− q1 · · · qi)
.

�

This leads us to the following generalization of the Carlitz identity
for the parameters ndes and nmaj.

Theorem 6.8.∑
π∈Gr,n

qnmaj(π)tndes(π) =
(tr; qr)n+1

[r]t

∑
k≥0

[k + 1]nq t
k.
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Proof. Substitute, in Theorem 6.7, q1 = qt and q2 = q3 = · · · = qn = q
to get:

∑
`(λ)≤n

(
n

m̄(λ)

)
q

nP
i=1

λi

· tλ1 =

∑
π∈Gr,n

qnmaj(π)tndes(π)

n∏
i=1

(1− trqir)
.

Dividing by (1− t) we have:∑
π∈Gr,n

qnmaj(π)tndes(π)

(1− t)
n∏

i=1

(1− trqir)
=

∞∑
k=0

∑
`(λ)≤n
λ1≤k

(
n

m̄(λ)

)
q

nP
i=1

λi

tk,

and thus the coefficient of tk is∑
`(λ)≤n
λ1≤k

(
n

m̄(λ)

)
q

nP
i=1

λi

=
∑

(l1,...,ln)∈[0,k]n

q

nP
i=1

li
= (

k∑
j=0

qj)n = [k + 1]nq ,

and we have proved:∑
π∈Gr,n

qnmaj(π)tndes(π) = (1− t)
n∏

i=1

(1− trqir)
∑
k≥0

[k + 1]nq t
k

=
(tr; qr)n+1

[r]t

∑
k≥0

[k + 1]nq t
k.

�

Appendix A. The distribution of nmaj

After the completion of this work we were told about the preprint of
J. Haglund, N. Loehr and J. B. Remmel [8] : ’Statistics on wreath prod-
ucts, perfect matchings and signed words’. A variant of the parameter
defined here as nmaj appears also in their work. Its distribution over

Gr,n is proven there to be
n∏

i=1

[ri]q. We enclose here another proof of

this distribution, based on the proof of Theorem 6.8 of the last section.

Theorem Appendix A.1.∑
π∈Gr,n

qnmaj(π) =
n∏

i=1

[ri]q.



EULER-MAHONIAN PARAMETERS 15

Proof. We write:∑
π∈Gr,n

qnmaj(π) =
∑

π∈Gr,n

q

nP
i=1

di(π)+
nP

i=1
ni(π

−1)

=
∑
u∈S

q

nP
i=1

di(u) ∑
σ∈T

q

nP
i=1

ni(σ
−1)

.

By substituting q = q1 = · · · = qn in equation 8 we get:∑
u∈S

q

nP
i=1

di(u)
= Hilb(C[x1, . . . , xn], q) ·

n∏
i=1

(1− qi)

but on the other hand

Hilb(C[x1, . . . , xn], q) =
1

(1− q)n

so we have ∑
u∈S

q

nP
i=1

di(u)
=

n∏
i=1

(1− qi) · 1

(1− q)n
.

We turn now to the calculation of
∑
σ∈T

q

nP
i=1

ni(σ
−1)

.

Substituting q = q1 = · · · = qn in equation 9 we get:

∑
σ∈T

q

nP
i=1

ni(σ
−1)

=

n∏
i=1

(1− qri)

n∏
i=1

(1− qi)
.

We have now:

∑
π∈Gr,n

qnmaj(π) =
n∏

i=1

(1− qi) · 1

(1− q)n
·

n∏
i=1

(1− qri)

n∏
i=1

(1− qi)
=

n∏
i=1

[ri]q.

�
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