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ON DEGREES IN THE HASSE DIAGRAM OF THE
STRONG BRUHAT ORDER

RON M. ADIN1 AND YUVAL ROICHMAN1

Abstract. For a permutation π in the symmetric group Sn let
the total degree be its valency in the Hasse diagram of the strong
Bruhat order on Sn, and let the down degree be the number of per-
mutations which are covered by π in the strong Bruhat order. The
maxima of the total degree and the down degree and their values
at a random permutation are computed. Proofs involve variants of
a classical theorem of Turán from extremal graph theory.

1. The Down, Up and Total Degrees

Definition 1.1. For a permutation π ∈ Sn let the down degree d−(π) be
the number of permutations in Sn which are covered by π in the strong
Bruhat order. Let the up degree d+(π) be the number of permutations
which cover π in this order. The total degree of π is the sum

d(π) := d−(π) + d+(π),

i.e., the valency of π in the Hasse diagram of the strong Bruhat order.

Explicitly, for 1 ≤ a < b ≤ n let ta,b = tb,a ∈ Sn be the transposition
interchanging a and b, and for π ∈ Sn let

`(π) := min{k |π = si1si2 · · · sik}

be the length of π with respect to the standard Coxeter generators
si = ti,i+1 (1 ≤ i < n) of Sn. Then

d−(π) = #{ta,b | `(ta,bπ) = `(π)− 1},
d+(π) = #{ta,b | `(ta,bπ) = `(π) + 1},

d(π) = d−(π) + d+(π) = #{ta,b | `(ta,bπ) = `(π)± 1}.
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For the general definitions and other properties of the weak and strong
Bruhat orders see, e.g., [9, Ex. 3.75] and [2, §§2.1, 3.1].

We shall describe π ∈ Sn by its sequence of values [π(1), . . . , π(n)].

Observation 1.2. π covers σ in the strong Bruhat order on Sn if and
only if there exist 1 ≤ i < k ≤ n such that

(1) b := π(i) > π(k) =: a.
(2) σ = ta,bπ, i.e., π = [. . . , b, . . . , a, . . .] and σ = [. . . , a, . . . , b, . . .].
(3) There is no i < j < k such that a < π(j) < b.

Corollary 1.3. For every π ∈ Sn

d−(π) = d−(π−1).

Example 1.4. In S3, d−[123] = 0, d−[132] = d−[213] = 1, and d−[321] =
d−[231] = d−[312] = 2. On the other hand, d[321] = d[123] = 2 and
d[213] = d[132] = d[312] = d[231] = 3.

Remark 1.5. The classical descent number of a permutation π in the
symmetric group Sn is the number of permutations in Sn which are
covered by π in the (right) weak Bruhat order. Thus, the down degree
may be considered as a “strong descent number”.

Definition 1.6. For π ∈ Sn denote

D−(π) := {ta,b | `(ta,bπ) = `(π)− 1},

the strong descent set of π.

Example 1.7. The strong descent set of π = [7, 9, 5, 2, 3, 8, 4, 1, 6] is

D−(π) = {t1,2, t1,3, t1,4, t2,5, t3,5, t4,5, t4,8, t5,7, t5,9, t6,7, t6,8, t8,9}.

Remark 1.8. Generalized pattern avoidance, involving strong descent
sets, was applied by Woo and Yong [11] to determine which Schubert
varieties are Gorenstein.

Proposition 1.9. The strong descent set D−(π) uniquely determines
the permutation π.

Proof. By induction on n. The claim clearly holds for n = 1.
Let π be a permutation in Sn, and let π̄ ∈ Sn−1 be the permutation

obtained by deleting the value n from π. Note that, by Observation 1.2,

D−(π̄) = D−(π) \ {ta,n | 1 ≤ a < n}.

By the induction hypothesis π̄ is uniquely determined by this set.
Hence it suffices to determine the position of n in π.
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Now, if j := π−1(n) < n then clearly tπ(j+1),n ∈ D−(π). Moreover,
by Observation 1.2, ta,n ∈ D−(π) =⇒ a ≥ π(j + 1). Thus D−(π)
determines

π̄(j) = π(j + 1) = min{a | ta,n ∈ D−(π)},
and therefore determines j. Note that this set of a’s is empty if and
only if j = n. This completes the proof. �

2. Maximal Down Degree

In this section we compute the maximal value of the down degree on
Sn and find all the permutations achieving the maximum. We prove

Proposition 2.1. For every positive integer n

max{d−(π)| π ∈ Sn} = bn2/4c.
Remark 2.2. The same number appears as the order dimension of the
strong Bruhat poset [7]. An upper bound on the maximal down degree
for finite Coxeter groups appears in [4, Prop. 3.4].

For the proof of Proposition 2.1 we need a classical theorem of Turán.

Definition 2.3. Let r ≤ n be positive integers. The Turán graph Tr(n)
is the complete r-partite graph with n vertices and all parts as equal
in size as possible, i.e., each size is either bn/rc or dn/re. Denote by
tr(n) the number of edges of Tr(n).

Theorem 2.4 (Turán’s Theorem; [10], [3, IV, Theorem 8]).

(1) Every graph of order n with more than tr(n) edges contains a
complete subgraph of order r + 1.

(2) Tr(n) is the unique graph of order n with tr(n) edges that does
not contain a complete subgraph of order r + 1.

We shall apply the special case r = 2 (due to Mantel) of Turán’s
theorem to the following graph.

Definition 2.5. The strong descent graph of π ∈ Sn, denoted Γ−(π),
is the undirected graph whose set of vertices is {1, . . . , n} and whose
set of edges is

{{a, b} | ta,b ∈ D−(π)}.
By definition, the number of edges in Γ−(π) equals d−(π).

Remark 2.6. Permutations for which the strong descent graph is con-
nected are called indecomposable. Their enumeration was studied in [5];
see [6, pp. 7–8]. The number of components in Γ−(π) is equal to the
number of global descents in πw0 (where w0 := [n, n− 1, . . . , 1]), which
were introduced and studied in [1, Corollaries 6.3 and 6.4].
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Lemma 2.7. For every π ∈ Sn, the strong descent graph Γ−(π) is
triangle-free.

Proof. Assume that Γ−(π) contains a triangle. Then there exist 1 ≤
a < b < c ≤ n such that ta,b, ta,c, tb,c ∈ D−(π). By Observation 1.2,

ta,b, tb,c ∈ D−(π) =⇒ π−1(c) < π−1(b) < π−1(a) =⇒ ta,c 6∈ D−(π).

This is a contradiction. �

Proof of Proposition 2.1. By Theorem 2.4(1) together with Lemma 2.7,
for every π ∈ Sn

d−(π) ≤ t2(n) = bn2/4c.
Equality holds since

d−([bn/2c+ 1, bn/2c+ 2, . . . , n, 1, 2, . . . , bn/2c]) = bn2/4c.

�

Next we classify (and enumerate) the permutations which achieve
the maximal down degree.

Lemma 2.8. Let π ∈ Sn be a permutation with maximal down degree.
Then π has no decreasing subsequence of length 4.

Proof. Assume that π = [. . . d . . . c . . . b . . . a . . .] with d > c > b >
a and π−1(a) − π−1(d) minimal. Then ta,b, tb,c, tc,d ∈ D−(π) but, by
Observation 1.2, ta,d 6∈ D−(π). It follows that Γ−(π) is not a complete
bipartite graph, since {a, b}, {b, c}, and {c, d} are edges but {a, d} is
not. By Lemma 2.7, combined with Theorem 2.4(2), the number of
edges in Γ−(π) is less than bn2/4c. �

Proposition 2.9. For every positive integer n

#{π ∈ Sn | d−(π) = bn2/4c} =

{
n, if n is odd;

n/2, if n is even.

Each such permutation has the form

π = [t + m + 1, t + m + 2, . . . , n, t + 1, t + 2, . . . , t + m, 1, 2, . . . , t],

where m ∈ {bn/2c, dn/2e} and 1 ≤ t ≤ n − m. Note that t = n − m
(for m) gives the same permutation as t = 0 (for n−m instead of m).
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Proof. It is easy to verify the claim for n ≤ 3. Assume n ≥ 4.
Let π ∈ Sn with d−(π) = bn2/4c. By Theorem 2.4(2), Γ−(π) is

isomorphic to the complete bipartite graph Kbn/2c,dn/2e. Since n ≥ 4,
each side of the graph contains at least two vertices. Let 1 = a < b be
two vertices on one side, and c < d two vertices on the other side of
the graph. Since tb,c, tb,d ∈ D−(π), there are three possible cases:

(1) b < c, and then π = [. . . c . . . d . . . b . . .]
(since π = [. . . d . . . c . . . b . . .] contradicts tb,d ∈ D−(π)).

(2) c < b < d, and then π = [. . . d . . . b . . . c . . .].
(3) d < b, and then π = [. . . b . . . c . . . d . . .]

(since π = [. . . b . . . d . . . c . . .] contradicts tb,c ∈ D−(π)).

The same also holds for a = 1 instead of b, but then cases 2 and 3 are
impossible since a = 1 < c. Thus necessarily c appears before d in π,
and case 2 is therefore impossible for any b on the same side as a = 1.
In other words: no vertex on the same side as a = 1 is intermediate,
either in position (in π) or in value, to c and d.

Assume now that n is even. The vertices not on the side of 1 form
(in π) a block of length n/2 of numbers which are consecutive in value
as well in position. They also form an increasing subsequence of π,
since Γ−(π) is bipartite. The numbers preceding them are all larger in
value, and are increasing; the numbers succeeding them are all smaller
in value, are increasing, and contain 1. It is easy to check that each
permutation π of this form has maximal d−(π). Finally, π is com-
pletely determined by the length 1 ≤ t ≤ n/2 of the last increasing
subsequence.

For n odd one obtains a similar classification, except that the length
of the side not containing 1 is either bn/2c or dn/2e. This completes
the proof. �

3. Maximal Total Degree

Obviously, the maximal value of the total degree d = d−+d+ cannot
exceed

(
n
2

)
, the total number of transpositions in Sn. This is slightly

better than the bound 2bn2/4c obtainable from Proposition 2.1. The
actual maximal value is smaller.

Theorem 3.1. For n ≥ 2, the maximal total degree in the Hasse dia-
gram of the strong Bruhat order on Sn is

bn2/4c+ n− 2.

In order to prove this result, associate with each permutation π ∈ Sn

a graph Γ(π), whose set of vertices is {1, . . . , n} and whose set of edges
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is
{{a, b} | `(ta,bπ)− `(π) = ±1}.

This graph has many properties; e.g., it is K5-free and is the edge-
disjoint union of two triangle-free graphs on the same set of vertices.
However, these properties are not strong enough to imply the above
result. A property which does imply it is the following bound on the
minimal degree.

Lemma 3.2. There exists a vertex in Γ(π) with degree at most
bn/2c+ 1.

Proof. Assume, on the contrary, that each vertex in Γ(π) has at least
bn/2c + 2 neighbors. This applies, in particular, to the vertex π(1).
Being the first value of π, the neighborhood of π(1) in Γ(π), viewed as
a subsequence of [π(2), . . . , π(n)], consists of a shuffle of a decreasing
sequence of numbers larger than π(1) and an increasing sequence of
numbers smaller than π(1). Let a be the rightmost neighbor of π(1).
The intersection of the neighborhood of a with the neighborhood of
π(1) is of cardinality at most two. Thus the degree of a is at most

n− (bn/2c+ 2) + 2 = dn/2e ≤ bn/2c+ 1,

which is a contradiction. �

Proof of Theorem 3.1. First note that, by definition, the total degree
of π ∈ Sn in the Hasse diagram of the strong Bruhat order is equal to
the number of edges in Γ(π). We will prove that this number e(Γ(π)) ≤
bn2/4c+ n− 2, by induction on n.

The claim is clearly true for n = 2. Assume that the claim holds for
n− 1, and let π ∈ Sn. Let a be a vertex of Γ(π) with minimal degree,
and let π̄ ∈ Sn−1 be the permutation obtained from π by deleting the
value a (and decreasing by 1 all the values larger than a). Then

e(Γ(π̄)) ≥ e(Γ(π) \ a),

where the latter is the number of edges in Γ(π) which are not incident
with the vertex a. By the induction hypothesis and Lemma 3.2,

e(Γ(π)) = e(Γ(π) \ a) + d(a) ≤ e(Γ(π̄)) + d(a)

≤ b(n− 1)2/4c+ (n− 1)− 2 + bn/2c+ 1

= bn2/4c+ n− 2.

Equality holds since, letting m := bn/2c,
e(Γ([m + 1, m + 2, . . . , n, 1, 2, . . . ,m])) = bn2/4c+ n− 2.

�
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Theorem 3.3.

#{π ∈ Sn | d(π) = bn2/4c+ n− 2} =


2, if n = 2;

4, if n = 3 or n = 4;

8, if n ≥ 6 is even;

16, if n ≥ 5 is odd.

The extremal permutations have one of the following forms:

π0 := [m + 1, m + 2, . . . , n, 1, 2, . . . ,m] (m ∈ {bn/2c, dn/2e}),
and the permutations obtained from π0 by one or more of the following
operations:

π 7→ πr := [π(n), π(n− 1), . . . , π(2), π(1)] (reversing π),

π 7→ πs := π · t1,n (interchanging π(1) and π(n)),

π 7→ πt := t1,n · π (interchanging 1 and n in π).

Proof. It is not difficult to see that all the specified permutations are
indeed extremal, and their number is as claimed (for all n ≥ 2).

The claim that there are no other extremal permutations will be
proved by induction on n. For small values of n (say n ≤ 4) this may
be verified directly. Assume now that the claim holds for some n ≥ 4,
and let π ∈ Sn+1 be extremal. Following the proof of Lemma 3.2, let
a be a vertex of Γ(π) with degree at most b(n + 1)/2c + 1, which is
either π(1) or its rightmost neighbor. As in the proof of Theorem 3.1,
let π̄ ∈ Sn be the permutation obtained from π by deleting the value a
(and decreasing by 1 all the values larger than a). All the inequalities in
the proof of Theorem 3.1 must hold as equalities, namely: e(Γ(π)\a) =
e(Γ(π̄)), d(a) = b(n + 1)/2c + 1, and π̄ is extremal in Sn. By the
induction hypothesis, π̄ must have one of the prescribed forms. In all
of them, {π̄(1), π̄(n)} = {m, m + 1} is an edge of Γ(π̄). Therefore the
corresponding edge {π(1), π(n + 1)} (or {π(2), π(n + 1)} if a = π(1),
or {π(1), π(n)} if a = π(n + 1)) is an edge of Γ(π) \ a, namely of Γ(π).
If a 6= π(1), π(n + 1) then π(n + 1) is the rightmost neighbor of π(1),
contradicting the choice of a. If a = π(n+1) we may use the operation
π 7→ πr. Thus we may assume from now on that a = π(1).

Let N(a) denote the set of neighbors of a in Γ(π). Assume first that

π̄ = π0 = [m + 1, m + 2, . . . , n, 1, 2, . . . ,m] (m ∈ {bn/2c, dn/2e}).
Noting that dn/2e = b(n + 1)/2c and keeping in mind the decrease in
certain values during the transition π 7→ π̄, we have the following cases:

(1) a > m + 1 : in this case 1, . . . ,m 6∈ N(a), so that

d(a) ≤ n−m ≤ dn/2e = b(n + 1)/2c < b(n + 1)/2c+ 1.
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Thus π is not extremal.
(2) a < m : in this case m + 3, . . . , n + 1, m + 1 6∈ N(a), so that

d(a) ≤ 1 + (m− 1) ≤ dn/2e < b(n + 1)/2c+ 1.

Again, π is not extremal.
(3) a ∈ {m, m + 1} : in this case

d(a) = 1 + m ≤ b(n + 1)/2c+ 1,

with equality iff m = b(n + 1)/2c. This gives π ∈ Sn+1 of the
required form (either π0 or πs

0).

A similar analysis for π̄ = πs
0 gives extremal permutations only for

a ∈ {m + 1, m + 2} and d(a) = 3, so that n = 4 and π̄ = [2413] ∈ S4.
The permutations obtained are π = [32514] and π = [42513], which are
πrt

0 , πrst
0 ∈ S5, respectively.

The other possible values of π̄ are obtained by the π 7→ πr and π 7→ πt

operations from the ones above, and yield analogous results. �

4. Expectation

In this subsection we prove an exact formula for the expectation of
the down degree of a permutation in Sn.

Theorem 4.1. For every positive integer n, the expected down degree
of a random permutation in Sn is

Eπ∈Sn [d−(π)] =
n∑

i=2

i∑
j=2

j∑
k=2

1

i · (k − 1)
= (n + 1)

n∑
i=1

1

i
− 2n.

It follows that

Corollary 4.2. As n →∞,

Eπ∈Sn [d−(π)] = n ln n + O(n)

and

Eπ∈Sn [d(π)] = 2n ln n + O(n).

To prove Theorem 4.1 we need some notation. For π ∈ Sn and
2 ≤ i ≤ n let π|i be the permutation obtained from π by omitting
all letters which are larger than or equal to i. For example, if π =
[6, 1, 4, 8, 3, 2, 5, 9, 7] then π|9 = [6, 1, 4, 8, 3, 2, 5, 7], π|7 = [6, 1, 4, 3, 2, 5],
and π|4 = [1, 3, 2].

Also, denote by π|j the suffix of length j of π. For example, if

π = [6, 1, 4, 8, 3, 2, 5, 9, 7] then π|3 = [5, 9, 7] and π
|2
|4 = [3, 2].
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Let l.t.r.m.(π) be the number of left-to-right maxima in π:

l.t.r.m.(π) := #{i |π(i) = max
1≤j≤i

π(j)}

Lemma 4.3. For every π ∈ Sn, if π−1
|i+1(i) = j then

d−(π|i+1)− d−(π|i) = l.t.r.m.(π
|i−j
|i ).

Proof of Theorem 4.1. Clearly, for every π ∈ Sn

d−(π) =
n∑

i=2

[
d−(π|i+1)− d−(π|i)

]
.

Thus, by Lemma 4.3,

d−(π) =
n∑

i=2

l.t.r.m.(π
|i−ji

|i ),

where ji is the position of i in π|i+1, i.e., ji := π−1
|i+1(i).

Define a random variable X to be the down degree d−(π) of a random
(uniformly distributed) permutation π ∈ Sn. Then, for each 2 ≤ i ≤
n, π|i+1 is a random (uniformly distributed) permutation in Si, and

therefore j = π−1
|i+1(i) is uniformly distributed in {1, . . . , i} and π

|i−j
|i+1

is essentially a random (uniformly distributed) permutation in Si−j

(after monotonically renaming its values). Therefore, by linearity of
the expectation,

(1) E[X] =
n∑

i=2

1

i

i∑
j=1

E[Xi−j] =
n∑

i=2

1

i

i−1∑
t=0

E[Xt],

where Xt := l.t.r.m.(σ) for a random σ ∈ St.
Recall from [9, Corollary 1.3.8] that∑

σ∈St

ql.t.r.m.(σ) =
t∏

k=1

(q + k − 1).

It follows that, for t ≥ 1,

E[Xt] =
1

t!

∑
σ∈St

l.t.r.m.(σ) =
1

t!

(
d

dq

∑
σ∈St

ql.t.r.m.(σ)

)∣∣∣∣∣
q=1

=
1

t!

(
d

dq

t∏
k=1

(q + k − 1)

)∣∣∣∣∣
q=1

=
1

t!

t∑
r=1

∏
1≤k≤t

k 6=r

k =
t∑

r=1

1

r
.
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Of course, E[X0] = 0. Substituting these values into (1) gives

E[X] =
n∑

i=2

i−1∑
t=1

t∑
r=1

1

i · r

and this is equivalent (with j = t+1 and k = r+1) to the first formula
in the statement of the theorem.

The second formula may be obtained through the following manip-
ulations:

E[X] =
n∑

i=2

i∑
j=2

j∑
k=2

1

i · (k − 1)
=

∑
2≤k≤j≤i≤n

1

i · (k − 1)

=
∑

2≤k≤i≤n

i− k + 1

i · (k − 1)
=

∑
2≤k≤i≤n

(
1

k − 1
− 1

i

)
=
∑

2≤k≤n

n− k + 1

k − 1
−
∑

2≤i≤n

i− 1

i

= n

n∑
k=2

1

k − 1
− (n− 1)− (n− 1) +

n∑
i=2

1

i

= n
n∑

i=1

1

i
− 2n +

n∑
i=1

1

i
.

�

Proof of Corollary 4.2. Notice that

n∑
i=1

1

i
= ln n + O(1).

(The next term in the asymptotic expansion is Euler’s constant.) Sub-
stitute into Theorem 4.1 to obtain the desired result. �

5. Generalized Down Degrees

Definition 5.1. For π ∈ Sn and 1 ≤ r < n let

D
(r)
− (π) := {ta,b| `(π) > `(ta,bπ) > `(π)− 2r}

the r-th strong descent set of π.
Define the r-th down degree as

d
(r)
− (π) := #D

(r)
− (π).
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Example 5.2. The first strong descent set and down degree are those

studied in the previous section; namely, D
(1)
− (π) = D−(π) and d

(1)
− (π) =

d−(π).
The (n− 1)-th strong descent set is the set of inversions:

D
(n−1)
− (π) = {ta,b | a < b, π−1(a) > π−1(b)}.

Thus
d

(n−1)
− (π) = inv(π),

the inversion number of π.

Observation 5.3. For every π ∈ Sn and 1 ≤ a < b ≤ n, ta,b ∈ D
(r)
− (π)

if and only if π = [. . . , b, . . . , a, . . . ] and there are less than r letters
between the positions of b and a in π whose value is between a and b.

Example 5.4. Let π = [7, 9, 5, 2, 3, 8, 4, 1, 6]. Then

D
(1)
− (π) = {t6,7, t6,8, t1,4, t1,3, t1,2, t4,8, t4,5, t8,9, t3,5, t2,5, t5,9, t5,7}

and

D
(2)
− (π) = D

(1)
− (π) ∪ {t6,9, t1,8, t4,9, t4,7, t3,9, t3,7, t2,9, t2,7}.

Corollary 5.5. For every π ∈ Sn and 1 ≤ r < n

d
(r)
− (π) = d

(r)
− (π−1).

Proof. By Observation 5.3, ta,b ∈ D
(r)
− (π) if and only if tπ−1(a),π−1(b) ∈

D
(r)
− (π−1). �

Definition 5.6. The r-th strong descent graph of π ∈ Sn, denoted

Γ
(r)
− (π), is the graph whose set of vertices is {1, . . . , n} and whose set

of edges is

{{a, b}| ta,b ∈ D
(r)
− (π)}.

The following lemma generalizes Lemma 2.7.

Lemma 5.7. For every π ∈ Sn, the graph Γ
(r)
− (π) contains no subgraph

isomorphic to the complete graph Kr+2.

Proof. Assume that there is a subgraph in Γ
(r)
− (π) isomorphic to Kr+2.

Then there exists a decreasing subsequence

n ≥ a1 > a2 > · · · > ar+2 ≥ 1

such that for all 1 ≤ i < j ≤ r + 2, tai,aj
are r-th strong descents of π.

In particular, for every 1 ≤ i < r + 2, tai,ai+1
are r-th strong descents

of π. This implies that, for every 1 ≤ i < r + 2, ai+1 appears to the
right of ai in π. Then, by Observation 5.3, ta1,ar+2 is not an r-th strong
descent. Contradiction. �
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Corollary 5.8. For every 1 ≤ r < n,

max{d(r)
− (π) |π ∈ Sn} ≤ tr+1(n) ≤

(
r + 1

2

)(
n

r + 1

)2

.

Proof. Combining Turán’s Theorem together with Lemma 5.7. �

Note that for r = 1 and r = n− 1 equality holds in Corollary 5.8.

Remark 5.9. For every π ∈ Sn let π̄ be the permutation obtained from
π by omitting the value n. If j is the position of n in π then

d
(r)
− (π)− d

(r)
− (π̄)

equals the number of (r − 1)-th almost left-to-right minima in the
(j − 1)-th suffix of π̄, see e.g. [8]. This observation may be applied to

calculate the expectation of d
(r)
− (π).
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