On character tables related to the alternating groups

Christine Bessenrodt
Institut für Mathematik, Universität Hannover
D-30167 Hannover, Germany
Email: bessen@math.uni-hannover.de

Jørn B. Olsson ${ }^{1}$
Matematisk Afdeling, University of Copenhagen
Copenhagen, Denmark
Email: olsson@math.ku.dk

Abstract

There is a simple formula for the absolute value of the determinant of the character table of the symmetric group S_{n}. It equals $a_{\mathcal{P}}$, the product of all parts of all partitions of n (see [4, Corollary 6.5]). In this paper we calculate the absolute values of the determinants of certain submatrices of the character table \mathcal{X} of the alternating group A_{n}, including that of \mathcal{X} itself (Section 2). We also study explicitly the powers of 2 occurring in these determinants using generating functions (Section 3).

1. Preliminaries

We fix a positive integer n. We will use the same notation as in [2], which we recall here.

If $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ is a partition of n we write $\mu \in \mathcal{P}$ and then z_{μ} denotes the order of the centralizer of an element of (conjugacy) type μ in S_{n}. Suppose $\mu=\left(1^{m_{1}(\mu)}, 2^{m_{2}(\mu)}, \ldots\right)$, is written in exponential notation. Then we may factor $z_{\mu}=a_{\mu} b_{\mu}$, where

$$
a_{\mu}=\prod_{i \geq 1} i^{m_{i}(\mu)}, \quad b_{\mu}=\prod_{i \geq 1} m_{i}(\mu)!
$$

Whenever $\mathcal{Q} \subseteq \mathcal{P}$ we define

$$
a_{\mathcal{Q}}=\prod_{\mu \in \mathcal{Q}} a_{\mu}, \quad b_{\mathcal{Q}}=\prod_{\mu \in \mathcal{Q}} b_{\mu} .
$$

We consider the alternating group A_{n}. We let \mathcal{P}^{+}denote the even partitions in \mathcal{P}, \mathcal{O} the partitions into odd parts, and \mathcal{D} the partitions into distinct parts.

The conjugacy classes in A_{n} are of two types. The classes labelled by partitions $\mu \in \mathcal{P}^{+} \backslash(\mathcal{O} \cap \mathcal{D})$ are the non-split classes, which contain all

[^0]S_{n}-permutations of this type; we denote a representative by σ_{μ} and note that the corresponding centralizer is then of order $z_{\mu}^{\prime}=z_{\mu} / 2$. For the partitions $\mu \in \mathcal{D} \cap \mathcal{O}$, the corresponding S_{n}-class splits into two conjugacy classes in A_{n}, for which we denote representatives by σ_{μ}^{+}and σ_{μ}^{-}; their centralizers are of order $z_{\mu}^{\prime}=z_{\mu}$.

We briefly recall some information on the irreducible A_{n}-characters (see [5, sect. 2.5]).

Let μ be a partition of n. For $\mu \neq \tilde{\mu}$, i.e., μ non-symmetric, $[\mu] \downarrow_{A_{n}}=$ $[\tilde{\mu}] \downarrow_{A_{n}}$ is irreducible. Let $\{\mu\}=\{\tilde{\mu}\}$ denote this irreducible character of A_{n}.
For $\mu=\tilde{\mu}$, i.e., μ symmetric, $[\mu] \downarrow_{A_{n}}=\{\mu\}_{+}+\{\mu\}_{-}$is a sum of two distinct irreducible A_{n}-characters (which are conjugate in S_{n}).
This gives all the irreducible complex characters of A_{n}, i.e.,

$$
\operatorname{Irr}\left(A_{n}\right)=\left\{\{\mu\}_{ \pm} \mid \mu \vdash n, \mu=\tilde{\mu}\right\} \cup\{\{\mu\} \mid \mu \vdash n, \mu \neq \tilde{\mu}\} .
$$

The characters $\{\mu\}_{ \pm}$, for symmetric μ, usually have non-rational values on the corresponding "critical" classes of cycle type $h(\mu)=\left(h_{1}, \ldots, h_{l}\right)$, where h_{1}, \ldots, h_{l} are the principal hook lengths in μ; note that $h(\mu) \in \mathcal{D} \cap \mathcal{O}$, so the corresponding S_{n}-class splits. Then we have $[\mu]\left(\sigma_{h(\mu)}\right)=(-1)^{\frac{n-l}{2}}=: \varepsilon_{\mu}$ and

$$
\begin{aligned}
& \{\mu\}_{+}\left(\sigma_{h(\mu)}^{ \pm}\right)=\frac{1}{2}\left(\varepsilon_{\mu} \pm \sqrt{\varepsilon_{\mu} \prod_{i=1}^{l} h_{i}}\right) \\
& \{\mu\}_{-}\left(\sigma_{h(\mu)}^{ \pm}\right)=\frac{1}{2}\left(\varepsilon_{\mu} \mp \sqrt{\varepsilon_{\mu} \prod_{i=1}^{l} h_{i}}\right)
\end{aligned}
$$

All other irreducible A_{n}-characters have the same value on these two classes.

For later use, we want to recall the Jacobi minor theorem (see [3, p. 21]).
Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. Let M_{v} be a v-rowed minor of the determinant $\operatorname{det} A$, corresponding to the rows i_{1}, \ldots, i_{v} and the columns k_{1}, \ldots, k_{v}. Then we take the $(n-v)$-rowed complementary minor for A by deleting all the rows and columns chosen for M_{v} before, and define the signed complementary minor $M^{(v)}$ to M_{v} by multiplying this complementary minor by the sign ± 1, depending on $\sum_{j=1}^{v} i_{j}+\sum_{j=1}^{v} k_{j}$ being even or odd, respectively. (Note that for principal minors the sign is always + .)

Let $A^{\prime}=\left(A_{i j}\right)$ be the $n \times n$-matrix of cofactors $A_{i j}$ for A, i.e., the adjoint matrix to A. Let M_{v} and M_{v}^{\prime} be corresponding v-rowed minors of A and A^{\prime}, respectively, then

$$
M_{v}^{\prime}=(\operatorname{det} A)^{v-1} M^{(v)} .
$$

2. Determinants of submatrices of the character table of A_{n}

We observe that by the Murnaghan-Nakayama formula we have for any symmetric partition μ and any $\nu \in \mathcal{D} \cap \mathcal{O}$:

$$
\{\mu\}_{ \pm}\left(\sigma_{\nu}^{ \pm}\right)=0 \text { for all } \nu>h(\mu) \text { (in lexicographic order) }
$$

Hence, if we order the k (say) partitions in $\mathcal{D} \cap \mathcal{O}$ in decreasing lexicographic order, and the k symmetric partitions according to their principal hook lengths, then the corresponding $2 k \times 2 k$ part of the character table of A_{n} is almost an upper triangular matrix, except that we have 2×2 blocks along the diagonal. We call this matrix \mathcal{X}_{s}.

Knowing the entries of these diagonal blocks explicitly, we can easily compute their determinant and hence the (absolute value of the) determinant of this submatrix of the character table. A 2×2 block corresponding to the characters $\{\mu\}_{ \pm}$on the classes $\sigma_{h(\mu)}^{ \pm}$gives a contribution of absolute value

$$
\left|\varepsilon_{\mu} \sqrt{\varepsilon_{\mu} \prod_{i} h_{i}}\right|=\sqrt{\prod_{i} h_{i}}=\sqrt{a_{h(\mu)}}
$$

where $h(\mu)=\left(h_{1}, h_{2}, \ldots\right)$. Hence the absolute value of the determinant of the whole submatrix is given by:

Proposition 2.1.

$$
\left|\operatorname{det} \mathcal{X}_{s}\right|=\prod_{\nu \in \mathcal{D} \cap \mathcal{O}} \sqrt{a_{\nu}}=\sqrt{a_{\mathcal{D} \cap \mathcal{O}}} .
$$

We can also easily determine the (absolute value of the) determinant for the whole character table \mathcal{X} of A_{n}. By character orthogonality, we know that $\overline{\mathcal{X}}^{t} \mathcal{X}$ is a diagonal matrix with the centralizer orders as its diagonal entries. Set $\mathcal{P}^{(+)}=\mathcal{P}^{+} \backslash(\mathcal{D} \cap \mathcal{O})$. Hence we have

$$
\begin{aligned}
|\operatorname{det} \mathcal{X}|^{2} & =\left(\prod_{\mu \in \mathcal{P}^{(+)}} \frac{z_{\mu}}{2}\right)\left(\prod_{\mu \in \mathcal{D} \cap \mathcal{O}} z_{\mu}^{2}\right) \\
& =2^{-\left|\mathcal{P}^{(+)}\right|} z_{\mathcal{P}^{+}} z_{\mathcal{D} \cap \mathcal{O}}=2^{-\left|\mathcal{P}^{(+)}\right|} a_{\mathcal{P}^{+}} b_{\mathcal{P}^{+}} a_{\mathcal{D} \cap \mathcal{O}}
\end{aligned}
$$

Now we have $b_{\mathcal{P}^{+}}=2^{e^{+}} a_{\mathcal{P}^{+}}$, for some integer $e^{+} \in \mathbb{Z}$. (This is not hard to prove by a combinatorial argument, see Lemma 3.3.)

Hence we obtain

Proposition 2.2.

$$
|\operatorname{det} \mathcal{X}|^{2}=2^{e^{+}-\left|\mathcal{P}^{(+)}\right|} a_{\mathcal{P}^{+}}^{2} a_{\mathcal{D} \cap \mathcal{O}}
$$

In the next section we will see that $e^{+}=e^{+}(n) \in \mathbb{N}$, and that there is a nice generating function for the numbers $e^{+}(n)$ (Proposition 3.4). In particular, an explicit formula for $e^{+}(n)$ is given by

$$
e^{+}(n)=\sum_{i=1}^{[n / 2]} \tau(i) p^{\prime}(n-2 i),
$$

where $\tau(i)$ is the number of divisors of i, and $p^{\prime}(j)=|\mathcal{D}(j) \cap \mathcal{O}(j)|$.
We are interested in determining the determinant of the integral part of the character table of A_{n} corresponding to the non-symmetric partitions and the non-split conjugacy classes; let us call this matrix \mathcal{X}_{u} (with some ordering of rows and columns chosen). (Note that this is also a submatrix of the character table of S_{n}.) This part of the character table of A_{n} is complementary to the submatrix we have considered above, and we want to compute its determinant by employing Jacobi's theorem.

Theorem 2.3. The determinant of the matrix \mathcal{X}_{u} has absolute value

$$
\left|\operatorname{det} \mathcal{X}_{u}\right|=2^{\left(e^{+}-\left|\mathcal{P}^{(+)}\right|\right) / 2} a_{\mathcal{P}^{(+)}} .
$$

Proof. We assume that the rows of the character table \mathcal{X} of A_{n} are labelled such that the rows corresponding to the symmetric partitions come first, and that the columns are labelled such that the $v=\left|\mathcal{P}^{(+)}\right|$partitions in $\mathcal{P}^{(+)}$come first. Let Δ be the diagonal matrix with the centralizer orders z_{μ}^{\prime} as its diagonal entries, and let $\Delta^{(+)}$be the diagonal submatrix corresponding to the partitions $\mu \in \mathcal{P}^{(+)}$.

As we have $\overline{\mathcal{X}}^{t} \cdot \mathcal{X}=\Delta$, we know that the adjoint matrix to \mathcal{X} is

$$
\mathcal{X}^{\prime}=(\operatorname{det} \mathcal{X}) \Delta^{-1} \overline{\mathcal{X}}^{t}
$$

We now want to apply Jacobi's minor theorem as it is stated in Section 1. We take the v-rowed minor M_{v} corresponding to the upper left square part in \mathcal{X}, i.e., $M_{v}=\operatorname{det} \mathcal{X}_{u}$. The corresponding minor of \mathcal{X}^{\prime} is then the determinant of

$$
(\operatorname{det} \mathcal{X})\left(\Delta^{(+)}\right)^{-1} \mathcal{X}_{u}
$$

(remember that \mathcal{X}_{u} is integral). The signed complementary minor to M_{v} in \mathcal{X} is then just $\operatorname{det} \mathcal{X}_{s}$. By Jacobi's theorem we know that

$$
(\operatorname{det} \mathcal{X})^{v}\left(\prod_{\mu \in \mathcal{P}^{(+)}} z_{\mu}^{\prime}\right)^{-1} \operatorname{det} \mathcal{X}_{u}=(\operatorname{det} \mathcal{X})^{v-1} \operatorname{det} \mathcal{X}_{s}
$$

Hence

$$
\operatorname{det} \mathcal{X}_{u}=(\operatorname{det} \mathcal{X})^{-1} 2^{-v} a_{\mathcal{P}^{(+)}} b_{\mathcal{P}^{(+)}} \operatorname{det} \mathcal{X}_{s}
$$

and thus

$$
\begin{aligned}
\left|\operatorname{det} \mathcal{X}_{u}\right| & =2^{-\left(e^{+}-v\right) / 2}\left(a_{\mathcal{P}+} \sqrt{a_{\mathcal{D} \cap \mathcal{O}}}\right)^{-1} 2^{-v} a_{\mathcal{P}(+)} b_{\mathcal{P}+} \sqrt{a_{\mathcal{D} \cap \mathcal{O}}} \\
& =2^{\left(e^{+}-v\right) / 2} a_{\mathcal{P}(+)}
\end{aligned}
$$

where we have used the relation $b_{\mathcal{P}^{+}}=2^{e^{+}} a_{\mathcal{P}^{+}}$.

3. Powers of 2

We compute the generating functions for the powers of 2 occurring in the determinants of the previous section.

Let $P(q), P^{+}(q), P^{-}(q)$ be the generating function for the number of partitions (resp. even/odd partitions) of n. The following is well-known:

Lemma 3.1. $P^{+}(q)-P^{-}(q)=\Delta(q)$, where

$$
\Delta(q)=\prod_{k \geq 0}\left(1+q^{2 k+1}\right) \quad\left(=\frac{P(q) P\left(q^{4}\right)}{P\left(q^{2}\right)^{2}}\right)
$$

is the generating function for the number of partitions of n into distinct odd parts.

Indeed, using that in $P(q)=\prod_{k \geq 1} \frac{1}{1-q^{k}}$ the factor $\frac{1}{1-q^{k}}$ accounts for the parts equal to k we see that

$$
P^{+}(q)-P^{-}(q)=\prod_{k \geq 1} \frac{1}{1+(-q)^{k}} .
$$

Substituting $q \rightarrow-q$ in the Euler identity $\prod_{k \geq 1}\left(1+q^{k}\right)=\prod_{k \geq 0} \frac{1}{1-q^{2 k+1}}$ and inverting we get

$$
\prod_{k \geq 1} \frac{1}{1+(-q)^{k}}=\prod_{k \geq 0}\left(1+q^{2 k+1}\right),
$$

proving the Lemma.
We assume in the following always that $\delta=+$ or - is a sign.
Corollary 3.2. We have

$$
P^{\delta}(q)=\frac{P(q)+\delta \Delta(q)}{2} .
$$

We let $\mathcal{P}^{\delta}(n)$ be the set of partitions of n with sign δ. Then define

$$
a^{\delta}(n)=a_{\mathcal{P}^{\delta}(n)}=\prod_{\mu \in \mathcal{P}^{\delta}(n)} a_{\mu}, \quad b^{\delta}(n)=b_{\mathcal{P}^{\delta}(n)}=\prod_{\mu \in \mathcal{P}^{\delta}(n)} b_{\mu} .
$$

We factor each $i \in \mathbb{N}$ as a product $i=i_{2} i^{\prime}$, where i_{2} is a power of 2 and i^{\prime} is odd and consider two involutory bijections ι, ι^{\prime} on the set

$$
\mathcal{T}(n)=\left\{(\mu, d, k) \mid \mu \in \mathcal{P}(n), m_{d}(\mu) \geq k\right\} .
$$

Here

$$
\iota:(\mu, d, k) \mapsto(\hat{\mu}, k, d)
$$

where $\hat{\mu}$ is obtained from μ by replacing k parts equal to d by d parts equal to k and leaving all other parts unchanged and

$$
\iota^{\prime}:(\mu, d, k) \mapsto\left(\tilde{\mu}, d_{2} k^{\prime}, k_{2} d^{\prime}\right)
$$

where $\tilde{\mu}$ is obtained from μ by replacing k parts equal to d by $k_{2} d^{\prime}$ parts equal to $d_{2} k^{\prime}$ and leaving all other parts unchanged. Let

$$
\mathcal{T}_{d, k}^{\delta}(n)=\left\{\mu \in \mathcal{P}^{\delta}(n) \mid m_{d}(\mu) \geq k\right\} .
$$

Then

$$
\begin{equation*}
\left|\mathcal{T}_{d, k}^{\delta}(n)\right|=p^{(-1)^{(d-1) k} \delta}(n-d k) \tag{1}
\end{equation*}
$$

Indeed removing k parts equal to d from a partition μ with sign δ gives you a partition with sign $(-1)^{(d-1) k} \delta$ and of cardinality $|\mu|-d k$.

Note that this means that the partitions $\mu, \hat{\mu}$ in the definition of ι have different signs if and only if $(d-1) k$ and $d(k-1)$ have different parities, ie. if and only if d and k have different parities. Moreover the partitions $\mu, \tilde{\mu}$ in the definition of ι^{\prime} have the same sign.

Thus ι induces a bijection between $\mathcal{T}_{d, k}^{\delta}(n)$ and $\mathcal{T}_{k, d}^{\delta}(n)$ if d, k have the same parity and between $\mathcal{T}_{d, k}^{\delta}(n)$ and $\mathcal{T}_{k, d}^{-\delta}(n)$ if d, k have different parities. Moreover the bijection ι^{\prime} shows that

$$
\begin{equation*}
a^{\delta}(n)^{\prime}=b^{\delta}(n)^{\prime} \tag{2}
\end{equation*}
$$

and hence
Lemma 3.3. $b^{\delta}(n) / a^{\delta}(n)=2^{e^{\delta}(n)}$ for some integer $e^{\delta}(n)$.
The power of 2 in $a^{\delta}(n)$ is

$$
x^{\delta}(n)=\prod_{\substack{d, k \\ d \text { even }}} d_{2}^{\left|\mathcal{T}_{d, k}^{\delta}(n)\right|}
$$

and the power of 2 in $b^{\delta}(n)$ is

$$
y^{\delta}(n)=\prod_{\substack{d, k \\ k \text { even }}} k_{2}^{\left|\mathcal{T}_{d, k}^{\delta}(n)\right|}
$$

Let $x_{o}^{\delta}(n), x_{e}^{\delta}(n)$ be the product of the factors in $x^{\delta}(n)$, where k is odd/even and correspondingly $y_{o}^{\delta}(n), y_{e}^{\delta}(n)$ be the product of the factors in $y^{\delta}(n)$, where d is odd/even. Using the map ι we see that

$$
x_{e}^{\delta}(n)=y_{e}^{\delta}(n), \quad x_{o}^{\delta}(n)=y_{o}^{-\delta}(n)
$$

Thus the power of 2 in $b^{\delta}(n) / a^{\delta}(n)$ is $x_{o}^{-\delta}(n) / x_{o}^{\delta}(n)$.
Suppose that $x_{o}^{\delta}(n)=2^{f_{o}^{\delta}(n)}$ and $x_{e}^{\delta}(n)=2^{f_{e}^{\delta}(n)}$. Then $e^{\delta}(n)=f_{o}^{-\delta}(n)-$ $f_{o}^{\delta}(n)$.
We have (since $\nu_{2}(d)=0$, when d is odd)

$$
f_{o}^{\delta}(n)=\sum_{\substack{d, k \\ k \text { odd }}} \nu_{2}(d)\left|\mathcal{T}_{d, k}^{\delta}(n)\right|=\sum_{\substack{d, k \\ k \text { odd }}} \nu_{2}(d) p^{-\delta}(n-d k)
$$

Let $\tau_{o}(n)$ the number of odd divisors of n. Note that $\tau_{o}(n) \nu_{2}(n)$ equals the number $\tau_{e}(n)$ of even divisors of n. We then get (substituting $d k=t$ in the above sum and noting that then $\nu_{2}(d)=\nu_{2}(t)$)

$$
f_{o}^{\delta}(n)=\sum_{t=1}^{n} \tau_{o}(t) \nu_{2}(t) p^{-\delta}(n-t)=\sum_{t=1}^{n} \tau_{e}(t) p^{-\delta}(n-t) .
$$

Let $T(q)=\sum_{t \geq 1} \frac{q^{t}}{1-q^{t}}$ be the generating function for $\tau(n)$. Then $T\left(q^{2}\right)$ is the generating function for the number $\tau_{e}(n)$ of even divisors of n. If $F_{o}^{\delta}(q)$ is the generating function for $f_{o}^{\delta}(n)$ we obtain

$$
\begin{equation*}
F_{o}^{\delta}(q)=T\left(q^{2}\right) P^{-\delta}(q) . \tag{3}
\end{equation*}
$$

Using Lemmas 3.1 and 3.3 we deduce
Proposition 3.4. The generating function for $e^{\delta}(n)$ is

$$
E^{\delta}(n)=F_{o}^{-\delta}(q)-F_{o}^{\delta}(q)=\delta T\left(q^{2}\right) \Delta(q) .
$$

Remark 3.5. This Proposition was also proved in [6] in a different way. Our approach was partially inspired by an unpublished note of John Graham.
Note that the proposition shows that $e^{+}=e^{+}(n)$ is always a positive integer.

Let us also consider $F_{e}^{\delta}(q)$. We have

$$
f_{e}^{\delta}(n)=\sum_{\{d, k \mid k \text { even }\}} \nu_{2}(d)\left|\mathcal{T}_{d, k}^{\delta}(n)\right|=\sum_{\{d, k \mid k \text { even }\}} \nu_{2}(d) p^{\delta}(n-d k) .
$$

We substitute $d k=2 t$ in the above and obtain

$$
f_{e}^{\delta}(n)=\sum_{t \geq 1} \tau^{*}(t) p^{\delta}(n-2 t)
$$

where $\tau^{*}(t)=\sum_{d \mid t} \nu_{2}(d)$. We have

$$
\tau^{*}(t)=\binom{\nu_{2}(t)+1}{2} \prod_{p \text { odd }}\left(\nu_{p}(t)+1\right) .
$$

Thus if $T^{*}(q)$ is the generating function for $\tau^{*}(t)$ then

$$
F_{e}^{\delta}(q)=T^{*}\left(q^{2}\right) P^{\delta}(q) .
$$

It is easily seen that

$$
T^{*}(q)=\sum_{j \geq 1} T\left(q^{2^{j}}\right) .
$$

Proposition 3.6. The exponent of 2 in $a^{\delta}(n)$ has the generating function

$$
F_{e}^{\delta}(q)+F_{o}^{\delta}(q)=T^{*}\left(q^{2}\right) P^{\delta}(q)+T\left(q^{2}\right) P^{-\delta}(q) .
$$

In Theorem 2.3 we have seen that $\left|\operatorname{det} \mathcal{X}_{u}\right|=2^{\left(e-\left|\mathcal{P}^{(+)}\right|\right) / 2} a_{\mathcal{P}(+)}$.
By Proposition 3.4, $e=e^{+}(n)$ has generating function $E^{+}(q)=\Delta(q) T\left(q^{2}\right)$. Moreover $\left|\mathcal{P}^{(+)}(n)\right|$ has generating function $P^{+}(q)-\Delta(q)=P^{-}(q)$ (Lemma 3.1). Clearly, $a_{P^{(+)}}(n)$ is divided by the same power of 2 as $a^{+}(n)$, as the removed partitions have only odd parts. The generating function for the corresponding exponent is given by Proposition 3.6. Hence the exponent of 2 in $\operatorname{det} \mathcal{X}_{u}$ has the generating function

$$
G(q)=\frac{1}{2}\left(T\left(q^{2}\right) \Delta(q)-P^{-}(q)\right)+T^{*}\left(q^{2}\right) P^{+}(q)+T\left(q^{2}\right) P^{-}(q)
$$

and this then yields
Theorem 3.7. The exponent of 2 in $\operatorname{det} \mathcal{X}_{u}$ has the generating function

$$
G(q)=\frac{1}{2}\left(T\left(q^{2}\right) P(q)-P^{-}(q)\right)+T^{*}\left(q^{2}\right) P^{+}(q) .
$$

According to MAPLE the first values of the coefficients of $G(q)$ are the following for $n=2, \ldots, 14$: 002246151930437094138 .

Let us finally remark that the Propositions 3.4 and 3.6 also allow to compute the generating function for the exponent of 2 in $|\operatorname{det}(\mathcal{X})|$, using Proposition 2.2.

References

[1] C. Bessenrodt, J. B. Olsson, A note on Cartan matrices for symmetric groups, Archiv d. Math. 81 (2003), 497-504.
[2] C. Bessenrodt, J. B. Olsson, R. P. Stanley, Properties of some character tables related to the symmetric groups, preprint 2003; to appear in: J. Algebraic Combinatorics.
[3] F. R. Gantmacher, The Theory of Matrices, vol. 1, Chelsea, New York, 1960.
[4] G. James, The representation theory of the symmetric groups, Lecture notes in mathematics 682, Springer-Verlag, 1978.
[5] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, 1981.
[6] J. Müller, On a remarkable partition identity, J. Comb. Th. A 101 (2003), 271280.
[7] J. B. Olsson, Regular character tables of symmetric groups, The Electronic Journal of Combinatorics 10 (2003), Article \#N3.

[^0]: ${ }^{1}$ Partially supported by The Danish National Research Council.

