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NONINTERSECTING LATTICE PATHS ON THE CYLINDER

MARKUS FULMEK

Abstract. We show how a formula concerning “vicious walkers” (which basically are
nonintersecting lattice paths) on the cylinder given by P.J. Forrester can be proved
and generalized by using the Lindström–Gessel–Viennot method, after having things
set up in the right way. We apply the corresponding results to the (thermodynamic
limit of the) free energy of the “lock step model of vicious walkers”, thus completing
(and in one instance correcting) the work of Forrester. Moreover, we also show how
a related formula given by I. Gessel and C. Krattenthaler can be obtained from the
same “point of view”.

1. Introduction

In this paper, we consider interesting formulas concerning nonintersecting lattice
paths on the cylinder, and show how the well–known Lindström–Gessel–Viennot method
provides a common and quite simple framework for proving them.

We also consider the asymptotic behaviour of these formulas (i.e., we determine the
thermodynamic limit of the free energy of the “lock step model of vicious walkers”) and
correct a small error in the respective formula [3, (2.33)] given by Forrester.

1.1. Forrester’s formula. In his paper [3], Forrester considered the generating func-
tion of certain “vicious walkers” [3, Theorem 2.1]. The model of vicious walkers was
originally introduced by Fisher [2]. In combinatorial terms, Forrester’s formula simply
gives the enumeration of nonintersecting lattice paths on a cylindric lattice, expressed as
a determinant of certain sums, but only for the case of an odd number of nonintersecting
lattice paths. Forrester proved this formula using a recurrence relation.

1.2. Simple framework for Forrester’s formula: Lindström–Gessel–Viennot.
In our paper, we shall show how the Lindström–Gessel–Viennot framework [7, 5] for
directed graphs can be effortlessly adapted to the cylindric lattice Z × ZM . From this
point of view, Forrester’s formula literally is “easily seen”.

Moreover, it is almost immediate that in this setting the appropriate generalization of
Forrester’s formula also holds for an even number of “vicious walkers”. However, in its
“raw” form, the respective formula contains summands with negative sign, and hence
is not very useful for enumeration purposes. We overcome this disadvantage by appro-
priately modifying the weights in the respective generating function (see Theorem 6).

As applications, we give enumeration formulas for the case of r equidistant vicious
walkers. While for an odd number r, this formula is already contained in [3, (2.28)], the
formula for even r seems to be new. Thus we are able to complete Forrester’s work; in
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particular, we can now also determine the asymptotics for even r. Finally, we indicate
another proof (basically amounting to coefficient extraction in Forrester’s formula) of a
formula given by Gessel and Krattenthaler [4].

1.3. Organization of this paper. This paper is organized as follows:

• In Section 2, we present the basic definitions and recall the Lindström–Gessel–
Viennot method.

• In Section 3, we explain how the Lindström–Gessel–Viennot method applies to
a cylindric lattice.

• In Section 4, we derive explicit enumeration formulas for equidistant vicious
walkers. (These are related to a formula obtained by Grabiner [6, (33)]: Our
formulas (27) and (28) could be obtained by an appropriate summation of Gra-
biners formula). Moreover, we give the corresponding asymptotic formulas for
the number of paths tending to infinity (and correct a small error in the asymp-
totic formula [3, (2.33)] given by Forrester). Finally, we indicate how Forrester’s
formula and our generalization is related to the main theorem of Gessel and
Krattenthaler [4, Proposition 1, Equation (3.5)].

2. Basic Definitions and Presentation of known Formulas

The main purpose of this paper is to present how the right point of view almost
immediately gives insight in Forrester’s formula as well as in Gessel and Krattenthaler’s
formula. So we make an effort to give a careful explanation of this point of view.

2.1. Nonintersecting paths and generating functions in the lattice Z×Z. Con-
sider the lattice Z × Z, i.e., the directed graphs with vertex set Z × Z and arcs from
(m, n) to (m− 1, n + 1) (a “step to the left”) and from (m, n) to (m + 1, n + 1) (a “step
to the right”) for all (m, n) ∈ Z × Z (see Figure 1). To all steps to the right, assign
weight 1, and to all steps to the left, assign weight x, i.e., for the edge

e = [(m0, n) → (m1, n + 1)]

we have

w (e) =

{
1 if m1 = m0 + 1,

x if m1 = m0 − 1.
(1)

A path p of length N is simply a sequence of N adjacent edges (e1, . . . , eN); i.e., for

the sequence (vi)
N
i=0 of vertices in the path, we have

ei = [vi−1 → vi]

for i = 1, . . . N . The vertices v0 and vN are called the starting point and the end point
of p, respectively.

The weight of a lattice path p = (e1, . . . , eN) of length N is simply defined to be the
product of the weights of its edges, i.e.,

w (p) =
N∏

i=1

w (ei) . (2)
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Figure 1. Illustration of lattice paths in Z×Z. The picture shows three
lattice paths p1, p2 and p3; from (3,−2) to (6, 11), from (6,−2) to (11, 11),
and from (9,−2) to (10, 11), respectively. Note that p1 intersects p3 in
point (7, 4), but p2 does neither intersect p1 nor p3, since the “geometric
crossings” do not correspond to common lattice points.
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Two lattice paths p1 and p2 are called intersecting , if they have a vertex (i.e., a lattice
point) in common. A family of lattice paths p1, . . . , pr (also called an r–tuple of lattice
paths) is called nonintersecting , if no two of its paths are intersecting.

See Figure 1 for an illustration of these simple concepts.

Remark 1. Note that “intersection” refers only to common lattice points: E.g., the
“geometric crossings” of path p1 and p2 in Figure 1 do not constitute intersections in
this sense.

It is clear that two paths starting in lattice points (m1, n1) and (m2, n2), respectively,
can only be intersecting if (m1 −m2 + n1 − n2) is an even number.

While the following considerations and formulas are valid even if this parity condition
is violated, the most interesting case occurs if we consider the “even–numbered” sub–
lattice {(x, y) ∈ Z× Z : x + y ≡ 0 (2)}.

The weight of an arbitrary (not necessarily non–intersecting) r–tuple P = (p1, . . . , pr)
of lattice paths is simply defined to be the product of the weights of the single paths,
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i.e.,

w (P) =
r∏

i=1

w (pi) . (3)

As usual, by the generating function of some set A of weighted objects we understand
the sum of the weights of the objects, i.e.,

GF (A) =
∑
a∈A

w (a) .

2.2. The Lindström–Gessel–Viennot determinant. The enumeration of noninter-
secting paths in some directed graph with given starting and end points is given by the
Lindström–Gessel–Viennot determinant (see [7, Lemma 1] or [5, Corollary 2]). In order
to make clear how this elegant method can be applied to the case of cylindric lattices
also, we state this well–known result:

Proposition 1. Let D = (V ,A) a directed graph (with vertex set V and arc set A),
and let A = (a1, . . . , ar) and E = (e1, . . . , er) be two lists of arbitrary vertices in the D.
Then we have:

det
1≤i,j,≤r

(GF (P (ai, ej))) =
∑
π∈Sr

sgn (π)GF
(
P+ (A, Eπ)

)
. (4)

where P (a, e) denotes the set of all paths starting at a and ending at e, and P+ (A, Eπ)
denotes the set of all r–tuples of nonintersecting paths, where path i starts at ai and
ends at eπ(i).

Remark 2. The “usual application” of Proposition 1 contains the additional assump-
tion, that for 1 ≤ i < j ≤ r and 1 ≤ k < l ≤ r, any path from ai to el must intersect
any path from aj to ek. In this case, there is only one summand on the right–hand side
of (4), namely GF (P+ (A, E)), which corresponds to the identity permutation.

2.3. Paths and generating functions in the lattice ZM × Z. For some (arbitrary,
but fixed) integer M > 1, consider the mapping

W : Z× Z → R3,

W (m, n) =

(
cos

2πm

M
, sin

2πm

M
, n

)
. (5)

Note that the mapping W simply “wraps” the lattice Z × Z “around the cylinder”.
More precisely, view the image imW as a “cylindric lattice”; i.e., a lattice with vertex
set {W (q) : q ∈ ZM × Z}, and edges leading from points

[W (m, n) →W (m + 1, n + 1)] (a “counter–clockwise” step),

[W (m, n) →W (m− 1, n + 1)] (a “clockwise” step).

We shall call this cylindric lattice the M–cylinder. (Figure 2 illustrates this simple
concept.)

Clearly, a lattice path p in the M–cylinder can be viewed as the image of an “ordinary”
lattice path in Z × Z under the mapping W . Each path p in the M–cylinder inherits
the weight from a corresponding path in Z×Z, i.e., if p = W (p̂), we set w (p) := w (p̂).
(Note that this is well–defined.)
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Figure 2. Illustration of the M–cylinder for M = 12. The picture shows
a lattice path p of length 4 and weight x, starting in (0, 0) and ending in
(2, 4).

0

1

2

3

4

10

11

0
1

2

3

4

A lattice path may “wind around the cylinder several times”, in either positive or
negative direction, before reaching its end point: The preimage W−1 (P (a, e)) of the
set of lattice paths in the M–cylinder, which start at (a, 0) and end in (e,N), consists
of lattice paths in Z × Z, which start at (a + k ·M, 0) and end in (e + (k + o) ·M, N)
for k, o ∈ Z, i.e.,

W−1 (P (a, e)) =
⋃
o∈Z

(⋃
k∈Z

P̂ (a + k ·M, e + (k + o) ·M)

)
.

We shall call the number o the offset of the endpoint of the path p. (See Figure 3 for
this concept.)

In the following, we shall restrict ourselves to lattice paths starting at (a, 0) and
ending at (e, N), where N is some (arbitrary but fixed) integer. Note that in Z× Z, a
lattice path starting at (a, 0) and ending at (e,N) exists if and only if

N − 2k = e− a (6)

for some k ∈ Z with 0 ≤ k ≤ N (here, k denotes the number of steps to the left). For
lattice paths in the M–cylinder, this condition is changed to

N − 2k = (e + o ·M)− a (7)

for arbitrary o ∈ Z and some k ∈ Z with 0 ≤ k ≤ N (here, o denotes the offset of the
endpoint, and k denotes the number of clockwise steps).

So it is easy to see that the generating function q (M, N, a, e) of all lattice paths in
the M–cylinder, which start at (a, 0) and end in (e,N), is given by

q (M, N, a, e; x) =
∑
o∈Z

N−e−o·M+a≡0 (2)

(
N

N−e−o·M+a
2

)
x

N−e−o·M+a
2 . (8)
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Figure 3. Illustration of intersecting lattice paths on the M–cylinder
for M = 12. The right picture shows representatives of the preimages
of these paths (drawn with thick lines) in the lattice Z × Z under the
mapping defined in (5). The whole preimage consists of an infinite family
of horizontally translated paths, indicated by thin lines in the picture.
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Forrester gave an equivalent expression (see [3, equation 2.11 and 2.12]) for (8), which
is more elegant insofar as it “conceals” the clumsy definition of the range of summation
in (8):

q (M, N, a, e; x) =
1

M

M−1∑
l=0

e
−2πi(e−a)l

M

(
xe

−2πil
M + e

2πil
M

)N

(9)

=
N∑

k=0

(
N

k

)
xk 1

M

M−1∑
l=0

(
e

2πi
M

(N−2k−e+a)
)l

,

where i denotes the imaginary unit. (9) is equal to (8), since we have

M−1∑
l=0

(
e

2πi
M

m
)l

=

{
M if m ≡ 0 (M) ,

0 else.
(10)
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3. Results and Proofs

It is an obvious observation that the Lindström–Gessel–Viennot method for nonin-
tersecting paths in a directed graph, as described in Proposition 1, applies to the M–
cylinder. However, unlike the “usual case” outlined in Remark 2, there appear terms
corresponding to other permutations than the identity permutation; which turn out to
be cyclic permutations. These permutations may have negative sign if the number of
paths, r, is even. So if we are given starting points ((a1, 0) , . . . (ar, 0)) and end points
((e1, N) , . . . (er, N)), we define the signed weight of a family P = (P1, . . . , Pr) of lattice
paths, where Pi starts in (ai, 0) and ends in

(
eπ(i), N

)
for some permutation π ∈ Sr, as

w (π,P) = sgn π
r∏

j=1

w (Pj) . (11)

3.1. A simple generalization of Forrester’s formula. Given this “signed weight”
for families of nonintersecting lattice paths, we may derive immediately the following
generalization of Forrester’s formula.

Theorem 3. The generating function with signed weights (according to (11)) of all
r–tuples of non–intersecting lattice paths in the M–cylinder, starting at the points

((a1, 0) , . . . (ar, 0))

and ending in any permutation of the points

((e1, N) , . . . (er, N)) ,

with 0 ≤ a1 < a2 < · · · < ar < M and 0 ≤ e1 < e2 < · · · < er < M , where for all
1 ≤ i, j ≤ r we have N − ei + aj ≡ 0 (2), is given by

det (q (M, N, ai, ej; x))r
i,j=1 . (12)

Moreover, we have the following expansion for the above determinant:

det (q (M, N, ai, ej; x))r
i,j=1 =

r−1∑
i=0

sgn
(
µi
)
GF

(
P+
(
A, Eµi

))
, (13)

where µ denotes the permutation mapping 1 to 2, 2 to 3, and so on; i.e., µ = (1, 2, . . . , r)
in cycle notation.

Proof. The assertion of (12) is an immediate consequence of Proposition 1.
For the assertion of (13), consider the preimage of any nonintersecting r–tuple of

lattice paths with respect to W : It appears as a periodic configuration of infinitely
many nonintersecting lattice paths in Z × Z, such that each point (ai + s ·M, 0) and
each point (ei + s ·M, N) (for i = 1, . . . , r and s ∈ Z) appears as starting point and as
end point, respectively, of some path (see Figure 4 for an illustration).

It is obvious that such a configuration can only correspond to some “shift of the end-
points” in the following sense: Consider the “canonical” starting points (ai, 0), and label
the “canonical” endpoints (ei, N) with the numbers 1, 2, . . . , r. Label the other possible
endpoints from left to right with the integers in a consistent way (i.e., (er −M, N) gets
label 0, (er−1 −M, N) gets label −1; (e1 + M, N) gets label r + 1, and so on). Then
for any nonintersecting r–tuple of lattice paths there is some fixed integer p, such that
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Figure 4. Illustration of the preimage with respect to W (right picture)
of a nonintersecting pair of lattice paths in the 6–cylinder (left picture).
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for 1 ≤ i ≤ r, the path starting at (ai, 0) ends in the (i + p)–th endpoint in this label-
ing. This “shift of the endpoints” clearly corresponds to a cyclic permutation µp, where
µ = (1, 2, . . . , r). �

Remark 4. Note that under the assumptions of Theorem 3, the case M odd admits
only one possible permutation of endpoints, namely the identity permutation, since all
such permutations must be of the form (µr)2k = id, according to condition (7).

While the following considerations and formulas are valid also for odd M , the most
interesting cases occur if we assume

• M ≡ N ≡ 0 (2),
• ai − aj ≡ ei − ej ≡ 0 (2) ∀1 ≤ i, j ≤ r.

(See also Remark 1.)

The determinantal expression (12) was derived recursively by Forrester only for odd
r (see [3, Theorem 2.1, equation 2.10]). In Theorem 3, we easily extended it to the
case of even r (thus answering the respective question posed in [3]), just by adopting
the right “point of view” (i.e., the Lindström–Gessel–Viennot framework with “signed
weights”).

3.2. A more sophisticated generalization of Forrester’s formula. Note that for
odd r, all the (cyclic) permutations in (13) have positive sign. If r is even, however,
also negative terms appear in the generating function (12): This is a bit of a nuisance,
for we cannot simply set x ≡ 1 in order to obtain an enumeration formula.

An easy way out of this difficulty is to modify the definition of the weight of a single
path p, so that its “offset of endpoint”, o, is taken into account via a multiplicative
factor of yo, i.e.,we replace definition (2) by

wy (p) = yo

N∏
i=1

w (ei) . (14)
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This amounts to the following modification of (8):

q (M, N, a, e; x, y) =
∑
o∈Z

N−e−o·M+a≡0 (2)

(
N

N−e−o·M+a
2

)
yo · x

N−e−o·M+a
2 . (15)

Now, the proof of Theorem 3 (with slight and obvious modifications) immediately yields
the following Lemma:

Lemma 5. The generating function with weights according to (14) of all r–tuples of
non–intersecting lattice paths in the M–cylinder, starting at the points

((a1, 0) , . . . (ar, 0))

and ending in some permutation of the points

((e1, N) , . . . (er, N)) ,

with 0 ≤ a1 < a2 < · · · < ar < M and 0 ≤ e1 < e2 < · · · < er < M , where for all
1 ≤ i, j ≤ r we have N − ei + aj ≡ 0 (2), is given by

det (q (M, N, ai, ej; x, y))r
i,j=1 . (16)

A simple argument now leads to the desired formula without unwanted negative signs:

Theorem 6. The generating function with unsigned weights (i.e., according to (2)) of
all r–tuples of non–intersecting lattice paths in the M–cylinder, starting at the points

((a1, 0) , . . . (ar, 0))

and ending in some permutation of the points

((e1, N) , . . . (er, N)) ,

with 0 ≤ a1 < a2 < · · · < ar < M and 0 ≤ e1 < e2 < · · · < er < M , where for all
1 ≤ i, j ≤ r we have N − ei + aj ≡ 0 (2), is given by

det
(
q
(
M, N, ai, ej; x, (−1)r−1))r

i,j=1
. (17)

Proof. For odd r, we clearly have

q (M, N, a, e; x, 1) = q (M, N, a, e; x) ,

whence (17) simply amounts to the assertion of Theorem 3.
For even r, observe that (due to (13)) the sign of the summands in (16) equals (−1)n,

where n is the number of paths with odd offset of endpoint in the corresponding r–tuple
of paths. So setting y = −1 in (16) properly cancels all the negative signs. �

3.3. Enumeration formulas involving trigonometric functions. It is possible to
rewrite the generating function q (M, N, a, e; x, y) in a way similar to (9).

Corollary 7. For M > 0, we have:

q (M, N, a, e; x, y) =
y

a−e
M

M

M−1∑
l=0

e
−2πi(e−a)l

M

(
xy−

1
M e

−2πil
M + y

1
M e

2πil
M

)N

. (18)
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Moreover, the generating function (17) of Theorem 6 is equivalently given by

M−r det

(
e

(r−1)πi(ai−ej)
M

M−1∑
l=0

e
−2πi(ej−ai)l

M

(
xe

−2πi(l+ r−1
2 )

M + e
2πi(l+ r−1

2 )
M

)N)r

i,j=1

. (19)

Proof. Equation (18) follows from the same type of computation as in (9).

y
a−e
M

M

M−1∑
l=0

e
−2πi(e−a)l

M

(
xy

−1
M e

−2πil
M + y

1
M e

2πil
M

)N

=
y

a−e
M

M

M−1∑
l=0

e
−2πi(e−a)l

M

N∑
k=0

(
N

k

)
xky

N−2k
M e

2πi
M

(N−2k)l

=
N∑

k=0

(
N

k

)
xky

N−e+a−2k
M

1

M

M−1∑
l=0

e
2πi
M

(N−e+a−2k)l.

Use (10) to see that (18) equals (15) (set k = N−e+a−o·M
2

, or, equivalently, o = N−e+a−2k
M

).

Now set y = (−1)r−1 = e(r−1)πi in (18), and insert the result into (17): This immediately
yields (19). �

If the starting points ai are equidistant , we can simplify the corresponding expressions
even further by a little trick, extending the computation carried out by Forrester [3,
equation (3.2)] to the case of even r:

Corollary 8. Consider the case of equidistant starting points, i.e., let ai = (i− 1) · ν
and M = r · ν in(16) for some fixed ν ∈ N. In this case, the generating function (17)
of Theorem 6 is given by

i−
(r)(r−1)

2

(
ν
√

r
)−r

× det

(
ν−1∑
a=0

e
πi(N−ej+1(2(i+ar)+1))

rν

(
xe

−2πi(i+ar+1)
rν + e

2πi(i+ar)
rν

)N
)r−1

i,j=0

(20)

if r is even, and by

i−
(r+2)(r−1)

2

(
ν
√

r
)−r

det

(
ν−1∑
a=0

e
πi(−ej+1(2(i+ar)))

rν

(
xe

−2πi(i+ar)
rν + e

2πi(i+ar)
rν

)N
)r−1

i,j=0

(21)

if r is odd. (Note that — as a matter of convenience — row and column indices range
from 0 to (r − 1) here.)

Proof. Note that

[(
e−

2πi
r

i
)j

r−1/2

]r−1

i,j=0

is a unitary matrix. This fact, together with the

well–known formula for Vandermonde determinants, yields the determinant evaluations

det
(
e−

2πi
r

i·j
)r−1

i,j=0
= r

r
2 i

(r+2)(r−1)
2 , and det

(
e−

2πi
r

(i+1/2)·j
)r−1

i,j=0
= r

r
2 i

(r)(r−1)
2 . (22)

The assertions follow by a simple computation, which we shall show for even r only
(the case r odd being completely analogous; see Forrester [3, equation (3.2)]). Set y =
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(−1) = eπi in (18) and insert in (17). Now multiply this with the second determinant
from (22); i.e., consider the determinant of the product of the r × r–matrices[

e−
2πi
r

(k+1/2)·m
]
×

[
eπi

N−ej+1+iν

rν

rν

rν−1∑
l=0

e
−2πi(ej+1−iν)l

rν

(
xe

−2πi(l+1)
rν + e

2πil
rν

)N
]

,

where the row and column indices i and j range from 0 to (r − 1). The (i, j)–entry of
this matrix product is given by

ai,j =
r−1∑
n=0

(
e−

2πi
r

(i+1/2)neπi
N−ej+1+nν

rν

rν

rν−1∑
l=0

e
−2πi(ej+1−nν)l

rν

(
xe

−2πi(l+1)
rν + e

2πil
rν

)N
)

=
1

rν

rν−1∑
l=0

(
xe

−2πi(l+1)
rν + e

2πil
rν

)N

e
πi
rν

(N−ej+1(2l+1))

r−1∑
n=0

e−
2πi
r

(i−l)n

=
1

ν

ν−1∑
a=0

(
xe

−2πi(i+ar+1)
rν + e

2πi(i+ar)
rν

)N

e
πi
rν

(N−ej+1(2(i+ar)+1)),

which immediately gives (20). (The proof of (21) involves multiplication with the first
determinant from (22).) �

4. Applications

4.1. An enumeration formula for a special case. Of particular interest is the
enumeration formula for the case M = rν with equidistant starting points and end
points, ai = ei = (i− 1) ν: This simply amounts to setting M = rν, ai = ei = (i− 1) ν
and x = 1 in (17). Since we have the obvious relations

q (M, N, a, e; x, y) = xNq (M, N, e, a; 1/x, 1/y) (23)

and

q (rν, N, iν, jν; x, y) = y · q (rν, N, iν, (j + r)ν; x, y) , (24)

we may concentrate on the numbers

ad := q
(
rν, N, 0, dν; 1, (−1)r−1) for d = 0, . . . , r − 1.

So for odd r, we obtain a circulant matrix, the determinant of which we can easily
evaluate by the well–known formula (cf. [1, §51, p. 131]):

det


a0 a1 . . . ar−2 ar−1

ar−1 a0 . . . ar−3 ar−2
...

...
...

...
a1 a2 . . . ar−1 a0

 =
r−1∏
m=0

(
r−1∑
k=0

(
e

2mπi
r

)k

ak

)
. (25)

For even r, however, we obtain a “skew–symmetric” circulant matrix (due to (24)),
the determinant of which we can evaluate in much the same way as (25). Since this
evaluation appears to be not so well–known, we state and prove it in the following
lemma:
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Lemma 9. For arbitrary variables a0 . . . ar−1, we have

det


a0 a1 . . . ar−2 ar−1

−ar−1 a0 . . . ar−3 ar−2
...

...
...

...
−a1 −a2 . . . −ar−1 a0

 =
r−1∏
m=0

(
r−1∑
k=0

(
e

(2m+1)πi
r

)k

ak

)
. (26)

Proof. Set ωm := e
(2m+1)πi

r and consider the r vectors ~ωm := (ω0
m, ω1

m, . . . , ωr−1
m ) for

m = 0, . . . , r− 1. Note that ωr
m = −1 and compute the i–th component in the product

A · ~ωm (where A, of course, denotes the matrix in (26)):

(A · ~ωm)i = −ar−iω
0
m − ar−i+1ω

1
m − · · · − ar−1ω

i−1
m + a0ω

i
m + a1ω

i+1
m + . . . ar−i−1ω

r−1
m

= a0ω
i
m + a1ω

i+1
m + . . . ar−i−1ω

r−1
m + ar−iω

r
m + ar−i+1ω

r+1
m + · · ·+ ar−1ω

r+i−1
m

= ωi
m ·

(
r−1∑
k=0

akω
k
m

)
.

This shows that ~ωm is an eigenvector of A to the eigenvalue
(∑r−1

k=0 akω
k
m

)
, which proves

the assertion. �

Corollary 10. Denote the number of all r–tuples of non–intersecting lattice paths in
the (rν)–cylinder, starting at the points

((0, 0) , . . . ((r − 1) ν, 0))

and ending in any permutation of the points

((0, N) , . . . ((r − 1) ν, N)) ,

by Z (N, r, ν). Then we have the following formulas:

Z (N, 2r − 1, ν) =

(
2N

ν

)2r−1 2r−2∏
m=0

ν−1∑
l=0

cosN

(
2 π

(
m

ν (2r − 1)
+

l

ν

))
, (27)

Z (N, 2r, ν) =

(
2N

ν

)2r 2r−1∏
m=0

ν−1∑
l=0

cosN

(
2 π

(
m + 1/2

ν (2r)
+

l

ν

))
. (28)

Proof. Clearly, (27) will follow by simplifying (25), and (28) will follow by simplifying
(26). We shall give the corresponding computation for (28) only, the other case is
completely analogous.

Straightforward insertion of

ad := q
(
rν, N, 0, dν; 1, eπi

)
into (26) gives the following expression:

2r−1∏
m=0

2r−1∑
k=0

((
e

(2m+1)πi
2r

)k e
(N−kν)πi

2νr

2νr

2νr−1∑
l=0

e−
kνlπi

νr

(
e−

(l+1)πi
νr + e

lπi
νr

)N
)

. (29)

Now write (
e−

(l+1)πi
νr + e

lπi
νr

)
= e−

πi
2νr 2 cos

(
(l + 1/2) π

νr

)
,



NONINTERSECTING LATTICE PATHS ON THE CYLINDER 13

pull out appropriate factors, simplify, and interchange summation; in order to obtain

(
2N−1

νr

)2r 2r−1∏
m=0

2νr−1∑
l=0

cosN

(
(l + 1/2) π

νr

) 2r−1∑
k=0

(
e

2(m−l)πi
2r

)k

.

Observe that (10) applies to the innermost sum, whence (28) follows. �

Remark 11. Equation (27) is basically the same as Forrester’s formula [3, (2.28)].

4.2. Free energy. In his paper, Forrester considers the dimensionless free energy per
unit length on a strip–shaped lattice of infinite width and height N (see [3, (2.30)]):

fN (ν) = − lim
r→∞

1

νr
log (Z (N, r, ν)) . (30)

We can apply his considerations now also to the case of even r. According to (27) and
(28), respectively, we have

− 1

rν
log (Z (N, r, ν)) =

− 1

rν

(
r (N log 2− log ν) +

r−1∑
m=0

log

(
ν−1∑
l=0

cosN

(
2π

l + m+ε(r)
r

ν

)))
, (31)

where ε (r) = 1/2 if r is even, and ε (r) = 0 if r is odd. In both cases, observe that we
have Riemann sums, which tend to the same integral in the limit:

−1

ν

(
(N log 2− log ν) +

∫ 1

0

log

(
ν−1∑
k=0

cosN

(
2π

k + t

ν

))
d t

)
. (32)

(This corresponds to Forresters formula [3, (2.31)].)
Now, following Forrester [3, Section 2.4], we consider the free energy per lattice site

in the two–dimensional thermodynamic limit, i.e., the quantitity Fν := limN→∞
fN (ν)

N
.

Of course, the basic idea for evaluating this limit is “Pull out the dominating term from
the sum in (32)”. However, we must be careful in determining this dominating term
(there seems to be a small flaw in Forresters formula [3, 2.33] with respect to this):

For even ν, the dominating term is

• cos
(

2πt
ν

)
for 0 ≤ t ≤ 1

2
,

• cos
(

2π(t+ν−1)
ν

)
= cos

(
2π(t−1)

ν

)
for 1

2
≤ t ≤ 1,
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whence we obtain

Fν = − log 2

ν

− lim
N→∞

1

νN

∫ 1
2

0

log

cos

(
2πt

ν

)N

×
ν−1∑
k=0

(
cos
(
2π k+t

ν

)
cos
(

2πt
ν

) )N
 d t

− lim
N→∞

1

νN

∫ 1

1
2

log

cos

(
2π (t− 1)

ν

)N

×
ν−1∑
k=0

 cos
(
2π k+t

ν

)
cos
(

2π(t−1)
ν

)
N d t

= − log 2

ν
−
∫ 1

2ν

− 1
2ν

log (cos (2πt)) dt. (33)

(Forresters formula [3, 2.33] looks almost the same, but the range of integration is stated
as [0, 1

ν
] instead of [− 1

2ν
, 1

2ν
].)

For odd ν, the dominating term is

• cos
(

2πt
ν

)
for 0 ≤ t ≤ 1

4
,

• cos

(
2π(t+ ν−1

2 )
ν

)
= − cos

(
2π(t− 1

2)
ν

)
for 1

4
≤ t ≤ 3

4
,

• cos
(

2π(t−1)
ν

)
for 3

2
≤ t ≤ 1,

whence by the same simple computation as above, we obtain

Fν = − log 2

ν
− 2

∫ 1
4ν

− 1
4ν

log (cos (2πt)) dt. (34)

4.3. Gessel and Krattenthaler’s formula. Gessel and Krattenthaler [4] consider
nonintersecting paths in the lattice Z × Z, too. However, their lattice paths consist of
horizontal and vertical steps, which essentially is equivalent to the situation of lattice
paths consisting of diagonal steps in the even–numbered sublattice (see Remark 1).

More precisely, they consider lattice paths which are nonintersecting and, in addition,
are also nonintersecting with respect to “shifted copies” of lattice paths; i.e., copies of
the original paths which are translated by a fixed (non–vertical and non–horizontal)
shift vector S. See Figure 5 for an illustration, where the translation S is indicated by
a dotted arrow.

They give a quite general formula [4, Proposition 1, Equation (3.5)] for the gener-
ating function of such nonintersecting families, in the form of a multi–sum of certain
determinants.

A special case of this formula

• with shift vector S = (−m, m),
• with a certain choice of edge–weights,
• and with starting points and end points arranged on downward–sloping lines

basically appears as refinement of our formula (16), in the sense that now we are only
interested in terms with fixed sum

∑
o = c of offsets of endpoints. So, this amounts to

extracting the coefficient of yc in the expansion of (16). The advantage of our formula
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Figure 5. Illustration of nonintersecting lattice paths with nonintersect-
ing translate. The shift vector S is indicated by the dotted arrow.

(16) is that it consists of a single determinant. Moreover, it does not appear to be easy
to obtain it by appropriately summing up Gessel and Krattenthaler’s formula.

In any case, the most natural way of understanding (16) is the direct application of
the Lindström–Gessel–Viennot method.

Acknowledgements. I thank Christian Krattenthaler for many helpful hints and dis-
cussions.
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