THE NUMBER OF INDECOMPOSABLE SCHUR RINGS OVER A CYCLIC 2-GROUP

I. KOVÁCS*

Abstract

Indecomposable Schur rings over a cyclic group Z_{n} of order n are considered. In the case $n=p^{m}, p$ an odd prime, the total number of such rings was described in terms of Catalan numbers by Liskovets and Pöschel [Discr. Math. 214 (2000), 173-191]. Here, a closed formula is shown for the total number of indecomposable Schur rings over $Z_{2^{m}}$ using Catalan and Schröder numbers. The result is obtained after the initial problem is turned into a lattice path problem.

1. Introduction

Let H be a finite group with identity element e. Denote by $\mathbb{Z}[H]$ the group ring of all formal sums $\sum_{h \in H} a_{h} h, a_{h} \in \mathbb{Z}, h \in H$. For $T \subseteq H$, the group ring element $\sum_{h \in T} h$ will be denoted by \underline{T}. Such an element is also called a simple quantity. The transpose of $\alpha=\sum_{h \in H} a_{h} h$ is defined as $\alpha^{\top}=\sum_{h \in H} a_{h}\left(h^{-1}\right)$. A subring \mathfrak{S} of $\mathbb{Z}[H]$ is called a Schur ring over H (for short S-ring) if it is generated as a module over \mathbb{Z} by the simple quantities $\underline{T}_{1}, \ldots, \underline{T}_{r}$ such that they satisfy the axioms:

- $T_{1}=\{e\}, T_{i} \cap T_{j}=\emptyset$ for all $i \neq j$,
- $\sum_{i=1}^{r} \underline{T_{i}}=\underline{H}$,
- for each $i \in\{1, \ldots, r\}$ there exists some $j \in\{1, \ldots, r\}$ such that $\underline{T}_{i}{ }^{\top}=\underline{T}_{j}$.

The sets T_{i} are called the basic sets of \mathfrak{S}. We will denote by $B(\mathfrak{S})$ the set of all basic sets of \mathfrak{S}.

Trivial examples for S-rings are provided by the full group ring $\mathbb{Z}[H]$, and the module generated by the basic sets $\{e\}$ and $H \backslash\{e\}$. The latter one is also called the trivial S-ring over H.
The notion of an S-ring was created by I. Schur to use them in his investigation of permutation groups, see [10]. Later it was developed to a powerful tool in group theory, see [11, 13].
It was observed later that S-rings can also be applied in algebraic combinatorics. For a given subset $S \subseteq H$, the Cayley digraph of H with respect to S is defined as the digraph (V, E), where $V=H$ and $E=\{(h, h s): h \in H, s \in S\}$. Cayley digraphs of cyclic groups are also called circulant digraphs. From now on Z_{n} will denote a cyclic group of order n. M. Klin and R. Pöschel started an approach based on S-rings to study circulant digraphs, see [3]. For a recent survey on this approach, see [9].

Let \mathfrak{S} be an S-ring over Z_{n}. \mathfrak{S} is called wreath-decomposable (or shortly decomposable), if there is a nontrivial, proper subgroup $H<Z_{n}$ such that for every basic

[^0]set $T, T \subset H$ or $T=\bigcup_{h \in T} H h$. Otherwise, \mathfrak{S} is called indecomposable. If an Sring is decomposable, then it can be obtained as the wreath product of two smaller S-rings, see [9]. Indecomposable S-rings play a crucial role in the description of the automorphism group of circulant graphs with p^{m} vertices, p a prime, see $[4,6]$.

In this paper we consider the problem of counting the number of indecomposable rings. For $m \in \mathbb{N}$ and a prime p, we set the notation:

$$
I(m, p)=\#\left\{\text { indecomposable S-rings over } Z_{p^{m}}\right\}
$$

It was shown in [8] that if $p>2$, then

$$
I(m, p)=\delta(p-1) c_{m-1}
$$

where $\delta(p-1)$ is equal to the number of positive divisors of $(p-1)$, and for $k \in \mathbb{N}_{0}$, c_{k} is the k-th Catalan number: $c_{k}=\frac{1}{k+1}\binom{2 k}{k}$, cf. [12, page 172]. In this paper, a closed formula is derived for the numbers $I(m, 2)$. For this purpose, besides the Catalan numbers, we will also need the so called Schröder numbers. For $k \in \mathbb{N}_{0}$, the k-th Schröder number is: $s_{k}=\sum_{k=0}^{n} \frac{1}{k+1}\binom{2 k}{k}\binom{n+k}{2 k}$, cf. [12]. In Section 4, the interpretation of both type of numbers will be recalled in terms of certain lattice paths. Our main result is the following theorem.

Theorem 1.1. If $m \geq 3$ then

$$
I(m, 2)=1+\frac{1}{3 \sqrt{17}} \sum_{k=0}^{m-1} a_{m-1-k}\left[\left(\frac{11+3 \sqrt{17}}{4}\right)^{k+1}-\left(\frac{11-3 \sqrt{17}}{4}\right)^{k+1}\right]
$$

where $a_{0}=2, a_{1}=-9$ and

$$
a_{i}=\left(2 c_{i}-4 c_{i-1}\right)+\left(s_{i}-2 s_{i-1}\right)-3 \sum_{j=0}^{i-1} c_{i} s_{i-1-j}, \quad i \geq 2
$$

Here, c_{i} and s_{i} are the i-th Catalan and Schröder number, respectively.
It is easy to derive that $I(1,2)=1$ and $I(2,2)=2$. The values of $I(m, 2)$ for $m \leq 10$ are shown in the following table.

m	1	2	3	4	5	6	7	8	9	10
$I(m, 2)$	1	2	5	16	63	271	1225	5726	27461	134461

We refer to the characterization of S-rings over $Z_{2^{m}}$ given in [2]. This paper contains a table which lists all S-rings over $Z_{2^{m}}, m \leq 5$. One can select the indecomposable ones to find that their total numbers completely agree with the numerical data presented above.

We conclude the introduction with a brief outline of our paper. The starting point of our examinations is the classification of S-rings over $Z_{2^{m}}$ proved in $[1,2]$. This will be shortly recalled in Section 2. In Section 3, this classification will be used to establish a bijection between the set of all nontrivial, indecomposable S-rings over $Z_{2^{m}}$ and the collection of so-called indecomposable parameter vectors of length m (see also [5]). In Section 4, the initial counting problem will be turned into a lattice path counting problem. It will be shown that the set indecomposable parameter vectors
of length m is in one-to-one correspondence with a nicely described set of paths in the $(m-1) \times(m-1)$ plane integer lattice consisting of steps $(1,0),(0,1)$, and $(1,1)$. Theorem 1.1 will be settled in Section 5 based on this correspondence.

2. S-RINGS OVER CYCLIC 2 -GROUPS

Throughout the section $n=2^{m}$ and $m \geq 2$ are assumed. Let $Z_{n}=\langle g\rangle$. Denote by H_{i} the subgroup of Z_{n} of order $2^{i}, i=0, \ldots, m$, i.e., $H_{i}=\left\langle g^{2^{m-i}}\right\rangle$. We set the notation $L_{i}=H_{m-i} \backslash H_{m-1-i}, i=0, \ldots, m-1$, and $L_{m}=\{e\}$.

Let \mathfrak{S} be an S-ring over Z_{n}. Next we describe its basic sets following [1, 2]. Let $T \in B(\mathfrak{S}), T \neq\{e\}$. It was proved in [1, 2] (cf. also [7]) that there are two main possibilities for T : either $T=H_{j} \backslash H_{k}$ for some $0 \leq k<j \leq m$, or T is contained in some set L_{i}. The basic relation θ of \mathfrak{S} is an equivalence relation which is defined on the set $\{0,1, \ldots, m-1\}$ in such a manner that it has equivalence classes of the form $\{i, \ldots, i+j\}, i \in\{0, \ldots, m-1\}, j \in\{0, \ldots, m-1-i\}$. The set $\{i, \ldots, i+j\}$ with $j>0$ is an equivalence class of θ if and only if $H_{m-i} \backslash H_{m-i-j-1}$ is a basic set of \mathfrak{S}. The set $\{i\}$ is an equivalence class if and only if L_{i} cannot be obtained as a proper subset of a basic set of \mathfrak{S}.

Assume that $T \subseteq L_{i}$. According to the classical theory of S-rings, see [13], the basic sets of \mathfrak{S} contained in L_{i} are the orbits of some subgroup $K \leq \operatorname{Aut}\left(Z_{n}\right)$. Consequently, T can be obtained as one of the orbits of K. For every $i \in\{0, \ldots, m-1\}$, denote by K_{i} the maximal subgroup of $\operatorname{Aut}\left(Z_{n}\right)$ such that the sets $L_{i} \cap T, T \in B(\mathfrak{S})$ are orbits of K_{i}. We refer to the groups K_{0}, \ldots, K_{m-1} as the basic groups of \mathfrak{S}.

It follows from the above observations that \mathfrak{S} is uniquely determined by its basic relation and basic groups. In [1, 2] the basic relation together with the basic groups were called the S-system of \mathfrak{S}. To recall the characterization of S-rings in terms of their basic relation and basic groups we need to give explicitly the subgroups of $\operatorname{Aut}\left(Z_{n}\right)$. It is clear that $\operatorname{Aut}\left(Z_{n}\right)=\left\{g^{i} \mapsto g^{i \cdot k}: 1 \leq k<n, \operatorname{gcd}(k, n)=1\right\}$. In what follows, we identify $\operatorname{Aut}\left(Z_{n}\right)$ with the multiplicative group modulo n of elements $1 \leq k \leq n, \operatorname{gcd}(k, n)=1$. It is well-known that $\operatorname{Aut}\left(Z_{2^{m}}\right)=\langle-1,5\rangle$. (Operations are taken modulo $n=2^{m}$.) The subgroups of $\operatorname{Aut}\left(Z_{n}\right)$ are

$$
\begin{align*}
G_{3 i+1} & =\left\{ \pm 1+2^{i+2} k \mid 0 \leq k<2^{m-i-2}\right\} \quad(i=0, \ldots, m-2) \\
G_{3 i+2} & =\left\{1+2^{i+2} k \mid 0 \leq k<2^{m-i-2}\right\} \quad(i=0, \ldots, m-2) \tag{1}\\
G_{3 i} & =\left\{(-1)^{k}+2^{i+1} k \mid 0 \leq k<2^{m-i-1}\right\} \quad(i=1, \ldots, m-2) .
\end{align*}
$$

In fact, it is not hard to see that $G_{3 i+1}=\left\langle-1,5^{2^{i}}\right\rangle, G_{3 i+2}=\left\langle 5^{2^{i}}\right\rangle$, and $G_{3 i}=\left\langle-5^{2^{i-1}}\right\rangle$. The S-rings over $Z_{2^{m}}(m \geq 2)$ are characterized in the following theorem.

Theorem 2.1. [1, 2]
Let θ be a relation on $\{0, \ldots, m-1\}$, and let $K_{i} \leq \operatorname{Aut}\left(Z_{n}\right), i=0, \ldots, m-1(m \geq 2)$. Then they form the basic relation and basic groups, respectively, of some S-ring over $Z_{2^{m}}$ if and only if the following properties hold:
(i) Every equivalence class of θ is of the form $\{i, \ldots, i+j\}$,
(ii) If $\{i, \ldots, i+j\}$ is an equivalence class of θ with $j>0$, then $K_{i}=K_{i+1}=$ $\cdots=K_{i+j}=G_{1}$, and $K_{i-1}=G_{1}, K_{i-2} \in\left\{G_{1}, G_{2}\right\}$ (if $i=0$ or $i=1$, then delete the conditions where negative indices appear),
(iii) $K_{m-1}=G_{1}, K_{m-2} \in\left\{G_{1}, G_{2}\right\}$,
(iv) Let $1 \leq j \leq m-2$. If $K_{j}=G_{3 i+1}$ or $K_{j}=G_{3 i+3}$ for some $0 \leq i \leq m-2$, then

$$
K_{j-1} \in\left\{G_{2}\right\} \cup\left\{G_{3 s+1} \mid 0 \leq s \leq i+1\right\} \cup\left\{G_{3 r+3} \mid 0 \leq r \leq i\right\},
$$

If $K_{j}=G_{3 i+2}$ for some $0 \leq i \leq m-2$, then

$$
K_{j-1} \in\left\{G_{1}\right\} \cup\left\{G_{3 s+2} \mid 0 \leq s \leq i+1\right\} .
$$

Denote by $\mathcal{S}(m)$ the set of all S-rings over $Z_{2^{m}}$. It follows immediately that the trivial S-ring is indecomposable. In what follows, we will ignore this possibility. Actually, the first summand 1 in the main formula (Theorem 1.1) will be responsible for the trivial S-ring. In the rest of this section it will be shown: if \mathfrak{S} is a nontrivial, indecomposable S-ring over $Z_{2^{m}}, m \geq 2$, then its basic relation is equal to the identity relation ω_{m} on $\{0, \ldots, m-1\}$, i.e., ω_{m} consists of singleton classes. We introduce the notation $\mathcal{S}^{*}(m)$ for the collection of S-rings over $Z_{2^{m}}$ that have basic relation ω_{m}. We remark that not all members of $\mathcal{S}^{*}(m)$ are indecomposable. The description of the indecomposable rings will be completed in the next section.

We introduce the functions $f_{i}: \mathcal{S}(m) \rightarrow \mathbb{Z}, i=0, \ldots, m-1$, which act on an $\mathfrak{S} \in \mathcal{S}(m)$ by

$$
f_{i}(\mathfrak{S})=\max \left\{k: H_{k} g^{2^{i}} \subseteq T \cap L_{i}, T \in B(\mathfrak{S})\right\}
$$

In particular, if T^{\prime} is a basic set of \mathfrak{S} which is contained in L_{i}, then $f_{i}(\mathfrak{S})$ is the maximal number k such that T^{\prime} is the union of H_{k}-cosets. The value $f_{i}(\mathfrak{S})$ can be calculated from the basic group K_{i} of \mathfrak{S} by using (1). We have

$$
f_{i}(\mathfrak{S})=\left\{\begin{array}{rr}
m-2-a-i, & \text { if } K_{i}=G_{3 a+b} \neq G_{1}, \tag{2}\\
m-1-i, & \text { if } K_{i}=G_{1} .
\end{array}\right.
$$

Proposition 2.2. Let \mathfrak{S} be an S-ring over $Z_{2^{m}}$ having basic groups K_{0}, \ldots, K_{m-1}. If $K_{1} \neq G_{1}$, then $f_{0}(\mathfrak{S}) \geq f_{1}(\mathfrak{S})$.

Proof. Let $K_{1}=G_{k}, k=3 a+b$. Since we assumed $k>1$, by (2) we have

$$
f_{1}(\mathfrak{S})=m-3-a
$$

Let $K_{0}=G_{k^{\prime}}, k^{\prime}=3 a^{\prime}+b^{\prime}$. Because of Theorem 2.1(iv), we have $a^{\prime} \leq a+1$. If $k^{\prime}=1$, then $f_{0}(\mathfrak{S})=m-1$, which is clearly larger than $f_{1}(\mathfrak{S})$. If $k^{\prime}>1$, then (2) and $a^{\prime} \leq a+1$ imply

$$
f_{0}(\mathfrak{S})=m-2-a^{\prime} \geq m-3-a=f_{1}(\mathfrak{S}) .
$$

Proposition 2.3. If \mathfrak{S} is a nontrivial, indecomposable S-ring over $Z_{2^{m}}$, then its basic relation is ω_{m}.

Proof. Let \mathfrak{S} have basic relation θ and let it have basic groups K_{0}, \ldots, K_{m-1}. We are going to show that if $\theta \neq \omega_{m}$, then \mathfrak{S} is decomposable. We proceed by induction on m. The cases $m \leq 3$ can be checked directly, hence we assume that $m \geq 4$.

If $K_{0}=G_{1}$, then there is a subgroup H_{k} such that $Z_{n} \backslash H_{k}$ is a basic set of \mathfrak{S}. If $k=0$, then \mathfrak{S} is the trivial S-ring. This possibility is excluded, hence $k>0$, and by definition it follows that \mathfrak{S} is decomposable.

Assume that $K_{0} \neq G_{1}$. Then $H_{m-1} \in \mathfrak{S}$, hence we can consider the S-ring over H_{m-1} generated by the basic sets of \mathfrak{S} contained in H_{m-1}. Denote this S-ring by \mathfrak{S}^{*}. It follows that the basic relation of \mathfrak{S}^{*} is equal to $\theta^{*}=\{(i, j):(i+1, j+1) \in \theta\}$. Thus $\theta^{*} \neq \omega_{m-1}$, and, because of the induction hypothesis, \mathfrak{S}^{*} is decomposable. This means by definition that there is some $1 \leq r \leq m-2$ such that every basic set of \mathfrak{S}^{*} (which are the basic sets of \mathfrak{S} contained in H_{m-1}) not contained in H_{r} is the union of some H_{r}-cosets. This implies that $f_{1}(\mathfrak{S}) \geq r$. A basic set in $L_{0}=H_{m} \backslash H_{m-1}$ is the union of H_{d}-cosets, where $d=f_{0}(\mathfrak{S})$. Thus if $d \geq r$, then \mathfrak{S} is decomposable. In case $K_{1} \neq G_{1}$ this follows from Proposition 2.2, for $d=f_{0}(\mathfrak{S}) \geq f_{1}(\mathfrak{S}) \geq r$.

Therefore, it remains to consider the case $K_{1}=G_{1}$. The assertion that $L_{1}=$ $H_{m-1} \backslash H_{m-2}$ is not a basic set is equivalent to saying that θ has equivalence class $\{1, \ldots, i\}$ with $i>1$. According to Theorem 2.1(ii), we have $K_{0}=G_{1}$, i.e., $d=m-1$, which clearly exceeds r and, consequently, \mathfrak{S} is decomposable. Assume finally that L_{1} is a basic set, i.e., $\underline{H_{m-2}} \in \mathfrak{S}^{*}$. This gives $K_{0}=G_{k}$ with $k \leq 4$, see Theorem 2.1(iv). Thus, by (2),

$$
\begin{equation*}
d=f_{0}(\mathfrak{S}) \geq m-3 \tag{3}
\end{equation*}
$$

As before, the S-ring over H_{m-2} which is generated by the basic sets of \mathfrak{S} contained in H_{m-2} is decomposable because of the induction hypothesis. This implies that every basic set of \mathfrak{S} which is contained in $H_{m-2} \backslash H_{s}$ is the union of H_{s}-cosets for some $1 \leq s \leq m-3$. Since $d \geq m-3 \geq s$, see (3), and since L_{1} is a basic set, we obtain finally that \mathfrak{S} is decomposable as required. The proof now is completed.

For our purpose, only the S-rings in $\mathcal{S}^{*}(m)$ need to be considered. An S-ring $\mathfrak{S} \in$ $\mathcal{S}^{*}(m)$ is uniquely determined by its basic groups K_{0}, \ldots, K_{m-1} since, by definition, its basic relation is $\theta=\omega_{m}$. Now, $K_{m-1}=G_{1}, K_{m-2} \in\left\{G_{1}, G_{2}\right\}$ (Theorem 2.1(iii)), and for $i<m-2$ the basic group K_{i} is determined recursively from K_{i+1} (see Theorem 2.1(iv)). This can be interpreted via a rooted tree, which will be denoted by $T(m)$. Each vertex of $T(m)$ is labeled by one of the groups G_{i}. Label the root, which is also considered as the 0 -th level of the tree, by G_{1}. Put two points on the 1-th level, label them by G_{1} and G_{2}, respectively, and join the root with both using a directed edge. The i-th level, $1<i \leq m-1$, is built based on the recursion in Theorem 2.1(iv). As an illustration, $T(4)$ is shown in Figure 1. Then the rings in $\mathcal{S}^{*}(m)$ can be naturally identified with the directed paths in $T(m)$ of length $m-1$. The S-ring $\mathfrak{S} \in \mathcal{S}^{*}(m)$ having basic groups (K_{0}, \ldots, K_{m-1}) corresponds to the directed path of $T(m)$ that passes the i-th level at the vertex labeled with K_{m-1-i}; and conversely, any such directed path induces an ring in $\mathcal{S}^{*}(m)$ by considering the labels of its vertices.

Figure 1. The directed rooted tree $T(4)$

3. Parameter vectors

In this section we will identify the S-rings in $\mathcal{S}^{*}(m), m \geq 2$, with a collection of parameters. The main purpose is to give a formal description of the parameters that correspond to indecomposable rings in $\mathcal{S}^{*}(m)$. (Hence, they will also describe all nontrivial, indecomposable S-rings over $Z_{2^{m}}$.)

Introduce the set $M=\{0, \ldots, m-1\} \times\{0,+,-\}$. For the element $(s, \pm) \in M$ and $(s, 0) \in M$, respectively, we agree to use the notations $s^{ \pm}$and s, respectively.

Definition 3.1. Let $\mathfrak{S} \in \mathcal{S}^{*}(m)$, and let it have basic groups $K_{0}, \ldots, K_{m-1}(m \geq 2)$. The parameter vector $\vec{u}=\left(u_{0}^{\varepsilon_{0}}, \ldots, u_{m-1}^{\varepsilon_{m-1}}\right) \in M^{m}$ of \mathfrak{S} is defined as

$$
u_{i}=f_{i}(\mathfrak{S})=\left\{\begin{array}{rr}
m-2-a-i, & \text { if } K_{i}=G_{3 a+b} \neq G_{1} \tag{4}\\
m-1-i, & \text { if } K_{i}=G_{1}
\end{array}\right.
$$

and

$$
\varepsilon_{i}=\left\{\begin{array}{rr}
-, & \text { if } K_{i}=G_{3 a} \tag{5}\\
+, & \text { if } K_{i}=G_{3 a+1} \text { and } a>0 \\
0, & \text { if } K_{i}=G_{1} \text { or } K_{i}=G_{3 a+2}
\end{array}\right.
$$

The parameter vector \vec{u} is called indecomposable if and only if \mathfrak{S} is indecomposable.
As a direct consequence of Definition 3.1 we have the following proposition.
Proposition 3.2. If $\left(u_{i}^{\varepsilon_{i}}\right)$ is a parameter vector of length m, then

$$
u_{i} \leq \begin{cases}m-3-i, & \text { if } \varepsilon_{i} \neq 0, \\ m-1-i, & \text { if } \varepsilon_{i}=0\end{cases}
$$

for all $i \in\{0, \ldots, m-1\}$.
The parameter vectors of length m can be easily obtained using $T(m)$. First, replace the labels of $T(m)$ by elements of M in the following manner: if a vertex on the i-th
level is labeled by $G_{3 a+b}$, then assign to it the "new" label $u^{\varepsilon} \in M$, where

$$
u=\left\{\begin{array}{rc}
i-1-a, & \text { if } 3 a+b>1, \\
i, & \text { if } 3 a+b=1,
\end{array}\right.
$$

and

$$
\varepsilon=\left\{\begin{array}{rr}
+, & \text { if } b=1 \text { and } a>0 \\
-, & \text { if } b=0 \\
0, & \text { if } b=2 \text { or } 3 a+b=1
\end{array}\right.
$$

See Figure 2 below, where the tree $T(4)$ is shown with its "new" labels.

Figure 2. $T(4)$ with "new" labels
Now the parameter vector $\left(u_{i}^{\varepsilon_{i}}\right)$ of a given S-ring $\mathfrak{S} \in \mathcal{S}^{*}(m)$ can be easily obtained. Consider the directed path of $T(m)$ corresponding to \mathfrak{S}, and then write down the "new" labels of $T(m)$ that are passed by the path. (Note: the label of the root provides $u_{m-1}^{\varepsilon_{m-1}}$, and so on.) Based on Figure 2, we list all parameter vectors of length at most 4 in Table 1.

m	parameter	vectors			
2	$(1,0)$	$(0,0)^{*}$			
3	$(2,1,0)$	$(2,0,0)$	$(1,1,0)$	$(1,0,0)^{*}$	$\left(0^{-}, 1,0\right)^{*}$
	$\left(0^{+}, 1,0\right)^{*}$	$(0,0,0)^{*}$			
4	$(3,2,1,0)$	$(3,2,0,0)$	$(3,1,1,0)$	$(3,1,0,0)$	$\left(3,0^{-}, 1,0\right)$
	$\left(3,0^{+}, 1,0\right)$	$(3,0,0,0)$	$(2,2,1,0)$	$(2,2,0,0)$	$(2,1,1,0)$
	$(2,1,0,0)^{*}$	$\left(2,0^{-}, 1,0\right)^{*}$	$\left(2,0^{+}, 1,0\right)^{*}$	$(2,0,0,0)^{*}$	$\left(1^{-}, 2,1,0\right)$
	$\left(1^{-}, 2,0,0\right)^{*}$	$\left(1^{-}, 0^{-}, 1,0\right)^{*}$	$\left(1^{-}, 0^{+}, 1,0\right)^{*}$	$\left(1^{+}, 2,1,0\right)$	$\left(1^{+}, 2,0,0\right)^{*}$
	$\left(1^{+}, 0^{-}, 1,0\right)^{*}$	$\left(1^{+}, 0^{+}, 1,0\right)^{*}$	$(1,1,1,0)$	$(1,1,0,0)^{*}$	$(1,0,0,0)^{*}$
	$\left(0^{-}, 0^{+}, 1,0\right)^{*}$	$\left(0^{+}, 0^{+}, 1,0\right)^{*}$	$(0,0,0,0)^{*}$		

Table 1. The parameter vectors of S-rings in $\mathcal{S}^{*}(m), m=2,3,4$.

The decomposability of an S-ring in $\mathcal{S}^{*}(m)$ can easily be checked in terms of its parameter vector as stated in the following proposition.

Proposition 3.3. If $\vec{u}=\left(u_{i}^{\varepsilon_{i}}\right)$ is the parameter vector of an S-ring $\mathfrak{S} \in \mathcal{S}^{*}(m)$, then \mathfrak{S} is decomposable if and only if there exits some $r \in\{1, \ldots, m-1\}$, such that $u_{i} \geq r$ for all $i=0, \ldots, m-1-r$.

Proof. Recall that $u_{i}=f_{i}(\mathfrak{S})$, see (4). By the definition of f_{i} (cf. Section 2), the value u_{i} can also be regarded as the maximal number k that every basic set in L_{i} is the union of H_{k}-cosets. Our claim is an immediate consequence of this interpretation. \mathfrak{S} is decomposable by definition if there exists some $r \in\{1, \ldots, m-1\}$ such that every basic set is either contained in H_{r} or is the union of H_{r}-cosets (cf. Section 1). For our $\mathfrak{S} \in \mathcal{S}^{*}(m)$, this is equivalent to saying that every basic set in $L_{i}, i=0, \ldots, m-1-r$, is the union of some H_{r}-cosets for some $r \in\{1, \ldots, m-1\}$. This is equivalent to saying that $u_{i} \geq r$ for all $i=0, \ldots, m-1-r$.

Using Proposition 3.3, it is easy to check that the indecomposable parameter vectors in Table 1 are exactly those that are marked with the sign *.

At the end of this section, we establish a formal description of indecomposable parameter vectors (Theorem 3.8). To prepare for this description, we give next further properties of the parameter vectors. Let $\mathfrak{S} \in \mathcal{S}^{*}(m)$, and let \mathfrak{S} have basic groups

$$
K_{0}=G_{3 a_{0}+b_{0}}, \ldots, K_{m-2}=G_{3 a_{m-2}+b_{m-2}}, K_{m-1}=G_{1} .
$$

Let $\vec{u}=\left(u_{i}^{\varepsilon_{i}}\right)$ denote the parameter vector of \mathfrak{S}. For the next three propositions assume that $i \in\{1, \ldots, m-1\}$.
Proposition 3.4. If $\varepsilon_{i-1} \neq 0$ and $\varepsilon_{i}=0$, then $u_{i-1}=u_{i}-1=m-2-i$. Otherwise, $u_{i-1} \geq u_{i}$.

Proof. Because of (5), the conditions $\varepsilon_{i-1} \neq 0$ and $\varepsilon_{i}=0$ are equivalent with

$$
\begin{equation*}
\left(b_{i-1}=0 \vee\left(b_{i-1}=1 \wedge a_{i-1}>0\right)\right) \wedge\left(3 a_{i}+b_{i}=1 \vee b_{i}=2\right) \tag{6}
\end{equation*}
$$

Theorem 2.1(iv) shows that (6) holds exactly when $3 a_{i}+b_{i}=1$ and $3 a_{i-1}+b_{i-1} \in$ $\{3,4\}$. By (4), these equalities imply $u_{i-1}=m-2-1-(i-1)=m-2-i$ and $u_{i}=m-1-i$.

Assume that (6) does not hold. By Theorem 2.1(iv) we know that $a_{i-1} \leq a_{i}+1$. If $3 a_{i}+b_{i} \neq 1$, then, according to (4), we have $u_{i}=m-2-a_{i}-i$. Therefore,

$$
u_{i} \leq m-2-\left(a_{i-1}-1\right)-i=m-2-a_{i-1}-(i-1) \leq u_{i-1} .
$$

Let $3 a_{i}+b_{i}=1$. Since (6) does not hold, we have $3 a_{i-1}+b_{i-1} \in\{1,2\}$. This implies $u_{i}=m-1-i$ and $u_{i-1} \in\{m-i, m-1-i\}$, hence $u_{i-1} \geq u_{i}$ as required. The proof is completed.

Corollary 3.5. If \mathfrak{S} is indecomposable, then $u_{i}=m-1-i$ if and only if $i=m-1$ or $\left(i \geq 1 \wedge \varepsilon_{i-1} \neq 0 \wedge \varepsilon_{i}=0\right)$.

Proof. If $i=m-1$, then $K_{m-1}=G_{1}$, see Theorem 2.1(iii). This gives $u_{m-1}=$ $m-1-(m-1)=0$. If $i \geq 1$ and $\varepsilon_{i-1} \neq 0$ and $\varepsilon_{i}=0$, then $u_{i}=m-1-i$ by Proposition 3.4.

Conversely, assume that $u_{i}=m-1-i$ holds and $i \in\{0, \ldots, m-2\}$. Then $3 a_{i}+b_{i}=1$, see (4). If $i=0$, then L_{0} is a basic set, hence \mathfrak{S} is decomposable, a contradiction. Thus $i \geq 1$ and we can consider u_{i-1}. According to Proposition 3.4, we have $u_{i-1} \geq u_{i}$ or $u_{i-1}=u_{i}-1$.

Assume that $u_{i-1} \geq u_{i}$. We show next

$$
\begin{equation*}
u_{j} \geq m-1-i, \text { for all } j=0, \ldots, i \tag{7}
\end{equation*}
$$

We use induction on j. The relation in (7) is clear for $j \in\{i, i-1\}$. Assume that $i>1$ and that (7) holds for $j \in\{1, \ldots, i-1\}$. By Proposition 3.4, either $u_{j-1} \geq u_{j}$ or $u_{j-1}=m-2-j$. Note that in both cases $u_{j-1} \geq m-1-i$, as required.

By choosing $r=m-i-1$ in Proposition 3.3, one obtains via (7) that \mathfrak{S} is decomposable, a contradiction. Therefore, we have $u_{i-1}=u_{i}-1$. By Proposition 3.4, this implies that $\varepsilon_{i-1} \neq 0$ and $\varepsilon_{i}=0$, and this completes the proof.

Proposition 3.6. If $\varepsilon_{i-1}=0$ and $\varepsilon_{i} \neq 0$, then $u_{i-1} \in\{m-i, m-1-i\}$.
Proof. Because of (5), the conditions $\varepsilon_{i-1}=0$ and $\varepsilon_{i} \neq 0$ are equivalent with

$$
\left(3 a_{i-1}+b_{i-1}=1 \vee b_{i-1}=2\right) \wedge\left(b_{i}=0 \vee\left(b_{i}=1 \wedge a_{i}>0\right)\right)
$$

Theorem 2.1(iv) shows that the only possibility that this may occur is that $3 a_{i-1}+$ $b_{i-1}=1$ or $3 a_{i-1}+b_{i-1}=2$. By (4), we have $u_{i-1}=m-1-(i-1)$ or $u_{i-1}=$ $m-2-(i-1)$, i.e., $u_{i-1} \in\{m-i, m-1-i\}$.

Proposition 3.7. If $\varepsilon_{i-1} \neq 0, \varepsilon_{i} \neq 0$ and $u_{i-1}=u_{i}$, then $\varepsilon_{i}=+$.
Proof. By (4) and (5), the conditions $\varepsilon_{i-1} \neq 0, \varepsilon_{i} \neq 0$ and $u_{i-1}=u_{i}$ give

$$
u_{i-1}=m-2-a_{i-1}-(i-1)=m-2-a_{i}-i=u_{i} .
$$

Thus $a_{i-1}=a_{i}+1$. Theorem 2.1(iv) shows that this may occur only when $b_{i}=1$, which, by (5), gives $\varepsilon_{i}=+$.

In fact, the above properties completely describe the indecomposable parameter vectors among the elements of M^{m}.

Theorem 3.8. The parameter vector $\vec{u}=\left(u_{i}^{\varepsilon_{i}}\right) \in M^{m}(m \geq 2)$ is indecomposable if and only if it satisfies the properties:
(i) for all $i \in\{0, \ldots, m-1\}, u_{i} \leq \begin{cases}m-3-i, & \text { if } \varepsilon_{i} \neq 0, \\ m-1-i, & \text { if } \varepsilon_{i}=0,\end{cases}$
(ii) $u_{i}=m-1-i$ if and only if $i=m-1$ or $i \geq 1$ and $\varepsilon_{i-1} \neq 0$ and $\varepsilon_{i}=0$,
(iii) if $\varepsilon_{i-1} \neq 0$ and $\varepsilon_{i}=0$, then $u_{i-1}=u_{i}-1$; otherwise, $u_{i-1} \geq u_{i}$,
(iv) if $\varepsilon_{i-1}=0$ and $\varepsilon_{i} \neq 0$, then $u_{i-1} \in\{m-i, m-1-i\}$,
(v) if $\varepsilon_{i-1} \neq 0, \varepsilon_{i} \neq 0$ and $u_{i-1}=u_{i}$, then $\varepsilon_{i}=+$.

Proof. If \vec{u} is an indecomposable parameter vector, then the properties (i)-(v) are just a reformulation of Proposition 3.2, Propositions 3.4, 3.6, 3.7, and Corollary 3.5.

Conversely, assume that $\vec{u}=\left(u_{i}^{\varepsilon_{i}}\right) \in M^{m}$ satisfies (i)-(v). We are going to prove by induction on m that \vec{u} is an indecomposable parameter vector, i.e., that it is the parameter vector of a nontrivial, indecomposable S-ring over $Z_{2^{m}}$. If $m=2$, then it can be directly checked that $(0,0)$ is the only element of $M \times M$ satisfying all properties (i)-(v).

Assume that $m \geq 3$. For a given $u_{i}^{\varepsilon_{i}}, i \in\{0, \ldots, m-1\}$, substitute u_{i} into the equation (4). This will determine a unique number a_{i}. Then consider the equation in (5) which corresponds to our given ε_{i}. It will hold for a unique $b_{i} \in\{0,1,2\}$ as a_{i} is already fixed. Then put $K_{i}=G_{3 a_{i}+b_{i}}$.
In fact, it suffices to show that the groups K_{0}, \ldots, K_{m-1} are the basic groups of an indecomposable S-ring $\mathfrak{S} \in \mathfrak{S}^{*}(m)$, for then \vec{u} is clearly the parameter vector of \mathfrak{S}. We prove first that they are the basic groups of an S-ring in $\mathfrak{S}^{*}(m)$ by showing that K_{0}, \ldots, K_{m-1} satisfy Theorem $2.1($ iii $)$-(iv). We distinguish two cases.
Case 1: $u_{1}<m-2$.
We set $\vec{u}^{\prime}=\left(u_{1}^{\varepsilon_{1}}, \ldots, u_{m-1}^{\varepsilon_{m-1}}\right) \in M^{m-1}$. It can be checked that in this case \vec{u}^{\prime} satisfies all properties (i)-(v). Therefore, the induction hypothesis yields that \vec{u}^{\prime} is the parameter vector of an indecomposable S-ring \mathfrak{S}^{\prime} over $\mathbb{Z}_{2^{m-1}}$. It follows from this that the groups K_{1}, \ldots, K_{m-1} satisfy the conditions Theorem 2.1(iii)-(iv). Therefore, we only have to check K_{0}.

Assume that $\varepsilon_{1}=0$. Since $u_{1}<m-2$, it follows that $K_{1}=G_{3 a_{1}+2}$. If $\varepsilon_{0} \neq 0$, then, by (ii), we have $u_{1}=m-2$, a contradiction. Also, $\varepsilon_{0}=0$. If $K_{0} \neq G_{1}$, then $b_{0}=2$, and, by (2) and (i),

$$
0 \leq a_{0}=m-2-u_{0} \leq m-3-\left(u_{1}\right)+1=a_{1}+1 .
$$

Therefore, we obtain

$$
K_{0} \in\left\{G_{1}\right\} \cup\left\{G_{3 i+2} \mid 0 \leq i \leq a_{1}+1\right\},
$$

as stated in Theorem 2.1(iv).
Assume next that $\varepsilon_{1} \neq 0$. This is the same as $K_{1}=3 a_{1}+1$ or $K_{1}=3 a_{1}$ for $a_{1}>0$. If now $\varepsilon_{0}=0$, then, by (iv), we have $u_{0} \in\{m-1, m-2\}$. By (2), this implies that $K_{0} \in\left\{G_{1}, G_{2}\right\}$. If $\varepsilon_{0} \neq 0$, then $K_{1}=3 a_{0}+1$ or $K_{1}=3 a_{0}$ for $a_{0}>0$. By (2) and (i), we have $0 \leq a_{0} \leq a_{1}+1$, and $a_{0}=a_{1}+1$ is the same as $u_{0}=u_{1}$. In this case, by (iii) it follows that $\varepsilon_{1}=+$. Furthermore, we have $b_{1}=1$. Altogether we obtain that in case $K_{1}=G_{3 a_{1}+1}$ or $K_{1}=G_{3 a_{1}+3}$,

$$
K_{0} \in\left\{G_{2}\right\} \cup\left\{G_{3 i+1} \mid 0 \leq i \leq a_{1}+1\right\} \cup\left\{G_{3 i+3} \mid 0 \leq i \leq a_{1}\right\} .
$$

Thus, K_{0} satisfies Theorem 2.1(iv).
Case 2: $u_{1}=m-2$.
Then, according to (4) and (5), we have $K_{1}=G_{1}$ and $\varepsilon_{1}=0$. We set $\vec{u}^{\prime}=$ $\left(u_{2}^{\varepsilon_{1}}, \ldots, u_{m-1}^{\varepsilon_{m-1}}\right) \in M^{m-2}$. In this case, $u_{2}<m-3$, since otherwise $\varepsilon_{1} \neq 0$ would follow because of (iii). It follows from this that the groups K_{2}, \ldots, K_{m-1} satisfy the conditions Theorem 2.1(iii)-(iv). Therefore, we only have to check K_{1} and K_{0}.

Since $K_{1}=G_{1}$, it satisfies Theorem 2.1(iii)-(iv) independently of K_{2}. According to (ii), we have $\varepsilon_{0} \neq 0$ and $\varepsilon_{1}=0$. Thus, $u_{0}=m-3$ because of (i), hence, from (4), we get that $K_{0} \in\left\{G_{3}, G_{4}\right\}$. This shows that K_{0} satisfies Theorem 2.1(iv), as required.

We proved that \vec{u} is the parameter vector of an S-ring $\mathfrak{S} \in \mathfrak{S}^{*}(m)$. It remains to show that \mathfrak{S} is indecomposable. By way of contradiction, assume that \mathfrak{S} is decomposable. Because of Proposition 3.3, there is some $r \in\{1, \ldots, m-1\}$ such that

$$
\begin{equation*}
u_{i} \geq r \text { for all } i=0, \ldots, m-1-r \tag{8}
\end{equation*}
$$

In particular, $u_{m-1-r} \geq r=m-1-(m-1-r)$. Because of (i) and (ii), we have $u_{m-1-r}=r, m-1-r>0, \varepsilon_{m-1-r}=0$, and $\varepsilon_{u_{m-2-r}} \neq 0$. Now (iii) implies $u_{m-2-r}=u_{m-1-r}-1=r-1$, which contradicts (8). The proof of the theorem is now completed.

4. Lattice paths

In this section, we consider lattice paths (for short paths) in the integer plane lattice, which consist of steps $\rightarrow=(1,0), \uparrow=(0,1)$ and $\nearrow=(1,1)$. A path π is uniquely determined by its starting point and the sequence of its steps. We express this as $\pi=\left(s_{1}, \ldots, s_{k}\right), s_{i} \in\{\rightarrow, \uparrow, \nearrow\}$. The path induced by $\pi^{\prime}=\left(s_{i}, s_{i+1}, \ldots, s_{j}\right)$, $1 \leq i \leq j \leq k$, will be called a subpath of π.

In this section we are going to associate a path with any indecomposable parameter vector. Let $\vec{u}=\left(u_{0}^{\varepsilon_{0}}, \ldots, u_{m-1}^{\varepsilon_{m-1}}\right)$ be an indecomposable parameter vector. The associated path will have starting point $(0,0)$, and its steps will be constructed recursively in $m-1$ steps. In each step, a subpath will be determined, which will be denoted by π_{i}, whose end point will be denoted by $\left(x_{i}, y_{i}\right)$. As initial value, let π_{0} be the empty path with starting point $(0,0)$, so that $\left(x_{0}, y_{0}\right)=(0,0)$.

Assume that π_{i} is already defined, connecting (0,0) with $\left(x_{i}, y_{i}\right), 0 \leq i<m-2$. Then define π_{i+1} as the concatenation of π_{i} with π^{\prime}, where π^{\prime} has starting point $\left(x_{i}, y_{i}\right)$, and where its steps are determined by the following rules:
If $\varepsilon_{i}=0$ then

$$
\pi^{\prime}:=\left\{\begin{array}{rr}
(\rightarrow, \uparrow), & \text { if } i \geq 1, \varepsilon_{i-1} \neq 0, \tag{9}\\
(\underbrace{\rightarrow, \ldots, \rightarrow}_{r}, \uparrow) & \text { if } i=0 \text { or }\left(i \geq 1, \varepsilon_{i-1}=0\right),
\end{array}\right.
$$

where $r=\max \left(m-1-x_{i}-u_{i}, 0\right)$.
If $\varepsilon_{i} \neq 0$ then

$$
\pi^{\prime}:=\left\{\begin{array}{cc}
\overbrace{\uparrow, \ldots, \uparrow, \uparrow,} \rightarrow) & \text { if } \varepsilon_{i}=+ \tag{10}\\
(\underbrace{\uparrow, \ldots, \uparrow}_{s-1}, \nearrow) & \text { if } \varepsilon_{i}=-
\end{array}\right.
$$

where $s=\max \left(m-2-y_{i}-u_{i}, 0\right)$.
It is easy to see that for the end point of π_{i+1} we have

$$
\left(x_{i+1}, y_{i+1}\right)=\left\{\begin{array}{lr}
\left(x_{i}+1, y_{i}+1\right), & \text { if } i \geq 1, \varepsilon_{i}=0, \varepsilon_{i-1} \neq 0, \\
\left(x_{i}+r, y_{i}+1\right), & \text { if } \varepsilon_{i}=0, \\
\left(x_{i}+1, y_{i}+s\right), & \text { of } \left.i=1, \varepsilon_{i-1}=0\right),
\end{array}\right.
$$

Given this construction, we associate \vec{u} with the path π_{m-1}. We set the notation $\pi(\vec{u})=\pi_{m-1}$.

Example 4.1. $\pi(\vec{u}), \vec{u}=\left(2^{-}, 2^{+}, 3,0^{+}, 1,0\right)$.
By definition π_{0} is the empty path, $\left(x_{0}, y_{0}\right)=(0,0)$. As for π_{1}, since $u_{0}^{\varepsilon_{0}}=2^{-}$, apply (10) with $s=2$ to find $\pi_{1}=\pi^{\prime}=(\uparrow, \nearrow),\left(x_{1}, y_{1}\right)=(1,2) . \pi_{2}$ is the concatenation of π_{1} with π^{\prime}, where π^{\prime} starts at $(1,2)$ and, according to $(10), \pi^{\prime}=(\rightarrow)$. Continuing in this way, we obtain:

Next, we provide more paths associated with indecomposable parameter vectors. For sake of simplicity, we put $\pi(\vec{u})=\pi\left(u_{0}^{\varepsilon_{0}}, \ldots, u_{m}^{\varepsilon_{m}}\right)$ if $\vec{u}=\left(u_{0}^{\varepsilon_{0}}, \ldots, u_{m}^{\varepsilon_{m}}\right)$.

Example 4.2. The paths associated with indecomposable parameter vectors of length $m, 2 \leq m \leq 4$.
$\underline{m=2}$: There is only one path: $\pi(0,0)=(\rightarrow, \uparrow)$.
$\underline{m=3}:$

$\underline{m=4:}$

$\pi(0,0,0,0)$

$\pi(1,1,0,0)$

$\pi(1,0,0,0)$

$\pi\left(1,0^{-}, 1,0\right)$
$\pi(2,1,0,0)$

$\pi(2,0,0,0)$
$\pi\left(0^{+}, 0^{+}, 1,0\right) \pi\left(0^{-}, 0^{+}, 1,0\right) \pi\left(1^{+}, 0^{+}, 1,0\right) \pi\left(1^{+}, 0^{-}, 1,0\right) \pi\left(1^{-}, 0^{+}, 1,0\right) \pi\left(1^{-}, 0^{-}, 1,0\right) \pi\left(1^{+}, 2,0,0\right) \pi\left(1^{-}, 2,0,0\right)$
It will turn out that the class of paths which can be obtained from indecomposable parameter vectors can be nicely described by using classical paths such as Catalan and Schröder paths.

Catalan paths are defined as paths connecting two points lying on the line $y=x$ such that they consist of steps \rightarrow and \uparrow, and reach no point above the line $y=x$. The total number of Catalan paths from $(0,0)$ to (n, n) is the n-th Catalan number $c_{n},[12$, Exercise $6.20 / \mathrm{c}]$. Schröder paths connect two points lying on the diagonal line, consist of steps \rightarrow, \uparrow and \nearrow, and reach no point below the line $y=x$. The total number of Schröder paths from $(0,0)$ to (n, n) is equal to n-th Schröder number $s_{n},[12$, Exercise $6.39 / \mathrm{j}]$. For our purpose we will need a slight modification of the Schröder paths. Namely, we call a path a long Schröder path if it is the extension of a Schröder path with two additional steps \rightarrow and \uparrow.

By examining the paths in the examples, one might observe that they can be described as concatenation of Catalan and long Schröder paths. We are going to show that this is true in general.

Theorem 4.3. If $m \geq 2$, then the mapping $\vec{u} \mapsto \pi(\vec{u})$ is a bijection from the set of all indecomposable parameter vectors of length m to the class of paths described by
concatenations of Catalan and long Schröder paths from $(0,0)$ to $(m-1, m-1)$.
The proof of Theorem 4.3 will be based on induction on m. This requires a few preparatory propositions. As these are straightforward consequences of the definitions, we leave the proofs to the reader.

Let $\vec{u}=\left(u_{i}^{\varepsilon_{i}}\right) \in M^{m}$ be an indecomposable parameter vector, and let $m \geq 3$. We introduce the vector $\vec{u}^{\prime}=\left(w_{0}^{\xi_{0}}, \ldots, w_{m-2}^{\xi_{m-2}}\right)$ by

$$
w_{0}^{\xi_{0}}= \begin{cases}u_{1}^{\varepsilon_{1}}, & \text { if } u_{1}<m-2 \\ m-3, & \text { otherwise }\end{cases}
$$

and for $i \in\{1, \ldots, m-2\}$ let $w_{i}^{\xi_{i}}=u_{i+1}^{\varepsilon_{i+1}}$. The vector \vec{u}^{\prime} will be called the derivation of \vec{u}.

Proposition 4.4. If \vec{u} is an indecomposable parameter vector of length $m \geq 3$, then so is its derivation \vec{u}^{\prime}.

Let $\pi=\left(s_{1}, \ldots, s_{k}\right)$ be a path starting at $(0,0)$. For the numbers $1 \leq i_{1}<$ $\cdots<i_{t} \leq k$, we denote by $\pi^{-i_{1}, \ldots, i_{t}}$ the path starting at (0,0), and whose steps are obtained from those of π by deleting the steps $s_{i_{1}}, \ldots, s_{i_{t}}$. For a path $\pi=\left(s_{1}, \ldots, s_{k}\right)$ connecting $(0,0)$ with (m, m), we define its derivation as the path π^{\prime} connecting $(0,0)$ with $(m-1, m-1)$ such that:

$$
\pi^{\prime}=\left\{\begin{array}{rr}
\pi^{-1}, & \text { if } s_{1}=\nearrow, \tag{12}\\
\pi^{-1, l+1}, & \text { if } s_{1}=\cdots=s_{l}=\rightarrow(\uparrow), s_{l+1}=\uparrow(\rightarrow), \\
\pi^{-(l+1)}, & \text { if } s_{1}=\cdots s_{l}=\uparrow, s_{l+1}=\nearrow
\end{array}\right.
$$

Example 4.5. The derivation of $\pi=\pi\left(3^{-}, 4,0^{+}, 0^{+}, 1,0\right)$ and $\rho=\pi\left(3,2,2,0^{+}, 1,0\right)$. (The derivations are shown after translating them by the vector $(1,1)$.)

The vectors $\left(3^{-}, 4,0^{+}, 0^{+}, 1,0\right)$ and $\left(3,2,2,0^{+}, 1,0\right)$ are indecomposable parameter vectors, see Theorem 3.8. It can be seen that the derivation paths are also concatenations of Catalan and long Schröder paths. Moreover, $\pi^{\prime}=\pi\left(3,0^{+}, 0^{+}, 1,0\right)$, $\rho^{\prime}=\pi\left(2,2,0^{+}, 1,0\right)$, and $\left(3,0^{+}, 0^{+}, 1,0\right)$ and $\left(2,2,0^{+}, 1,0\right)$ are the derivations of $\left(3^{-}, 4,0^{+}, 0^{+}, 1,0\right)$ and $\left(3,2,2,0^{+}, 1,0\right)$, respectively. In general, we have the following relation between the derivation of vectors and paths.

Proposition 4.6.

(i) If π is a path as described in (11) with $m \geq 3$, then π^{\prime} is also a concatenation of Catalan and long Schröder paths, connecting $(0,0)$ with $(m-2, m-2)$.
(ii) If \vec{u} is an indecomposable parameter vector of length m, $m \geq 3$, then $(\pi(\vec{u}))^{\prime}=$ $\pi\left(\vec{u}^{\prime}\right)$.

Now everything is prepared to prove Theorem 4.3.
The proof of Theorem 4.3. We proceed by induction on m. The assertion is true for $m=2$, see Table 1 and Example 4.2.

Assume that $m \geq 3$. It follows from (9) and (10) that $\vec{u} \mapsto \pi(\vec{u})$ is an injection. We show next that if \vec{u} is an indecomposable parameter vector of length m, then $\pi(\vec{u})$ is a path as described in (11). Let $\pi=\pi(\vec{u})$. We have $\pi^{\prime}=\pi\left(\vec{u}^{\prime}\right)$, see Proposition 4.6(ii). Since \vec{u}^{\prime} is an indecomposable parameter vector, see Proposition 4.4, π^{\prime} is a concatenation of Catalan and long Schröder paths connecting $(0,0)$ with $(m-2, m-2)$. Now one can use (9), (10), and (12) to conclude that π must be a path as described in (11).

The proof will be completed by showing that if ρ is a path which connects $(0,0)$ with $(m-1, m-1)$ such that it is a concatenation of Catalan and long Schröder paths, then $\rho=\pi(\vec{u})$ for some indecomposable parameter vector \vec{u} of length m. Let $\rho=\left(s_{1}, \ldots, s_{k}\right)$. Use Proposition 4.6(i) and the induction hypothesis to deduce $\rho^{\prime}=\pi(\vec{v})$ for some indecomposable vector \vec{v} of length $m-1$. Furthermore, let $\vec{v}=$ $\left(v_{0}^{\xi_{0}}, \ldots, v_{m-2}^{\xi_{m-2}}\right)$.
We distinguish two cases depending on whether ρ starts with a Catalan or with a long Schröder subpath. We consider only the first case as the second one can be settled along the same line of reasoning.

Let the starting Catalan subpath of ρ have first steps $s_{1}=\cdots=s_{l}=\rightarrow, s_{l+1}=\uparrow$, $1 \leq l \leq m-2$. Now define $\vec{u}=\left(u_{i}^{\varepsilon_{i}}\right)$ by

$$
u_{i}^{\varepsilon_{i}}=\left\{\begin{array}{rr}
(m-1-l)^{0}, & \text { if } i=0, \\
v_{i-1}^{\xi_{i-1}}, & \text { if } 1<i \leq m-1 .
\end{array}\right.
$$

We are going to complete the proof by showing that \vec{u} is an indecomposable parameter vector of length m, and $\rho=\pi(\vec{u})$. Now, \vec{u} being an indecomposable parameter vector is equivalent to the conditions

$$
\begin{aligned}
u_{0} & \leq m-2 \\
\varepsilon_{1} \neq 0 & \Rightarrow u_{0}=m-2, \\
u_{0} & \geq u_{1},
\end{aligned}
$$

see Theorem 3.8. It immediately follows that $u_{0} \leq m-2$. Let $\varepsilon_{1} \neq 0$. We have $\xi_{0} \neq 0$. Moreover, ρ^{\prime} starts with a long Schröder path, see (10). As ρ starts with a Catalan subpath, this can only occur if $l=1$, see (12). Hence $u_{0}=m-2$. It remains to show that $u_{0} \geq u_{1}$. We have $u_{1}=v_{0} \leq m-3$ since \vec{v} is an indecomposable parameter vector of length $m-1$. Hence we may assume that $u_{1}<m-2$, so that $l>1$. Thus, by (12), the path ρ^{\prime} starts with the Catalan subpath $\left(s_{2}, \ldots, s_{l}, s_{l+1}, \ldots\right)$. Now use (9) to obtain $l-1 \leq m-2-v_{0}$. It follows that $u_{1}=v_{0} \leq m-1-l=u_{0}$.

It is clear that $\vec{u}^{\prime}=\vec{v}$. Therefore, we have $(\pi(\vec{u}))^{\prime}=\rho^{\prime}$, see Proposition 4.6(ii). Moreover, for $\pi(\vec{u})=\rho$ it is enough to show that the two paths share the same first $l+1$ steps. This is however clear since it follows that the first iteration of $\pi(\vec{u})$ is $\left(s_{1}, \ldots, s_{l+1}\right)$, see (9).

5. The proof of Theorem 1.1

Recall that $I(m, p)$ denotes the number of indecomposable S-rings over $Z_{p^{m}}$. If $m \geq 2$, then the nontrivial, indecomposable S-rings over $Z_{2^{m}}$ were parameterized by the indecomposable parameter vectors of length m in Section 3. In Section 4 these vectors were shown to be in a one-to-one correspondence with paths as described in (11). Since the trivial S-ring is always indecomposable, for $m \geq 2$ we have

$$
\begin{equation*}
I(m, 2)=1+\#\{\text { paths as described in (11) }\} \tag{13}
\end{equation*}
$$

Our derivation of the expression for $I(m, 2)$ given in Theorem 1.1 will be based on this interpretation. If $n \geq 1$, let p_{n} denote the number of paths from $(0,0)$ to (n, n) as described in (11), and for convenience put $p_{0}=1$. Thus, $I(m, 2)=1+p_{m-1}$ if $m \geq 2$. We set $P(x)=\sum_{n \geq 0} p_{n} x^{n}$.

Recall that the total numbers of Catalan and Schröder paths, respectively, connecting $(0,0)$ with (n, n) are given by

$$
\begin{equation*}
c_{n}=\frac{1}{n+1}\binom{2 n}{n} \text { and } s_{n}=\sum_{k=0}^{n} \frac{1}{k+1}\binom{2 k}{k}\binom{n+k}{2 k} . \tag{14}
\end{equation*}
$$

The corresponding generating functions are, see [12, page 178],

$$
\begin{equation*}
C(x)=\sum_{n \geq 0} c_{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x}, \quad S(x)=\sum_{n \geq 0} s_{n} x^{n}=\frac{1-x-\sqrt{1-6 x+x^{2}}}{2 x} . \tag{15}
\end{equation*}
$$

If \tilde{s}_{n} denotes the number of long Schröder paths, $n \in \mathbb{N}$, then the corresponding generating function is $\tilde{S}(x)=(S(x)-1) x$, as is immediate to see.

The proof of Theorem 1.1. $I(1,2)=1$ is clear, hence assume $m \geq 2$. As our paths are concatenations of Catalan and long Schröder paths, we have the following recursion:

$$
p_{n}=\sum_{i=0}^{n} \tilde{s}_{i} p_{n-i}+\sum_{i=0}^{n-1} c_{i} p_{n-1-i}, \quad n \geq 1
$$

In terms of generating functions, $P(x)=P(x) \tilde{S}(x)+P(x) C(x) x+1$. Substitute $\tilde{S}(x)=(S(x)-1) x$ and use (15) to deduce

$$
P(x)=\frac{2}{3 x+\sqrt{1-4 x}+\sqrt{1-6 x+x^{2}}} .
$$

By getting rid of the square roots in the denominator and using (15) again, one can obtain

$$
P(x)=\frac{1+4 x+(4 x-2) C(x)+(2 x-1) S(x)+3 x C(x) S(x)}{4 x^{2}+11 x-2} .
$$

From this, for the numerator we have:

$$
-2+9 x+\sum_{n \geq 2}\left(4 c_{n-1}-2 c_{n}+2 s_{n-1}-s_{n}+3 \sum_{i=0}^{n-1} c_{i} s_{n-1-i}\right) x^{n} .
$$

Using partial fraction decomposition, the denominator can be expanded to

$$
\frac{1}{4 x^{2}+11 x-2}=\sum_{n \geq 0} \frac{1}{3 \sqrt{17}}\left[\left(\frac{11-3 \sqrt{17}}{4}\right)^{n+1}-\left(\frac{11+3 \sqrt{17}}{4}\right)^{n+1}\right] x^{n}
$$

Eventually, these facts are combined to derive the desired expression for p_{m-1}. The proof now is completed.

Acknowledgements

The author thanks Mikhail Klin for helpful remarks and suggestions. A threeweek visit of the author at the University of Delaware was useful in producing the final version of the paper. This visit was partially supported by the University of Delaware. The author also thanks Christian Krattenthaler for his remarks regarding paths and their enumeration.

References

[1] Ja. Ju. Gol'fand, N. L. Najmark, R. Pöschel. The structure of S-rings over $Z_{2^{m}}$. Akad. der Wiss. der DDR Inst. für Math., Preprint P-MATH-01/85 (1985), 1-30.
[2] M. Ch. Klin, N. L. Najmark, R. Pöschel. Schur rings over $Z_{2^{m}}$. Akad. der Wiss. der DDR Inst. für Math., Preprint P-MATH-14/81 (1981), 1-30.
[3] M. H. Klin and R. Pöschel. The König problem, the isomorphism problem for cyclic graphs and the method of Schur rings. Algebraic methods in graph theory, Vol. I,II (Szeged 1978), Colloq. Math. Soc. János Bolyai 25 (1981), 405-434.
[4] M. Ch. Klin, R. Pöschel. Circulant graphs via Schur ring theory. Automorphism groups of circulant graphs on p^{m} vertices, p an odd prime. Manuscript.
[5] I. Kovács, M. Klin. Automorphism groups of circulant graphs on 2^{m} vertices. (In preparation.)
[6] I. Kovács. On automorphisms of circulant digraphs on p^{m} vertices, p an odd prime. Linear Alg. and its Appl. 356 (2002), 231-252.
[7] K. H. Leung, S. L. Ma. The structure of Schur rings over cyclic groups. J. Pure Appl. Algebra 66 (1990), 287-302.
[8] V. Liskovets, R. Pöschel. Counting circulant graphs of prime-power order by decomposing into orbit enumeration problems. Discr. Math. 214 (2000), 173-191.
[9] M. Muzychuk, M. Klin and R. Pöschel. The isomorphism problem for circulant graphs via Schur ring theory. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Vol. 56 (2001), 241-264.
[10] I. Schur. Zur Theorie der einfach transitiven Permutationsgruppen. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. (1933), 598-623.
[11] W. R. Scott. Group Theory. Prentice-Hall, 1964.
[12] R. P. Stanley. Enumerative Combinatorics vol II. Cambridge University Press, Cambridge, 1999.
[13] H. Wielandt. Finite Permutation Groups. Academic Press, Berlin, 1964.
István Kovács
University of Primorska, Department of Mathematics and Computer Science
Cankarjeva 5, Koper 6000, Slovenia
kovacs@pef.upr.si

[^0]: *This research was partially supported by grant OTKA T-043758, and by a grant provided by the University of Pécs.

