
Séminaire Lotharingien de Combinatoire 53 (2006), Article B53h

MATRIX REALIZATIONS OF PAIRS OF YOUNG TABLEAUX,
KEYS AND SHUFFLES

Olga Azenhas1 and Ricardo Mamede1
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Abstract. A keyH is a semi-standard tableau of partition shape whose evaluation
is a permutation of the shape. We give a necessary and sufficient condition that
the Knuth class of a key equals the set of shuffles of its columns. In particular,
on a three-letter alphabet the Knuth class of a key equals the set of shuffles of its
columns, and on a four-letter alphabet, the Knuth class of a key is either the set
of shuffles of its columns or the set of shuffles of its distinct columns with a single
word taking appropriate multiplicities. For some instances of H this result has been
already applied to exhibit a matrix realization, over a local principal ideal domain,
of a pair of tableaux (T ,H), where T is a skew-tableau whose word is in the Knuth
class of H. Generalized Lascoux–Schützenberger operators, based on nonstandard
matching of parentheses, arise in the matrix realization, over local principal ideal
domain, of a pair (T ,H) on a two-letter alphabet, and they are used to show that,
over a t-letter alphabet, the pair (T ,H) has a matrix realization only if the word
of T is in the Knuth class of H.

1. Introduction

Given an n by n non-singular matrix A, with entries in a local principal ideal
domain with prime p, by Gaußian elimination, one can reduce A to a diagonal matrix
with diagonal entries pλ1 , . . . , pλn , for unique nonnegative integers λ1 ≥ . . . ≥ λn,
called the Smith normal form of A. The sequence pλ1 , . . . , pλn defines the invariant
factors of A, and (λ1, . . . , λn) the invariant partition of A. It is known that α, β, γ are
invariant partitions of non-singular matrices A, B, and C such that AB = C if and
only if there exists a Littlewood–Richardson tableau T of type (α, β, γ), that is, a
skew-tableau of shape γ/α whose word is in the Knuth class of the keyH of evaluation
β (Yamanouchi tableau β). This matrix problem is equivalent to the existence of p-
modules A, B, and C with invariant partitions α, β, γ such that B ⊆ C and C/B ∼= A
[18]. (Interestingly, the eigenvalues of a sum of Hermitian matrices A + B = C
are characterized by the same condition [10, 27].) This theory was developed, with
different approaches, by several authors, such as P. Hall, J. A. Green, T. Klein,
I. Gohberg, M. A. Kaashoek, R. C. Thompson [14, 15, 18, 13, 24, 30, 5, 29]. (For
an overview see [10, 11, 12].) One can solve this problem by introducing the notion
of a matrix realization of a pair (T ,H) where T is a skew-tableau with the same
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evaluation as the key H [5, 2, 1] [see Section 5, Definition 5.1] which is equivalent, in
the module setting, to the existence of a chain of p-submodules (0) = Bt ⊆ · · · ⊆ B1

⊆ B0 = B ⊆ C such that the sequence of invariant partitions of C/Bk, 0 ≤ k ≤ t,
defines a Littlewood–Richardson tableau of shape γ/α and evaluation given by the
weight of the invariant partitions of Bk−1/Bk, 1 ≤ k ≤ t [18]. Within this notion it
is natural to ask under which conditions does there exist a matrix realization of a
pair (T ,Hσ), where Hσ is a key associated with σ ∈ St [8, 9, 22, 23]. In the case
of the reverse permutation in St [4], or any permutation in S3 [6], or any adjacent
transposition [3, 25], it has been shown that (T ,Hσ) has a matrix realization if
and only if the word of T is in the plactic class of Hσ. For these permutations, the
elements of the plactic class of Hσ are shuffles of the columns of Hσ and this property
has been used to exhibit a matrix realization (T ,Hσ). Here, in Theorem 5.3, we show
that, for any σ ∈ St, t ≥ 1, (T ,Hσ) has a matrix realization only if the word of T is
in the plactic class of Hσ.

Due to the embedding of the symmetric group in the set of tableaux, originally
defined by Ehresmann in [8], the symmetric group acts on the set of keys Hσ, σ ∈ St,
in the obvious way. This action coincides with the one defined by the operations on
the free algebra, described by A. Lascoux and M. P. Schützenberger in the plactic
monoid [21, 20], based on the standard matching of parentheses, a particular paren-
theses matching on words in a two-letter alphabet. As these operations preserve the
Q-symbol, they are bijections between the plactic classes Hσ and Hsiσ, with si the
adjacent transposition of the integers i, i+1. Matrix realizations of pairs (T ,H), over
a two-letter alphabet, give rise to operations based on other parentheses matching
than the standard one, as shown in Example 5.1 (see also [6]). Corollary 3.13 charac-
terizes the operations, based on more general parentheses matching, which transform
a word in the plactic class of Hσ into one in the plactic class of Hsiσ. The proof of
Theorem 5.3 is based on these operations and their characterization.

Two columns commute (in the plactic sense) if and only if they are comparable
for the inclusion order. In fact, the words of the plactic class of a key over a three-
letter alphabet are shuffles of their columns [6]. In the case of a four-letter alphabet
this property does not remain true. Nevertheless, by Greene’s theorem [17], shuffling
together the columns of a key always leads to a word in the plactic class of this key. We
characterize the keys for which the plactic class may be described by shuffling together
their columns. The keys associated with the identity and the reverse permutations
in St, t ≥ 1, are simple examples of those keys. Finally, for σ ∈ S4, we show that we
may describe the plactic class of any associated key, in terms of shuffling, by adding,
in those cases where the columns of the key are not enough, one single word 434121.

The paper is organized as follows. In the next section we collect some notation and
basic notions necessary in the sequel. The relationship between shuffling and Knuth
operations on words is discussed. The following question is raised: if the columns
u1, . . . , uk are pairwise comparable for the inclusion order, under which conditions
is the set of all shuffles of u1, . . . , uk, denoted by Sh(u1, . . . , uk), the plactic class of
u1 . . . uk? Indeed, the containment of Sh(u1, . . . , uk) in the plactic class of u1 . . . uk

follows from Greene’s theorem [17]. It remains to analyze whether the reverse inclu-
sion holds.
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In Section 3, the key tableaux, that is, the tableaux with pairwise comparable
columns for the inclusion order, are considered. They can be seen as the tableaux
whose evaluation is a permutation of the shape or as the image of the embedding
of the symmetric group in the set of tableaux, originally defined by Ehresmann [8].
σ-Yamanouchi words are introduced as words congruent to a key of the permutation
σ. These words are directly related with the action of the symmetric group, defined
by the operations on all words described by A. Lascoux and M. P. Schützenberger in
the plactic monoid [21, 20], based on the standard parentheses matching. Operations
on words based on more general parentheses matchings are considered. A criterion
characterizing those which transform a σ-Yamanouchi word into a siσ-Yamanouchi
word is given.

In Section 4, the answer to the question raised in Section 2 is given by imposing
conditions on the key u1 . . . uk such that the plactic class of u1 . . . uk is contained
in Sh(u1, . . . , uk). In the case of S4, a full description of the plactic classes of the
associated keys, in terms of shuffling, is given. In Section 5, a matrix interpreta-
tion and application of the generalized Lascoux–Schützenberger operations, based
on nonstandard matching of parentheses, is considered. Finally, in the Appendix,
the permutations in S5 and S6 giving a positive answer to the question raised in
Section 2 are listed.

2. Words, shuffles and Knuth congruence

2.1. Words and tableaux. Let N be the set of positive integers with the usual
order “≤ ”. Given i, j ∈ N, where i ≤ j, [i, j] is an interval in N with the usual order.
If t ∈ N, [t] denotes the set {1, . . . , t}.

Let A = {a, b, . . . , f}, a < b < · · · < f , be a finite subset of N. We denote by A∗

the free monoid in the alphabet A; that is, A∗ is the collection of all finite words over
the alphabet A, with the concatenation operation. The neutral element is the empty
word, denoted by ε.

Given a word w = x1 · · ·xk over the alphabet A, we call k the length of w and
denote it by |w|. Furthermore, we denote by |w|x the multiplicity of the letter x ∈ A
in w. The sequence (|w|a, . . . , |w|f ) is called the evaluation of w in the alphabet A.
We have |w| = |w|a + · · ·+ |w|f , and the length of ε is zero. Given B a subalphabet
of A, w|B denotes the word obtained by erasing the letters not in B.

If the letters in w are in strictly decreasing order, that is, xi > xi+1 for all i, w
is called a column in A∗. A column shall be identified with the set consisting of
its entries. Given two finite subsets P = {p1, p2, . . . }, Q = {q1, q2, . . . } of N with
|P | ≤ |Q|, we write P ≤ Q if pi ≤ qi for i = 1, 2, . . . , |P |.

A partition λ = (λ1, . . . , λk, . . . ) is a weakly decreasing (finite or infinite) sequence
of nonnegative integers, with only a finite number of nonzero entries. The number of
nonzero entries of λ is called the length of λ. A partition λ is identified with its Young
diagram, a left-justified arrangement of boxes, or dots, with λi boxes (dots) in the i-th
row, where rows are arranged from bottom to top. (We adopt the French notation.)
The conjugate of partition λ is the partition λ′, the transpose of the Young diagram
λ. It is convenient not to distinguish between two partitions which only differ by a
string of zeros at the end. Sometimes we write λ = (1p1 , 2p2 , · · · ) to indicate that i
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appears pi times as a part of λ. For instance, the partition (3, 2, 2, 1) = (3, 22, 1, 0)
corresponds to the Young diagram

•
• •
• •
• • •

,

and its conjugate partition is (4, 3, 1). Clearly, the lengths of the columns in weakly
decreasing order define the transpose Young diagram.

A Young tableau T of shape λ is a filling of the Young diagram of λ with positive
integers, weakly increasing across each row and strictly increasing up each column
[9, 20]. An example of a Young tableau of shape (3, 2, 2, 1) is given by

T =

5
4 5
2 2
1 1 2

.

The word of a Young tableau is the word obtained by reading its columns from top
to bottom, starting on the left and moving to the right. A Young tableau shall
be identified with its word. In the example above, we have T = 5421 521 2 (the
empty spaces only indicate the end of a column and the starting of a new one). The
evaluation of a Young tableau T is the evaluation of its word. For instance, the
evaluation of the Young tableau above is (2, 3, 1, 2).

A skew-diagram is the diagram obtained by removing a smaller Young diagram
from a larger one that contains it. If λ and µ are partitions with µ ⊆ λ, that is,
µi ≤ λi for all i, we define a skew-tableau of shape λ/µ as a filling of the skew-
diagram λ/µ, that is, weakly increasing across each row and strictly increasing up
each column [9]. A Young tableau of shape λ may be seen as a skew-tableau of shape
λ/(0), where (0) denotes the empty partition. An example of a skew-tableau of shape
(4, 4, 2, 1)/(3, 1) is given by

T =

4
2 2
• 1 3 3
• • • 2

.

The word w(T ) of a skew-tableau T is the word obtained by reading its columns from
top to bottom, starting on the left and moving to the right. In the example above
we have w(T ) = 42 21 3 32. As for Young tableaux, the evaluation of a skew-tableau
T is the evaluation of its word. For instance, the evaluation of the skew-tableau T
above is (1, 3, 2, 1).

A skew-tableau T of shape λ/µ and evaluation (m1, . . . ,mt) may also be rep-
resented by a nested sequence of partitions [24] T = (λ0, λ1, . . . , λt), where µ =
λ0 ⊆ λ1 ⊆ · · · ⊆ λt = λ, such that for k = 1, . . . , t, all the boxes of the skew di-
agram λk/λk−1 are filled with k, with mk = |λk| − |λk−1|. In the example above,
T = (λ0, λ1, λ2, λ3, λ4), where λ0 = µ, λ1 = (3, 2), λ2 = (4, 2, 2), λ3 = (4, 4, 2) and
λ4 = λ.
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2.2. Shuffles and Knuth congruence. A word w contains u as a subword if w, as
a sequence of letters, contains u as a subsequence. A word w is a shuffle of the words
u and v if u and v can be embedded as subwords of w that occupy complementary
sets of positions within w. A shuffle w of the words u1, u2, . . . , uq is the empty word ε
for q = 0, the word u1 for q = 1, and is, otherwise, a shuffle of u1 with some shuffle of
the words u2, . . . , uq. Let Sh(u1, u2, . . . , uq) denote the set of shuffles of u1, u2, . . . , uq.
By abuse of notation we write w = sh(u1, u2, . . . , uq) to mean that w is some shuffle
of u1, u2, . . . , uq.

For example, it is simple to check that 4423142121 is a shuffle of 4321, 421 and
421. When there is no danger of confusion, to avoid cumbersome notation, we shall
write sh((u1)

l1 , . . . , (uq)
lq) to designate a shuffle of li words ui, for i = 1, . . . , q. Thus,

we have 4423142121 ∈ Sh(4321, (421)2).
Knuth’s congruence ≡ [19] on words over the alphabet A is the congruence gener-

ated by the so-called elementary transformations, where x, y, z are letters and u, v
are words in A:

uxzxv ≡ uzxxv, uzzxv ≡ uzxzv, x < z, (1)

uxzyv ≡ uzxyv, x < y < z, (2)

uyzxv ≡ uyxzv, x < y < z. (3)

The relations (1), (2), (3), also called plactic relations, are the algebraic version of
the plactic congruence [9, 19, 20]. C. Schensted [9, 20, 28] has described an algorithm,
known as Schensted’s insertion algorithm, which associates to each word w a tableau
P (w). Two words w, w′ are plactic equivalent if and only if P (w) = P (w′) [9, 19, 20].
The set of all tableaux is a section of the plactic congruence. This means that every
word can be obtained by a finite sequence of elementary Knuth transformations from
a tableau.

Let u1, . . . , uk in A∗ be columns in decreasing order of length. If T = u1 . . . uk is
a tableau, then T is the unique tableau of Sh(u1, . . . , uk) only if the columns of the
tableau T are pairwise comparable for the inclusion order; that is {uk} ⊆ · · · ⊆ {u1}.
For instance, Sh(41, 3) = {3 41, 41 3, 431} has two tableaux 41 3 and 431.

An elementary Knuth transformation (1), (2), or (3) applied to a shuffle of columns,
say u1, . . . , uk, involves at least two of these columns. If an elementary Knuth trans-
formation (2) or (3) involves three distinct letters x < y < z of sh(u1, . . . , uk), each
one belonging to a different column ui, then the output word is still a shuffle of
u1, . . . , uk.

Proposition 2.1. Let u1, . . . , uk, k ≥ 3, be columns in A∗, and x, y, z, u and v as
in (2), (3) such that each letter x, y and z appears in a distinct column. Then

uxzyv ∈ Sh(u1, . . . , uk) ⇔ uzxyv ∈ Sh(u1, . . . , uk);

uyzxv ∈ Sh(u1, . . . , uk) ⇔ uyxzv ∈ Sh(u1, . . . , uk).

For instance, in the alphabet [5], consider the word 524412211 ∈ Sh(5421, 421, 21),
where the underlined letters define the word 421, the overlined letters define the word
21, and the remaining letters define the word 5421. The application of the elementary
Knuth transformation 412 ≡ 142 to 524412211 gives the word w = 524142211,
which is still a shuffle of 5421, 421 and 21.
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If the Knuth transformation involves only two distinct letters of sh(u1 . . . , uq), it
is also clear that the output word is still a shuffle of u1 . . . , uq.

Proposition 2.2. Let u1 . . . , uk, k ≥ 2, be columns in A∗, and x, z, u and v as in
(1). Then

uzxxv ∈ Sh(u1, . . . , uk) ⇔ uxzxv ∈ Sh(u1, . . . , uk);

uzzxv ∈ Sh(u1, . . . , uk) ⇔ uzxzv ∈ Sh(u1, . . . , uk).

Corollary 2.3. Let u1 . . . , uk, k ≥ 2, be columns in a two-letter alphabet A = {a, b},
and w ∈ Sh(u1, . . . , uk) of evaluation (p, q). Then

(a) P (w) ∈ Sh(u1, . . . , uk).
(b) Sh(u1, . . . , uk) is either

(i) the plactic class of P (w) = (ba)q1p or P (w) = (ba)pbq, if the columns ui are
pairwise comparable for the inclusion order, for i = 1, . . . , k; or

(ii) the union of the plactic classes of P (w) = (ba)rasbv, r + s = p, r + v = q, and
P (w) = (ba)p+q, otherwise.

Let x < y < z ∈ A. The columns z y and y x, in the elementary Knuth trans-
formations x z y ≡ z x y (2), and y z x ≡ y x z (3), respectively, are not broken
by these transformations and, therefore, the shuffle of z y and x, and y x and z
is preserved. The only column that is broken by these Knuth transformations is
zx which is transformed into xz. Consider again the columns 41 and 3. We have
Sh(41, 3) = {3 41, 41 3, 431}, but 3 41 ≡ 31 4 /∈ Sh(41, 3) and 41 3 ≡ 143 /∈ Sh(3, 41).
Therefore, considering, for example, the tableau 4321 41, the Knuth transformation
341 ≡ 314 implies 434121 = sh(4321, 41) ≡ 431421, but 431421 can not be obtained
by a shuffle of the columns 4321 and 41.

Supposing that u1, . . . , uk are columns pairwise comparable in the inclusion order,
we raise the question: Under which conditions Sh(u1, . . . , uk) equals the plactic class
of the tableau T = u1 · · ·uk?

We start by noticing that the containment Sh(u1, . . . , uk) in the Knuth class of
T follows from Greene’s theorem [17]. Since u1 ⊇ · · · ⊇ uk, the maximum of the
sums of the lengths of j decreasing and disjoint subwords of w ∈ Sh(u1, . . . , uk) is
|u1| + · · · + |uj|, for all j ≥ 1. It follows from Greene’s theorem that the conjugate
shape of P (w) is (|u1|, . . . , |uk|), which means that P (w) = u1 · · ·uk. But as we
have seen above, in general, we do not have equality. In Section 4 we determine the
conditions for which equality holds.

3. Keys and σ-Yamanouchi words

3.1. Parentheses matching operations. Given a set I, let SI be the set of all
bijections on I, and St := S[t] the symmetric group of order t. The symmetric group
St, t ≥ 1, is generated by the simple transpositions si = (i i + 1), i = 1, . . . , t − 1,
which satisfy the Moore-Coxeter relations:

(I) s2
i = id, (II) sisj = sjsi, if |i− j| 6= 1, and (III) sisi+1si = si+1sisi+1,

where id denotes the identity.
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Let w be a word over the alphabet [t] and i, i + 1 ∈ [t]. An operation θi on w
[6] consists of (a) a longest matching on w|{i,i+1} between letters i + 1 and letters
i to their right, by putting a left parenthesis on the left of each letter i + 1, and a
right parenthesis on the right of each letter i, such that the unmatched right and
left parentheses indicate a subword of the form is(i + 1)r; (b) this subword will be
replaced in w|{i,i+1} with ir(i + 1)s. By abuse of notation, we write θi(w) to refer to
any word which is related with w in the defined way.

Let w = 31314221412 be a word over the alphabet [4]. For example, inserting
parentheses on the right of the letters 1 and on the left of the letters 2 of the word
w|{1,2} = 1122211, we get 1)1)(2(2(21)1). We may match the two left most letters
2 with the letters 1 to their right. The unmatched letters indicate the subword
w′ = 112 = 1221. Thus, θ1(w|{1,2}) = 1 2 2 22 1 1, where the underlined word is the
subword w′ replaced with 1122. Finally, θ1(w) = 3 1 3 2 4 2 2 2 4 1 1.

A. Lascoux and M. P. Schützenberger [21, 20] have introduced the following in-
volutions θ∗i , for i = 1, . . . , t − 1, on all words over the alphabet [t], based on the
standard matching of parentheses on words over a two-letter alphabet, a particular
matching of parentheses. Let w be a word over the alphabet [t]. To compute θ∗i (w),
first extract from w the subword v containing the letters i and i + 1 only. Second,
bracket every factor i + 1 i of v. The letters which are not bracketed constitute a
subword v1 of v. Then bracket every factor i + 1 i of v1. There remains a subword
v2. Continue this procedure until it stops, giving a word vk of type ir (i + 1)s. Then,
replace it with the word is (i + 1)r and, after this, recover all the removed letters of
w, including the ones different from i and i + 1. The operations θ∗i , 1 ≤ i ≤ t − 1,
satisfy the Moore-Coxeter relations [21, 20] and define an action of St over [t]∗.

Let w = 31314221412 as above. To compute θ∗1(w), we get v = 112(21)12, v1 =
11(21)2 and v2 = 112 = 1221. Thus, θ∗1(w) = 3 1 3 2 4 2 2 1 4 1 2, where the underlined
word is the subword v2 replaced with 1122.

The operations θ∗i , 1 ≤ i ≤ t− 1, are compatible with the plactic equivalence and
preserve the Q-symbol.

Proposition 3.1. [21, 20] Let w,w′ be words in [t]∗, and let i ∈ [t]. Then, w ≡ w′

if and only if θ∗i (w) ≡ θ∗i (w
′). In particular, P (θ∗i (w)) = θ∗i (P (w)).

Note that in the examples above we have θ1(w) 6≡ θ∗1(w). In the case of words w
congruent to a tableau whose columns are comparable in the inclusion order, we will
give a criterion such that θi(w) ≡ θ∗i (w).

3.2. Keys and σ-Yamanouchi words. By definition, a key is a tableau such that
its columns are pairwise comparable in the inclusion order [23]. Equivalently, a key
is a tableau whose evaluation is a permutation of its shape. For instance, over the
alphabet [6], 65431 641 41 is a key of shape (3, 3, 2, 1, 1) and evaluation (3, 0, 1, 3, 1, 2).

Let (lt, . . . , l2, l1) be a sequence of nonnegative integers. Then, m = (l1 + · · · +
lt, . . . , lt−1 + lt, lt) is a partition and (tlt , . . . , 2l2 , 1l1) its conjugate. For instance,
(1, 1, . . . , 1) defines the self-conjugate partition (t, t− 1, . . . , 1).

Let σ ∈ St written as a word a1 · · · at in [t]∗. For k = 1, . . . , t, denote by rσ,k the
column with underlying set {a1, . . . , ak}. In particular, when σ = 12 . . . t, we get
rk = k . . . 21. Clearly, {rt} ⊇ {rσ,t−1} ⊇ . . . ⊇ {rσ,1}.
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Definition 3.1. Key of a permutation [23]. To each pair consisting of a permu-
tation σ ∈ St and a sequence of nonnegative integers (lt, . . . , l1), Ehresmann [8]
associated a key of shape m, here denoted by Hσ(lt,...,l1), by taking the sequence
(rt)

lt , (rσ,t−1)
lt−1 , . . . , (rσ,1)

l1 of left reordered factors of σ; that is,

Hσ(lt,...,l1) := (rt)
lt (rσ,t−1)

lt−1 · · · (rσ,1)
l1 ,

is the key of σ of shape m. In particular, H(lt,...,l1) = (t · · · 21)lt · · · (21)l2 (1)l1 .

For i = 1, . . . , t, the letter ai appears only in the columns rt, . . . , rσ,i. Hence,

the multiplicity of ai in Hσ(lt,...,l1) = (rt)
lt (rσ,t−1)

lt−1 . . . (rσ,1)
l1 is

∑t
k=i lk, for i =

1, . . . , t. We put σm = (m1, . . . , mt), where mi =
∑t

k=σ−1(i) lk, i = 1, . . . , t. Hence

Hσ(lt,...,l1) := (rt)
lt (rσ,t−1)

lt−1 . . . (rσ,1)
l1 is also the key of σ with evaluation σm; equiv-

alently, the unique tableau of evaluation σm and shape m.
Note that Hσ(ljej) = (rσ,j)

lj , and Hσ(lt,...,l1) = (Hσ(ltet))
lt . . . (Hσ(l1e1))

l1 , with ej =
(δi,j), j = 1, . . . , t.

On the other hand, if T = qt . . . q2 q1 is a key, with qt = t . . . 2 1 and |qt−1| >
. . . > |q1|, we get that column qk is such that {qk} = {qt} \ {at, . . . , ak+1} with
{at, . . . , ak+1} ⊆ {1, . . . , t}, 1 ≤ k ≤ t − 1. Putting σ := a1 . . . at this shows that
Hσ(1,...,1) = T . Therefore, given a sequence (lt, . . . , l1) of positive integers,

σ −→ Hσ(lt,...,l2,l1) = (rt)
lt (rσ,t−1)

lt−1 . . . (rσ,1)
l1 ,

defines an embedding of St into the set of tableaux of conjugate shape (tlt , . . . , 2l2 , 1l1).
For example, with σ = 3124 ∈ S4, we have r4 = 4321, rs2,3 = 321, rs2,2 = 31, rs2,1 =

3, Hσ(1,1,1,1) =

4
3 3
2 2 3
1 1 1 3

, and Hσ(1,1,2,0) = (4321)1(321)1(31)2(3)0 =

4
3 3
2 2 3 3
1 1 1 1

.

With s2 = 1324, we have r4 = 4321, rs2,3 = 321, rs2,2 = 31, rs2,1 = 1, and

Hs2(1,1,2,0) = (4321)1(321)1(31)2(1)0 =

4
3 3
2 2 3 3
1 1 1 1

= Hσ(1,1,2,0).

Let I := [t] \ {i}, with i ∈ [t], and let σ|I := a1 . . . at|I ∈ SI . If σ−1(i) = p, then
letter ap = i appears only in columns rt . . . , rσ,p. Hence, when we erase letter i in
column rσ,p, we obtain column rσ,p−1, and we have

Hσ(lt,...,l1)|I = H(σ|I)(lt,...,lp+1,lp+lp−1,...,l1).

With σ = s4 = 12354, we have r5 = 54321, rs4,4 = 5321, rs4,3 = 321, rs4,2 = 21,
rs4,1 = 1 and

Hs4(0,1,1,2,1) = (54321)0(5321)1(321)1(21)2(1)1 =

5
3 3
2 2 2 2
1 1 1 1 1

;
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and with I = [5] \ {2},

(Hs4(0,1,1,2,1))|I = H(s4|I)(0,1,1,2+1) = (5431)0(531)1(31)1(1)3 =
5
3 3
1 1 1 1 1

.

Proposition 3.2. Let θ∗ ∈< θ∗1 . . . θ∗t−1 >, and let σ be a permutation in St with the
same reduced decomposition. Then

(a) θ∗(rk) = rσ,k, 1 ≤ k ≤ t.
(b) θ∗(H(lt,...,l1)) = Hσ(lt,...,l1) = (θ∗(rt))

lt (θ∗(rt−1))
lt−1 · · · (θ∗(r1))

l1 .

Proof: Follows from Definition 3.1. �

When there is no danger of confusion, we will drop the ”(lt, . . . , l1)” in the notation
Hσ(lt,...,l1), to denote a key of σ.

A word w over the alphabet [t] is said to be Yamanouchi [20] if any right factor
v of w satisfies |v|1 ≥ |v|2 ≥ · · · ≥ |v|t. This is equivalent to saying that w ∈
Sh((rt)

lt , · · · , (r1)
l1), where (|v|1, |v|2, · · · , |v|t) = (l1 + · · ·+ lt, . . . , lt−1 + lt, lt). Thus,

for each (lt, . . . , l2, l1), the key H(lt,...,l2,l1) is a Yamanouchi tableau. Clearly, any
shuffle of a Yamanouchi word is still a Yamanouchi word.

Proposition 3.3. [20, Lemma 5.4.7] The set of Yamanouchi words with evaluation
m forms a single plactic class, whose representative word is the tableau H(lt,...,l2,l1).

Thus, the set of words obtained by shuffling the columns of H(lt,...,l2,l1) and the
one obtained by applying a finite sequence of Knuth transformations on the tableau
H(lt,...,l2,l1) are the same.

The dual of a tableau T is defined as the tableau with same shape and reverse
evaluation, obtained by applying the Schützenberger involution to T . Thus the dual
of H is Hop. On the other hand, if w ≡ H then w∗ ≡ H∗ ≡ Hop, where w∗ denotes the
dual word of w. The characterization of Yamanouchi words given by Proposition 3.3
leads to the following definition.

Definition 3.2. Let t ≥ 1 and σ ∈ St. A word w over the alphabet [t] is said to be
σ-Yamanouchi if w ≡ Hσ. In particular, when σ is the identity, w is a Yamanouchi
word, and when σ is the reverse permutation, w is a dual Yamanouchi word.

Since the operations θ∗i are compatible with the plactic equivalence, we may char-
acterize σ-Yamanouchi words using the operations θ∗i [21, 20] as well.

Proposition 3.4. Let t ≥ 1 and σ ∈ St. Let w be a word over the alphabet [t]. Then,
w is a σ-Yamanouchi word if and only if θ∗ir · · · θ

∗
i1
(w) is a Yamanouchi word, where

si1 · · · sir is a reduced decomposition of σ.

Proof: We have w ≡ Hσ if and only if θ∗(w) ≡ θ∗(Hσ) = H, where θ∗ = θ∗ir · · · θ
∗
i1
. �

As in the case of Yamanouchi words, we find that a shuffle of σ-Yamanouchi words
is still a σ-Yamanouchi word.

Proposition 3.5. Let σ ∈ St. If w and w′ are σ-Yamanouchi words over the alphabet
[t], then any word in Sh(w, w′) is also a σ-Yamanouchi word.
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Proof: Let u ∈ Sh(w, w′), and assume that w ≡ H(σ, (lt, . . . , l1)) and w′ ≡ H(σ, (l′t,
. . . , l′1)). By Greene’s theorem [17], we find that the conjugate shape of P (u) is
(tlt+l′t , . . . , 1l1+l′1), that is, P (u) = H(σ, (lt + l′t, . . . , l1 + l′1)). �

By induction, we may easily extend Proposition 3.5 to a shuffle of k σ-Yamanouchi
words, for every k ∈ N.

Corollary 3.6. Let i ∈ {1, . . . , t − 1}, w = sh((rt))
lt , . . . , (r1)

l1) and let θ̃i(w) =

sh((θ∗i (rt))
lt , . . . , (θ∗i (r1))

l1). Then θ̃i(w) is a si-Yamanouchi word.

Proposition 3.7. [23, 20] If B is an interval of A, then

w ≡ w′ implies w|B ≡ w′
|B.

Corollary 3.8. Let w be a word over the alphabet A, and let A′ = A \ {f}. Then,
P (w|A′) = P (w)|A′.

Proof: From the previous proposition, we have w|A′ ≡ P (w)|A′ . Thus P (w|A′) is
obtained from P (w) by removing the letters f . �

If w is a σ-Yamanouchi word then the word w|{i,i+1} ≡ Hσ |{i,i+1} and, thus, w|{i,i+1}
is either a Yamanouchi or dual Yamanouchi word for 1 ≤ i ≤ t−1. (Consider a shift of
the alphabet {1, 2}.) Moreover, if w has evaluation (m1, . . . ,mt), then w = sh(u, tmt)
with u ≡ Hσ(lt,...,l2,l1)|[t−1]

and w|{t−1,t} a Yamanouchi or dual Yamanouchi word.

The word 3121 ≡ 321 1 is a s1-Yamanouchi word and 434 a dual Yamanouchi
word. Nevertheless, considering the words in {w ∈ Sh(3121, 44) : w|{3,4} = 434} =
{434121 ≡ 4321 41, 431421 ≡ 4321 41, 431241 ≡ 4321 1 4, 431214 ≡ 4321 1 4} we find
that 431241, 431214 are not σ-Yamanouchi words, for any σ ∈ {4213; 2413; 2143;
2134} ⊆ S4.

This leads to the following question: given I = [t]\{i}, with i ∈ [t], and u ∈ I∗ con-
gruent to the key of evaluation (m1, . . . ,mi−1, mi+1, . . . ,mt), under which conditions
can u be embedded in a word congruent to the key of evaluation (m1, . . . ,mt)?

The answer is given by the following proposition.

Proposition 3.9. Let w ∈ [t]∗ and σ ∈ St. Given i ∈ [t], let I = [t] \ {i}, and
suppose w|I ≡ Hσ |I . Then, w is a σ-Yamanouchi word if and only if w|{j,j+1} is either
a Yamanouchi or a dual Yamanouchi word, for j = i − 1, i, and θ∗j (w)|[j] ≡ Hsjσ |[j],

for j = i− 1, . . . , t− 1.

Proof: The conditions are clearly necessary. Suppose now that w|{j,j+1} is either a

Yamanouchi or a dual Yamanouchi word, for j = i− 1, i, and θ∗j (w)|[j] ≡ Hsjσ |[j], for

j = i− 1, . . . , t− 1.
We start with the case i = t, and thus, I = [t − 1]. Consider (m1, . . . ,mt), the

evaluation of w, and assume without loss of generality that mt−1 ≥ mt. From the
equality P (w|[t−1]

) = P (w)|[t−1] = Hσ |[t−1], we find that the letters t − 1 of w are in

the first mt−1 columns of P (w).
Since w|{t−1,t} ≡ P (w)|{t−1,t} is a Yamanouchi word, the mt letters t of w are

displayed in the first mt−1 columns of P (w). On the other hand, the tableau
P (θ∗t−1(w)|[t−1]) is obtained by erasing the mt−1 letters t in the first mt−1 columns
of the tableau P (θ∗t−1(w)) = θ∗t−1(P (w)). So if the letters t in tableau P (w) are
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not in the first mt columns, the letters t − 1 are not in the first mt columns of
P (θ∗t−1(w)|[t−1]) = Hst−1σ |[t−1]

. This is absurd.

Assume now that i 6= t. Then, w|[i−1] ≡ Hσ |[i−1], and since w|{i−1,i} is either a
Yamanouchi or a dual Yamanouchi word, and θ∗i−1(w)|[i−1]

≡ Hsi−1σ |[i−1]
, by the case

i = t we find that

w|[i] ≡ Hσ |[i].

Next, note that w|{i,i+1} is either a Yamanouchi or a dual Yamanouchi word, and
that θ∗i (w)|[i] ≡ Hsiσ |[i]. Thus, again by the case i = t, we must have

w|[i+1] ≡ Hσ |[i+1].

Noticing that, since w|I ≡ Hσ |I , the word w|{j,j+1} is either Yamanouchi or dual
Yamanouchi, for j = i + 1, . . . , t− 1, we may repeat the process described above for
j = i + 1, . . . , t− 1, obtaining w|[t] ≡ Hσ |[t]. �

For instance, in the alphabet [5], let I := [5] \ {3}, σ = 51324 ∈ S5, and consider
the keyHσ(1,0,2,0,1) = 543215315315, associated with σ and (1, 0, 2, 0, 1), and the word
w|I := 555415211 ≡ Hσ(1,0,2,0,1)|I . Define w = 553541352131. Since w|{2,3} = 3323

is dual Yamanouchi, w|{3,4} = 3433 is Yamanouchi, θ∗2(w)|[2] = 212121 ≡ Hs2σ |[2],

θ∗3(w)|[3] = 13211 ≡ Hs3σ |[3], and θ∗4(w)|[4] = 44341342131 ≡ Hs4σ |[4], by the previous
theorem the word w is σ-Yamanouchi, and has w|I as a subword. Consider now the
word w′ = 533554135211, which also has w|I as a subword. Although w′

|{2,3} = 3332

is dual Yamanouchi, w′
|{3,4} = 3343 is Yamanouchi, θ∗2(w)|[2] = 221211 ≡ Hs2σ |[2],

and θ∗3(w)|[3] = 13211 ≡ Hs3σ |[3], w′ is not a σ-Yamanouchi word since θ∗4(w
′)|[4] =

43344134211 is not in the plactic class of Hs4σ |[4].

Given the word w = w1w2 · · ·wk ∈ A∗ and P = {i1, . . . , il} ⊆ [k], we define the
restriction of w to the set P by w|P := wi1 · · ·wil . If w,w′ ∈ A∗ have lengths k
and k′, respectively, and P ⊆ [k + k′] has cardinality k, we denote by shP (w, w′) the
shuffle of w and w′ satisfying shP (w, w′)|P = w [16]. For instance, with P = {1, 4},
we have shP (81, 321) = 83211. Clearly, different sets P and Q may give the same
word shP (w, w′) = shQ(w,w′). In the example above, we also have shP (81, 321) =
shQ(81, 321), with Q = {1, 5}.

Corollary 3.10. Let w = shP (tr, u) ≡ Hσ with u ∈ [t− 1]∗. If w′ = shQ(tr, u) with
Q ≤ P , then w′ ≡ Hσ.

Proof: By induction on t. If t = 1, 2, the claim is obvious. Let t ≥ 3 and write

θ∗t−1(w)|[t−1] = sh eP ((t− 1)r, w|[t−2]) ≡ Hst−1σ |[t−1]
,

θ∗t−1(w
′)|[t−1] = sh eQ((t− 1)r, w|[t−2]).

Clearly, we must have Q̃ ≤ P̃ . Then, by induction, it follows that θ∗t−1(w
′)|[t−1] ≡

Hst−1σ |[t−1]
, and by the previous proposition, we find that w′ ≡ Hσ. �

An operation θi may not act on the set {Hσ : σ ∈ St}. For example, consider
H = 4321 21, and θ2(H) = θ2(4321 21) = 433121 /∈ {Hσ : σ ∈ St}. Although
433121 ≡ 4321 31 = Hs2 , we may have even worse w = 314321 ≡ Hs2s1 and θ2(w) =
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314221 ≡ 321 41 2 /∈ {Hσ : σ ∈ St}. Nevertheless, it is possible to give a criterion on
θi such that if w ≡ Hσ then θi(w) ≡ Hsiσ.

The criterion given by the previous proposition can be generalized to the operations
θi.

Lemma 3.11. Let w ∈ [t]∗ and w|{t−1,t} a Yamanouchi or dual Yamanouchi word.
Let u = θt−1(w), z = θ∗t−1(w) and v = w|[t−2]. Then

w|[t−1] = shP (u|{t−1}, v) and w|[t−1] = shQ(z|{t−1}, v), with Q ≤ P.

Proof: It is enough to consider the cases w|{t−1,t} = t t−1 t−1 and w|{t−1,t} = t t t−1.
Therefore, if θt−1 6= θ∗t−1, we have

θt−1(t t− 1 t− 1) = t t t− 1,

θ∗t−1(t t− 1 t− 1) = t t− 1 t,

and

θt−1(t t t− 1) = t t− 1 t− 1,

θ∗t−1(t t t− 1) = t− 1 t t− 1.

�

Theorem 3.12. Let w ∈ [t]∗ and σ ∈ St. Given i ∈ [t], let I = [t] \ {i}, and suppose
that w|I ≡ Hσ |I . Then, w is a σ-Yamanouchi word if and only if w|{j,j+1} is either a
Yamanouchi or a dual Yamanouchi word, for j = i− 1, i, and θj(w)|[j] ≡ Hsjσ |[j], for

some operation θj, j = i− 1, . . . , t− 1.

Proof: According to the previous lemma and corollary, if θj(w)|[j] ≡ Hsjσ |[j], then

θ∗j (w)|[j] ≡ Hsjσ |[j], for j = i − 1, . . . , t − 1. By the previous proposition, it follows

that w ≡ Hσ. �

Corollary 3.13. Let w ∈ [t]∗, t ≥ 2, and σ ∈ St. If w ≡ Hσ, then θi(w) ≡ Hsiσ

if and only if (θiw)|{i+1,i+2} is either a Yamanouchi or a dual Yamanouchi word,
θi(w)|[i] ≡ Hsiσ |[i], and θj(θi(w))|[j] ≡ Hsjsiσ |[j], for some operation θj, j = i+1, . . . , t−
1.

Proof: Taking θj = θ∗j , j = i + 1, . . . , t − 1, we find that the conditions are clearly
necessary. Assume now that w|{i+1,i+2} is either a Yamanouchi or a dual Yamanouchi
word, θi(w)|[i] ≡ Hsiσ |[i], and θj(θi(w))|[j] ≡ Hsjsiσ |[j], for j = i + 1, . . . , t− 1.

Since θi(w)|[i] ≡ Hsiσ |[i], θiw|{i,i+1} is either a Yamanouchi or a dual Yamanouchi

word, and θi(θi(w)|[i]) = w|[i] ≡ Hσ |[i], by the previous theorem we must have

θi(w)|[i+1] ≡ Hsiσ |[i+1].

Now, since (θiw)|{i+1,i+2} is either a Yamanouchi or a dual Yamanouchi word, and
there is an operation θi+1 such that θi+1(θi(w))|[i+1] ≡ Hsi+1siσ |[i+1]

, again by the

previous theorem, we find that

θi(w)|[i+2] ≡ Hsiσ |[i+2].
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Finally, note that, since θi(w)|{j,j+1} = w|{j,j+1}, the word θi(w)|{j,j+1} is either a
Yamanouchi or a dual Yamanouchi word, for j = i+2, . . . , t−1. Therefore, repeating
the process above for j = i + 2, . . . , t− 1, we obtain θi(w)|[t] ≡ Hsiσ |[t]. �

Remark 3.1. In particular, it follows from the previous theorem and the corresponding
statement for dual words, that θ1(w) ≡ Hs1σ if and only if θ1(w)|[2,t] ≡ Hs1σ |[2,t].

Consider w = 43143213321 a σ-Yamanouchi word, where σ = 3124, and the keys
Hσ(2,0,1,1) = 4321 4321 31 3 and Hs2σ(2,0,1,1) = 4321 4321 21 2. We have θ∗2(w) =
42143212321 ≡ Hs2σ, but θ2(w) = 43142213221 is not a s2σ-Yamanouchi word.
Note that although θ2(w)|{3,4} = 4343 is Yamanouchi, θ2(w)|[2] = 1221221 is not
in the plactic class of Hs2σ |[2]. The word θ′2(w) = 42143213221 is a s2σ-Yamanouchi

word, since θ′2(w)|{3,4} = 4433 is Yamanouchi, θ′2(w)|[2] = 2121221 ≡ Hs2σ |[2], and

θ∗3(θ
′
2(w))|[3] = θ′2(w)|[3] = 213213221 ≡ Hs3s2σ |[3].

4. σ-Yamanouchi words as shuffles of columns of a key

It has been shown in [6] that, when t ≤ 3, a word in [t]∗ of evaluation m is σ-
Yamanouchi if and only if it is a shuffle of the columns of Hσ(lt,...,l1). For t ≥ 4
this is no longer true in general. For example, consider the Yamanouchi tableau
4321 21 and 421321 = sh(4321, 21). We have θ∗3θ

∗
2(421321) = θ∗3(431321) = 431421 ≡

sh(4321, 41), but 431421 is not a shuffle of the columns of s3s2-Yamanouchi tableau
4321 41. We have already seen that shuffling together the columns ofHσ has the same
effect as performing Knuth transformations on the tableau Hσ. The reciprocal is not
true in general. In what follows, we identify the keys for which Knuth transformations
on the key tableau and shuffling together its columns lead to the same words.

Let w be a word obtained by applying an elementary Knuth transformation to
sh(u1, . . . , uk), k ≥ 2, where u1, . . . , uk are columns pairwise comparable in the
inclusion order. From Propositions 2.1 and 2.2 and the discussion therein, we may
assume that w is obtained by applying an elementary Knuth transformation to a
shuffle of two of these columns, u and v say, where the transformation involves three
distinct letters x < y < z, with zx a factor of v and y a letter of u. Since the letter
y is in u, but not in v, and u and v are comparable in the inclusion order, we have
{v} ⊆ {u}.
Lemma 4.1. Let u1, u2 be columns in A∗, and x, z ∈ A such that zu1u2x is a column.
Then,

(i) sh(u2, u1u2x) ∈ Sh(u2x, u1u2).
(ii) sh(u1, zu1u2) ∈ Sh(zu1, u1u2).

Proof: (i) Write u2 = a1 · · · ar, and sh(u2, u1u2x) = c1 · · · cl. For each j = 1, . . . , r,
let pj := min{i : ci = aj}, and let p′ ∈ [l] such that cp′ = z. Then, it is clear that

sh(u2, u1u2x) = shP (u2x, u1u2),

where P := {p1, . . . , pr, p
′}.

(ii) Write u1 = a1 · · · ar, and sh(u1, zu1u2) = c1 · · · cl. For each j = 1, . . . , r, let
pj := max{i : ci = aj}, and let p′ ∈ [l] such that cp′ = x. Then, we have

sh(u1, zu1u2) = shP (zu1, u1u2),
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where P := {p1, . . . , pr, p
′}. �

Lemma 4.2. Let u and v be columns in A∗ with u = u1u2zyxu3u4 and v = u2zxu3,
where x, y, z are letters. Then, Sh(u, v) is closed under Knuth transformations, that
is, Sh(u, v) is the Knuth class of the two-column key u v.

Proof: As before, the only cases to consider are the application of the elementary
Knuth transformations zxy ≡ xzy and yzx ≡ yxz, respectively, to sh(u, v) =
w1 z x y w2 and sh(u, v) = w1 y z x w2, where y is a letter of u, zx a factor of v,
w1 = sh(u2, u1u2z) and w2 = sh(xu3u4, u3).

In the case of the elementary Knuth transformation zxy ≡ xzy, we have

sh(u, v) = w1z x yw2 ≡ w1x z yw2, (4)

where w1 = sh(u2, u1u2z), w2 = sh(xu3u4, u3). By Lemma 4.1 (i), we must have
w1 = shP (u2z, u1u2), for some set P . Thus, we have for the right-hand side of (4)
that

w1xzyw2 = sh(u2zxu3, u1u2z y xu3u4) ∈ Sh(u, v).

The case of the elementary Knuth transformation yzx ≡ yxz is analogous to the
previous one. �

As an illustration of the lemma above, consider, in the alphabet [6], the columns
u = 654321 and v = 542, and let sh(u, v) = 5 6 5 4 4 2 3 2 1, where the underlined
letters define the word v, and the remaining letters define u. Applying the Knuth
transformation 423 ≡ 243, to sh(u, v), we get the word 5 6 5 4 2 4 3 2 1, which is also
a shuffle of u and v.

Next, we identify keys for which Knuth transformations on the key tableau are
equivalent to shuffling together its columns. First, however, we need the following
definition.

Definition 4.1. Let w ∈ A∗ be a column. We say that w has a gap of size q ≥ 0,
with respect to the alphabet A, if there exists a factor j + k j, k ≥ 1, of w such that
|[j + 1, j + k − 1] ∩ A| = q.

For instance, the column 41 has a gap of size 2 with respect to the alphabet [5],
but has only a gap of size 1 with respect to the alphabet {1, 2, 4, 5}. The column 531
has two gaps of size 1 with respect to the alphabet [6], but has no gap if we consider
the alphabet to be {1, 3, 5, 6}. In this case, 531 is an interval of the ordered alphabet
{1, 3, 5, 6}.

Theorem 4.3. Let H be a key with first column A. Then, the Knuth class of H is
equal to the set of all shuffles of its columns if and only if each of its column is either
an interval of A or is obtained from an interval of A by removing a single letter.

Proof: The only if part. Assume that each column of H is either an interval of A or
is obtained from an interval of A by removing a single letter, and let w ≡ H. We
may assume, without loss of generality, that w is obtained by performing a single
elementary Knuth transformation xzy ≡ zxy, or yzx ≡ yxz, with x < y < z, on a
shuffle of two columns of H, say u and v, such that zx is a factor of v and y is a
letter of u. Since {v} ⊆ {u}, we must have u = u1u2zyxu3u4, and v = u2zxu3, for
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some columns ui, i = 1, 2, 3, 4. Since, by Lemma 4.2, the set Sh(u, v) is closed under
Knuth transformations, we find that w is still a shuffle of the columns of H.

The if part. Suppose that the key H = Av2 · · · vk is such that the column vi has (i)
a gap of size at least two or (ii) two or more gaps, both with respect to the ambient
alphabet A, for some 2 ≤ i ≤ k. Without loss of generality, we may assume that in
these cases, vi has one of the following forms:

(i) vi = u2dau3, where u2 = s(s − 1) · · · d + 1, u3 = (a − 1) · · · (r + 1)r, with
s, r, d, a ∈ [t] such that d− a = 3;

(ii) vi = u2fdu3cau4, where u2 = s(s− 1) · · · (f + 1), u3 = (d− 1) · · · (c + 1), and
u4 = (a− 1) · · · (r + 1)r, with f − d, c− a = 2.

Let w1 = v2 · · · vi−1vi+1 · · · vk. In case (i), write A = u1u2dcbau3u4 and consider
the word

H ≡ w1u2 u1 u2 d c (d a b) a u3 u4 u3, (5)

where the underlined letters define column vi and the remaining define column A.
Applying the transformation dab ≡ adb on (5), we get

(5) ≡ w1u2 u1 u2 d c (a d b) a u3 u4 u3. (6)

Clearly, the right-hand side of (6) is in the plactic class of H, but is not a shuffle of
its columns.

In case (ii), write A = u1u2fedu3cbau4u5, and consider the following word

H ≡ w1u1 u2 f e d u3 c u2 f d u3(c a b) u4 a u4 u5, (7)

where the underlined letters define column vi. Applying the transformation cab ≡ acb
on (7), we get

(7) ≡ w1u1 u2 f e d u3 c u2 f d u3(a c b) u4 a u4 u5. (8)

As in case (i), it is clear that the right-hand side of (8) is in the plactic classe of H,
but is not a shuffle of its columns. �

Corollary 4.4. [6] If σ = id or the reverse permutation t t − 1 · · · 2 1, a word over
the alphabet [t] is a σ-Yamanouchi word if and only if it is a shuffle of the columns
of Hσ.

Corollary 4.5. (a) If H is a key over a three-letter alphabet, then the Knuth class
of H equals the set of shuffles of its columns.

(b) [6] If σ ∈ St, t = 2, 3, a word over the alphabet [t] is a σ-Yamanouchi word if
and only if it is a shuffle of the columns of Hσ.

As keys are characterized by their evaluation, we may consider the planar repre-
sentation of the evaluation to check whether the condition of the previous theorem
is satisfied. Let H be a key of evaluation (m1, . . . ,mt) and consider the planar rep-
resentation obtained by drawing mi bullets in row i, for i = 1, . . . , t. After deleting
empty rows we are in the ambient alphabet of the first column of H and the condi-
tion stated in Theorem 4.3 says that the plactic class of H is the set of all shuffles
of its columns if and only if each column has, at most, a single gap of size 1 with
respect to the ambient alphabet given by the first column. For instance, the planar
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representation of the evaluation (4, 0, 1, 2, 6, 3, 5) of the key H(σ, (0, 1, . . . , 1)), with
σ = 5716432 ∈ S6, is

7 • • • • •
6 • • •
5 • • • • • •
4 • •
3 •
1 • • • •

2 3 4 5 6 7

.

The conjugate shape of H(σ, (0, 1, . . . , 1)) is (70, 6, 5, 4, 3, 2, 1), the number of bullets
in each column of the planar representation of the evaluation. The third column of
this representation has a gap of size 2, and the fourth column has two gaps with
respect to the first column. Thus, the plactic class of Hσ,(0,1,...,1) is not the set of all
shuffles of its columns. On the other hand, the plactic class of Hσ,(0,1,1,0,0,1,1) is the
shuffle of its columns, since the columns of the planar representation of the evaluation
(2, 0, 1, 2, 4, 2, 3),

7 • • •
6 • •
5 • • • •
4 • •
3 •
1 • •

2 3 6 7

has, at most, one gap of size 1. Each column is either an interval of A = {1, 3, 4, 5, 6, 7}
or is obtained from an interval of A by removing one letter.

As we have seen in the example above, in St, t > 3, there are permutations
for which the associated keys do not satisfy the conditions of Theorem 4.3. For
s3s2 = 1423 ∈ S4 we have Hs3s2 = (4321)l4(421)l3(41)l21l1 and column 41 has a
gap of length 2 with respect to the column 4321. The word w = 431421 is a s3s2-
Yamanouchi word and is not a shuffle of the columns of the tableau Hs3s2 = 4321 41.
It is easy to check that in S4, the only permutations for which there are associated
keys that fail to satisfy the conditions of Theorem 4.3 are 1423, 1432, 4123 and 4132.

Corollary 4.6. (a) Let H be a key with first column A = {a, b, c, d}. Then the plactic
class of H is the shuffle of its columns if and only if H does not contain the column
d a.

(b) Let σ ∈ S4, and let (l4, l3, l2, l1) be a sequence of nonnegative integers with
l4, l2 > 0. The plactic class of Hσ(l4,l3,l2,l1) is Sh((r4)

l4 , (rσ,3)
l3 , (rσ,2)

l2 , (rσ,1)
l1) if and

only if σ is in S4 \ {1423, 1432, 4123, 4132}.

In the Appendix, the permutations of S5 and S6, such that the set Sh((rt)
lt ,

(rσ,t−1)
lt−1 , . . . , (rσ,2)

l2 , (rσ,1)
l1), with li > 0, i = 1, . . . , t, t = 5, 6, is not the whole

plactic class of Hσ, are listed.
For t > 3 the columns of Hσ are not enough to characterize the σ-Yamanouchi

words in terms of shuffling them together. In the case of S4, the next theorem
shows that it is necessary and sufficient to include the word 431421 in the set of
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distinct columns of Hσ(l4,...,l1), l4, l2 > 0, to characterize by shuffle operations the
σ-Yamanouchi words over the alphabet [4], for any σ ∈ {1423, 1432, 4123, 4132}.

Theorem 4.7. Let σ ∈ S4, and let (l4, . . . , l1) be a sequence of nonnegative integers
with l4 > 0. Then, the plactic class of Hσ(l4,...,l1) is

Sh((r4)
l4 , (rσ,3)

l3 , (rσ,2)
l2 , (rσ,1)

l1), if l2 = 0 or σ ∈ S4 \{1423, 1432, 4123, 4132}, (9)

and, otherwise,

Sh((r4)
l4 , (rσ,3)

l3 , (rσ,2)
l2 , (rσ,1)

l1) ∪ Sh((431421)n5 , (r4)
n4 , (rσ,3)

n3 , (rσ,2)
n2 , (rσ,1)

n1),
(10)

where
∑4

j=1 lj|rσ,j|i = n5|431421|i +
∑4

j=1 nj|rσ,j|i, for i = 1, 2, 3, 4.

Proof: Assume l2 > 0, otherwise the conditions of Theorem 4.3 hold. When σ ∈
S4\{1423, 1432, 4123, 4132}, we have already proved in Corollary 4.6 that the plactic
class of Hσ(l4,...,l1) is the set

Sh(Hσ(l4,...,l1)) = Sh((r4)
l4 , (rσ,3)

l3 , (rσ,2)
l2 , (rσ,1)

l1).

Assume now that σ ∈ {1423, 1432, 4123, 4132}, noticing that rσ,2 = 41. As dis-
cussed before, the only case to consider, when analyzing the effect of a single Knuth
transformation on a shuffle of the columns of Hσ(lt,...,l1), is when the Knuth transfor-
mation zxy ≡ xzy or yzx ≡ yxz involves three distinct letters, z > y > x, with zx a
factor of a column, and y a letter of another column of Hσ. Thus, using Lemma 4.2,
we find that any word obtained by application of a single Knuth transformation on a
shuffle of two columns of Hσ(l4,...,l1), other than sh(r4, rσ,2) = 434121, is still a shuffle
of the columns of Hσ(l4,...,l1).

In the case of the shuffle sh(r4, rσ,2) = 434121, the application of the transformation
341 ≡ 314 or 412 ≡ 142 gives the word 431421, which is not a shuffle of the columns
of Hσ(l4,...,l1).

Now, an exhaustive analysis of the effect of a single Knuth transformation on all
possible shuffles between any two words from the set {431421, r4, rσ,3, rσ,2, rσ,1}, shows
that the resulting word is still a shuffle of two, or more, words of this set.

Thus, if w ≡ Hσ(l4,...,l1), w is obtained by a finite number of Knuth transformations
on Hσ(l4,...,l1). Hence, it must be a shuffle of the words 431421, r4, rσ,3, rσ,2, and rσ,1,
with appropriate multiplicities. �

5. Matrix realizations of pairs of tableaux

Let Rp be a local principal ideal domain with maximal ideal (p). The matrices
under consideration have entries in Rp. Let Un be the group of n × n unimodular
matrices over Rp. Given n×n matrices A and B, we say that B is left equivalent to A
(written B ∼L A) if B = UA for some unimodular matrix U ; B is right equivalent to
A (written B ∼R A) if B = AV for some unimodular matrix V ; and B is equivalent
to A (written B ∼ A) if B = UAV for some unimodular matrices U, V . The relations
∼L, ∼R and ∼ are equivalence relations on the set of all n× n matrices over Rp.
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Let A be an n×n non-singular matrix. By the Smith normal form theorem [7, 26],
there exist nonnegative integers λ1, ..., λn with λ1 ≥ ... ≥ λn such that A is equivalent
to the diagonal matrix

diag(pλ1 , ..., pλn).

The sequence λ = (λ1, ..., λn) of exponents of the p-powers in the Smith normal form
of A is a partition of length ≤ n uniquely determined by the matrix A. The partition
λ is a full invariant of the equivalence class containing A and we call λ the invariant
partition of A. More generally, if we are given a sequence (f1, ..., fn) of nonnegative
integers, the following notation for p-powered diagonal matrices will be used:

diagp(f1, ..., fn) := diag(pf1 , ..., pfn).

Given J ⊆ [n], we write χJ = (f1, ..., fn) with fi = 1 if i ∈ J and 0 otherwise, thus,
we put DJ := diagp(χ

J). Given a partition λ of length ≤ n, we write ∆λ = diagp(λ).
If λ = (0), ∆(0) = In the identity matrix of order n.

Let σ ∈ St, t ≥ 1, and let m be a partition of length t such that σm = (m1, . . . ,mt).
In what follows, T will denote a skew-tableau of evaluation (m1, ...,mt) and shape
λ/µ where the length of λ is ≤ n. Next we define the matrix realization of a pair
of Young tableaux (T ,F), with F a tableau of evaluation (m1, ...,mt) and shape ν,
following [5, 6, 4]. (Note that in this paper the tableaux are strictly increasing up
along columns.)

Definition 5.1. Let T = (λ0, λ1, ..., λt) and F = (0, µ1, ..., µt) be tableaux, both
of evaluation (m1, ..., mt). We say that a sequence of n × n non-singular matrices
A0, B1, ..., Bt is a matrix realization of the pair of tableaux (T ,F) (or realizes (T ,F))
if:

I. For each r ∈ {1, ..., t}, the matrix Br has invariant partition (1mr , 0n−mr).
II. For each r ∈ {0, 1, ..., t}, the matrix Ar := A0B1...Br has invariant partition

the conjugate of λr.
III. For each r ∈ {1, ..., t}, the matrix B1...Br has invariant partition the conjugate

of µr.

(T ,F) is called an admissible pair of tableaux.

Conditions (I) and (II) alone are trivially feasible. But, in conjunction with condi-
tion (III), they impose a non-trivial restriction on the concept of matrix realization.
Here, we restrict ourselves to pairs (T ,Hσ(lt,...,l1)). The next theorem, proved in
[6, 4], shows that, without loss of generality, we may consider matrix realizations of
(T ,Hσ(lt,...,l1)) with a particular simple form.

Theorem 5.1. The following conditions are equivalent:

(a) (T ,Hσ(lt,...,l1)) is an admissible pair.
(b) There exists U ∈ Un such that ∆λU,D[m1], ..., D[mt] realizes (T ,Hσ(lt,...,l1)).

The characterization of σ-Yamanouchi words as shuffles of the columnsHσ has been
used to determine necessary and sufficient conditions for the admissibility of a pair of
Young tableaux (T ,Hσ(lt,...,l1)), when σ is the identity or the reverse permutation in
St, t ≥ 1 [4, 5], or any permutation in S3 [6]. In these cases, the pair (T ,Hσ(lt,...,l1))
is admissible only if the word of T is in the Knuth class of Hσ(lt,...,l1)). The next
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theorem extends the necessary condition of this result to any σ ∈ St, t ≥ 1, and
verifies the recursive criterion for σ-Yamanouchi words given in Theorem 3.12. The
proof of this theorem needs the following proposition, proved in [6].

Proposition 5.2. [6] Let (m1, m2) be a partition. Let w and w′ be the words of
the tableaux realized by the sequences ∆λU,D[m1], D[m2] and ∆λU,D[m2], D[m1], respec-
tively. Then, there exists an operation θ1 such that w′ = θ1(w).

The following example shows that the operation θ1 in the previous proposition is
not necessarily θ∗1.

Example 5.1. Let U = P4321T14(p), where P4321 is the permutation matrix associated
with 4321 ∈ S4 and T14(p) is the elementary matrix obtained from the identity
by placing the prime p in position (1, 4). It is a simple task to check that, with
λ = (2, 1) and U = P4321T14(p), the sequences ∆λU,D[3], D[2] and ∆λU,D[2], D[3]

are matrix realizations for the pairs (T ,H(id, (2, 1))) and (T ′,H(s1, (2, 1)), where

T =
2
• 1 2
• • 1 1

and T ′ =
2
• 2 2
• • 1 1

. The words w(T ) = 21211 and w(T ′) = 22211

satisfy θ1(w(T )) = w(T ′), where θ1 is the operation based on a parentheses matching
defined as (21(21)1).

Thus, the matrix setting generates parentheses matching operations, different from
the standard ones defined by Lascoux and Schützenberger. However, if we choose
U ′ = P3241T24(p), the sequences ∆λU

′, D[3], D[2] and ∆λU
′, D[2], D[3] are matrix real-

izations for the pairs (T ,H(id, (2, 1))) and (T ′′,H(s1, (2, 1)), where T ′′ =
2
• 1 2
• • 1 2

.

In this case, we have θ∗1(w(T )) = w(T ′′) = 21212 6= θ1(T ) = 22211.

Theorem 5.3. Let σ ∈ St, and let (lt, · · · , l1) be a sequence of nonnegative integers.
The pair (T ,Hσ(lt,...,l1)) is admissible only if w(T ) ≡ Hσ(lt,...,l1).

Proof: By induction on t ≥ 1. When t = 1 there is nothing to prove, and the
case t = 2 has been proved in [5, 4]. Assume the claim for t − 1 ≥ 2. Thanks to
Theorem 5.1 we may assume the existence of an unimodular matrix U ∈ Un such
that ∆λ, UD[m1], . . . , D[mt] realizes (T ,Hσ(lt,...,l1)). Put w := w(T ). By the inductive
step, the word w|[t−1] of the tableau realized by the sequence

∆λ, UD[m1], . . . , D[mt−1]

satisfies P (w|[t−1]) = Hσ |[t−1].
We consider the case mt−1 ≥ mt, the other one is similar. There exists an unimod-

ular matrix U ′ ∈ Un such that

∆λUD[m1] · · ·D[mt−1]D[mt] ∼L ∆′U ′D[mt−1]D[mt],

where ∆′ = diagp(λ + χJ1 + · · · + χJt−2). Since mt−1 ≥ mt, by the case t = 2, the
sequence ∆′U ′, D[mt−1], D[mt] realizes a tableau whose word w|{t−1,t} is a Yamanouchi
word. Finally, consider the sequence

∆λU,D[m1], · · · , D[mt−2], D[mt],
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and let w′ be the word of the corresponding tableau. According to the previous
proposition, we must have w′ = (θt−1(w))|[t−1], for some operation θt−1, and by
the inductive step, P (w′) = Hst−1σ |[t−1]

. By Theorem 3.12, we find that w is a

σ-Yamanouchi word. �

6. Appendix

Below we list the permutations σ in S5 and S6 for which the set Sh((rt)
lt , (rσ,t−1)

lt−1 ,
. . . , (rσ,2)

l2 , (rσ,1)
l1), with li > 0, i = 1, . . . , t, t = 5, 6, is not the whole plactic class

of Hσ.

S5

w4w′, w ∈ S{2,5}, w′ ∈ S{1,3};
w3w′, w ∈ S{2,5}, w′ ∈ S{1,4};
ww′, w ∈ S{1,4,5}, w′ ∈ S{2,3};
ww′, w ∈ S{1,3,5}, w′ ∈ S{2,4};
w3w′, w ∈ S{1,4}, w′ ∈ S{2,5};
w2w′, w ∈ S{1,4}, w′ ∈ S{3,5};
ww′, w ∈ S{1,2,5}, w′ ∈ S{3,4}.
S6

ww′w′′, w ∈ S{3,6}, w′ ∈ S{4,5}, w′′ ∈ S{1,2};
ww′w′′, w ∈ S{2,5}, w′ ∈ S{3,4}, w′′ ∈ S{1,6};
ww′w′′, w ∈ S{1,4}, w′ ∈ S{2,3}, w′′ ∈ S{5,6};
w4w′, w ∈ S{2,5,6}, w′ ∈ S{1,3};
w5w′, w ∈ S{2,4,6}, w′ ∈ S{1,3};
w46w′, w ∈ S{2,5}, w′ ∈ S{1,3};
w52w′, w ∈ S{3,6}, w′ ∈ S{1,4};
w3w′, w ∈ S{2,5,6}, w′ ∈ S{1,4};
w5w′, w ∈ S{2,3,6}, w′ ∈ S{1,4};
w36w′, w ∈ S{2,5}, w′ ∈ S{1,4};
w42w′, w ∈ S{3,6}, w′ ∈ S{1,5};
w3w′, w ∈ S{2,4,6}, w′ ∈ S{1,5};
w4w′, w ∈ S{2,3,6}, w′ ∈ S{1,5};
ww′, w ∈ S{1,4,5,6}, w′ ∈ S{2,3};
ww′, w ∈ S{1,3,5,6}, w′ ∈ S{2,4};
ww′, w ∈ S{1,3,4,6}, w′ ∈ S{2,5};
w3w′, w ∈ S{1,4,5}, w′ ∈ S{2,6};
w4w′, w ∈ S{1,3,5}, w′ ∈ S{2,6};
w35w′, w ∈ S{1,4}, w′ ∈ S{2,6};
ww′, w ∈ S{1,2,5,6}, w′ ∈ S{3,4};
ww′, w ∈ S{1,2,4,6}, w′ ∈ S{3,5};
w41w′, w ∈ S{2,5}, w′ ∈ S{3,6};
w2w′, w ∈ S{1,4,5}, w′ ∈ S{3,6};
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w4w′, w ∈ S{1,2,5}, w′ ∈ S{3,6};
w25w′, w ∈ S{1,4}, w′ ∈ S{3,6};
ww′, w ∈ S{1,2,3,6}, w′ ∈ S{4,5};
w31w′, w ∈ S{2,5}, w′ ∈ S{4,6};
w2w′, w ∈ S{1,3,5}, w′ ∈ S{4,6};
w3w′, w ∈ S{1,2,5}, w′ ∈ S{4,6}.

There are a total of 52 permutations in S5 and 488 permutations in S6 that fail to
satisfy the conditions of Theorem 4.3.
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[17].
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