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ABSTRACT. A key H is a semi-standard tableau of partition shape whose evaluation
is a permutation of the shape. We give a necessary and sufficient condition that
the Knuth class of a key equals the set of shuffles of its columns. In particular,
on a three-letter alphabet the Knuth class of a key equals the set of shuffles of its
columns, and on a four-letter alphabet, the Knuth class of a key is either the set
of shuffles of its columns or the set of shuffles of its distinct columns with a single
word taking appropriate multiplicities. For some instances of H this result has been
already applied to exhibit a matrix realization, over a local principal ideal domain,
of a pair of tableaux (7,H), where 7 is a skew-tableau whose word is in the Knuth
class of H. Generalized Lascoux—Schiitzenberger operators, based on nonstandard
matching of parentheses, arise in the matrix realization, over local principal ideal
domain, of a pair (7,H) on a two-letter alphabet, and they are used to show that,
over a t-letter alphabet, the pair (7,H) has a matrix realization only if the word
of 7 is in the Knuth class of H.

1. INTRODUCTION

Given an n by n non-singular matrix A, with entries in a local principal ideal
domain with prime p, by Gauflian elimination, one can reduce A to a diagonal matrix
with diagonal entries p*',...,p*, for unique nonnegative integers \; > ... > \,,
called the Smith normal form of A. The sequence p™, ..., p* defines the invariant
factors of A, and (A1, ..., A,) the invariant partition of A. It is known that «, 3, v are
invariant partitions of non-singular matrices A, B, and C' such that AB = C' if and
only if there exists a Littlewood—Richardson tableau 7 of type («, 3,7), that is, a
skew-tableau of shape 7/a whose word is in the Knuth class of the key H of evaluation
# (Yamanouchi tableau ). This matrix problem is equivalent to the existence of p-
modules A, B, and C with invariant partitions «a, (3, v such that B C C and C/B = A
[18]. (Interestingly, the eigenvalues of a sum of Hermitian matrices A + B = C
are characterized by the same condition [10, 27].) This theory was developed, with
different approaches, by several authors, such as P. Hall, J. A. Green, T. Klein,
[. Gohberg, M. A. Kaashoek, R. C. Thompson [14, 15, 18, 13, 24, 30, 5, 29]. (For
an overview see [10, 11, 12].) One can solve this problem by introducing the notion
of a matrix realization of a pair (7,H) where 7 is a skew-tableau with the same
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evaluation as the key H [5, 2, 1] [see Section 5, Definition 5.1] which is equivalent, in
the module setting, to the existence of a chain of p-submodules (0) = B, C --- C B,
C By = B C C such that the sequence of invariant partitions of C/By, 0 < k < ¢,
defines a Littlewood—Richardson tableau of shape v/a and evaluation given by the
weight of the invariant partitions of By_; /By, 1 < k < ¢ [18]. Within this notion it
is natural to ask under which conditions does there exist a matrix realization of a
pair (7,H,), where H, is a key associated with o € &; [8, 9, 22, 23]. In the case
of the reverse permutation in S; [4], or any permutation in S3 [6], or any adjacent
transposition [3, 25|, it has been shown that (7,H,) has a matrix realization if
and only if the word of 7 is in the plactic class of H,. For these permutations, the
elements of the plactic class of H,, are shuffles of the columns of H, and this property
has been used to exhibit a matrix realization (7, ’H,). Here, in Theorem 5.3, we show
that, for any o € S;, t > 1, (7, H,) has a matrix realization only if the word of 7 is
in the plactic class of H,,.

Due to the embedding of the symmetric group in the set of tableaux, originally
defined by Ehresmann in [8], the symmetric group acts on the set of keys H,, 0 € S,
in the obvious way. This action coincides with the one defined by the operations on
the free algebra, described by A. Lascoux and M. P. Schiitzenberger in the plactic
monoid [21, 20], based on the standard matching of parentheses, a particular paren-
theses matching on words in a two-letter alphabet. As these operations preserve the
-symbol, they are bijections between the plactic classes H, and Hj,,, with s; the
adjacent transposition of the integers 7, i+1. Matrix realizations of pairs (7', H), over
a two-letter alphabet, give rise to operations based on other parentheses matching
than the standard one, as shown in Example 5.1 (see also [6]). Corollary 3.13 charac-
terizes the operations, based on more general parentheses matching, which transform
a word in the plactic class of H, into one in the plactic class of Hs,,. The proof of
Theorem 5.3 is based on these operations and their characterization.

Two columns commute (in the plactic sense) if and only if they are comparable
for the inclusion order. In fact, the words of the plactic class of a key over a three-
letter alphabet are shuffles of their columns [6]. In the case of a four-letter alphabet
this property does not remain true. Nevertheless, by Greene’s theorem [17], shuffling
together the columns of a key always leads to a word in the plactic class of this key. We
characterize the keys for which the plactic class may be described by shuffling together
their columns. The keys associated with the identity and the reverse permutations
in §;, t > 1, are simple examples of those keys. Finally, for o € S, we show that we
may describe the plactic class of any associated key, in terms of shuffling, by adding,
in those cases where the columns of the key are not enough, one single word 434121.

The paper is organized as follows. In the next section we collect some notation and
basic notions necessary in the sequel. The relationship between shuffling and Knuth
operations on words is discussed. The following question is raised: if the columns

Uy, ..., up are pairwise comparable for the inclusion order, under which conditions
is the set of all shuffles of uy,...,ux, denoted by Sh(uy,...,uy), the plactic class of
uy ... u,? Indeed, the containment of Sh(uy,...,ux) in the plactic class of uj ... uy

follows from Greene’s theorem [17]. It remains to analyze whether the reverse inclu-
sion holds.
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In Section 3, the key tableaux, that is, the tableaux with pairwise comparable
columns for the inclusion order, are considered. They can be seen as the tableaux
whose evaluation is a permutation of the shape or as the image of the embedding
of the symmetric group in the set of tableaux, originally defined by Ehresmann [8].
o-Yamanouchi words are introduced as words congruent to a key of the permutation
0. These words are directly related with the action of the symmetric group, defined
by the operations on all words described by A. Lascoux and M. P. Schiitzenberger in
the plactic monoid [21, 20], based on the standard parentheses matching. Operations
on words based on more general parentheses matchings are considered. A criterion
characterizing those which transform a o-Yamanouchi word into a s;o-Yamanouchi
word is given.

In Section 4, the answer to the question raised in Section 2 is given by imposing
conditions on the key wu;...u; such that the plactic class of u;...u; is contained
in Sh(uy,...,ux). In the case of S, a full description of the plactic classes of the
associated keys, in terms of shuffling, is given. In Section 5, a matrix interpreta-
tion and application of the generalized Lascoux—Schiitzenberger operations, based
on nonstandard matching of parentheses, is considered. Finally, in the Appendix,
the permutations in S5 and Sy giving a positive answer to the question raised in
Section 2 are listed.

2. WORDS, SHUFFLES AND KNUTH CONGRUENCE

2.1. Words and tableaux. Let N be the set of positive integers with the usual
order “<”. Given i,j € N, where i < j, [¢, j] is an interval in N with the usual order.
If t € N, [t] denotes the set {1,...,t}.

Let A= {a,b,...,f}, a<b<--- < f, be a finite subset of N. We denote by A*
the free monoid in the alphabet A; that is, A* is the collection of all finite words over
the alphabet A, with the concatenation operation. The neutral element is the empty
word, denoted by e.

Given a word w = x1---xp over the alphabet A, we call k the length of w and
denote it by |w|. Furthermore, we denote by |w|, the multiplicity of the letter x € A
in w. The sequence (|w,, ..., |w|s) is called the evaluation of w in the alphabet A.
We have |w| = |w|, + - - + |w|f, and the length of € is zero. Given B a subalphabet
of A, wp denotes the word obtained by erasing the letters not in B.

If the letters in w are in strictly decreasing order, that is, x; > x;,; for all i, w
is called a column in A*. A column shall be identified with the set consisting of
its entries. Given two finite subsets P = {p1,po,...}, @ = {q1,q2,...} of N with
|P| < |Q|, we write P < Q if p; < ¢; fori=1,2,...,|P|.

A partition A = (A1, ..., A, ...) is a weakly decreasing (finite or infinite) sequence
of nonnegative integers, with only a finite number of nonzero entries. The number of
nonzero entries of A is called the length of A. A partition A is identified with its Young
diagram, a left-justified arrangement of boxes, or dots, with A; boxes (dots) in the i-th
row, where rows are arranged from bottom to top. (We adopt the French notation.)
The conjugate of partition A is the partition X', the transpose of the Young diagram
A. It is convenient not to distinguish between two partitions which only differ by a
string of zeros at the end. Sometimes we write A = (17*,2P2 . ..) to indicate that ¢
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appears p; times as a part of A\. For instance, the partition (3,2,2,1) = (3,2%1,0)
corresponds to the Young diagram

)

and its conjugate partition is (4,3, 1). Clearly, the lengths of the columns in weakly
decreasing order define the transpose Young diagram.

A Young tableau 7 of shape A is a filling of the Young diagram of A with positive
integers, weakly increasing across each row and strictly increasing up each column
9, 20]. An example of a Young tableau of shape (3,2,2,1) is given by

5
405
2 2
11 2

T

The word of a Young tableau is the word obtained by reading its columns from top
to bottom, starting on the left and moving to the right. A Young tableau shall
be identified with its word. In the example above, we have 7 = 54215212 (the
empty spaces only indicate the end of a column and the starting of a new one). The
evaluation of a Young tableau 7 is the evaluation of its word. For instance, the
evaluation of the Young tableau above is (2,3, 1, 2).

A skew-diagram is the diagram obtained by removing a smaller Young diagram
from a larger one that contains it. If A and p are partitions with p C A, that is,
w; < A; for all i, we define a skew-tableau of shape \/u as a filling of the skew-
diagram A/p, that is, weakly increasing across each row and strictly increasing up
each column [9]. A Young tableau of shape A may be seen as a skew-tableau of shape
A/(0), where (0) denotes the empty partition. An example of a skew-tableau of shape
(4,4,2,1)/(3,1) is given by

o — IO

3 3
° o 2
The word w(7') of a skew-tableau 7 is the word obtained by reading its columns from
top to bottom, starting on the left and moving to the right. In the example above
we have w(7) = 42213 32. As for Young tableaux, the evaluation of a skew-tableau
T is the evaluation of its word. For instance, the evaluation of the skew-tableau 7°
above is (1,3,2,1).

A skew-tableau 7 of shape A\/p and evaluation (mgq,...,m;) may also be rep-
resented by a nested sequence of partitions [24] 7 = (A%, A} ... ), where p =
AN C AL C ... C A= )\ such that for k = 1,...,¢, all the boxes of the skew di-
agram A*/\f7L are filled with k, with my = |[M\*| — [\*7!|. In the example above,
T = (AN N2 0301, where A0 = p, A = (3,2), A2 = (4,2,2), \* = (4,4,2) and
A=\
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2.2. Shuffles and Knuth congruence. A word w contains u as a subword if w, as
a sequence of letters, contains u as a subsequence. A word w is a shuffle of the words
u and v if v and v can be embedded as subwords of w that occupy complementary
sets of positions within w. A shuffle w of the words uy,us, . .., 1, is the empty word e
for ¢ = 0, the word uy for ¢ = 1, and is, otherwise, a shuffle of u; with some shuffle of
the words us, . .., u,. Let Sh(uq,ug,. .., u,) denote the set of shuffles of uy, us, . .., u,.
By abuse of notation we write w = sh(uy, ua, ..., u,) to mean that w is some shuffle
of uy, ug, ..., u,.

For example, it is simple to check that 4423142121 is a shuffle of 4321,421 and
421. When there is no danger of confusion, to avoid cumbersome notation, we shall
write sh((up),. .., (uq)') to designate a shuffle of I; words u;, fori = 1,...,q. Thus,
we have 4423142121 € Sh(4321, (421)?).

Knuth’s congruence = [19] on words over the alphabet A is the congruence gener-
ated by the so-called elementary transformations, where x, y, z are letters and u, v
are words in A:

UTZTV = UZTTV, UZZTV = uzxzv, T < 2, (1)
uxrzyv = uzryv, T <y <z, (2)
uyzrv = uyrzv, <y < z. (3)

The relations (1), (2), (3), also called plactic relations, are the algebraic version of
the plactic congruence [9, 19, 20]. C. Schensted [9, 20, 28] has described an algorithm,
known as Schensted’s insertion algorithm, which associates to each word w a tableau
P(w). Two words w, w" are plactic equivalent if and only if P(w) = P(w’) [9, 19, 20].
The set of all tableaux is a section of the plactic congruence. This means that every
word can be obtained by a finite sequence of elementary Knuth transformations from
a tableau.

Let uy,...,u; in A* be columns in decreasing order of length. If 7 = uy ... uy is
a tableau, then 7 is the unique tableau of Sh(uy,...,u;) only if the columns of the
tableau 7 are pairwise comparable for the inclusion order; that is {ux} C -+ C {uy}.
For instance, Sh(41,3) = {341,413,431} has two tableaux 413 and 431.

An elementary Knuth transformation (1), (2), or (3) applied to a shuffle of columns,
say uq, ..., U, involves at least two of these columns. If an elementary Knuth trans-
formation (2) or (3) involves three distinct letters o < y < z of sh(uy,...,ux), each
one belonging to a different column u;, then the output word is still a shuffle of
Uty .oy Uk

Proposition 2.1. Let uq,...,ug, k > 3, be columns in A*, and x,y,z, u and v as
in (2), (3) such that each letter x, y and z appears in a distinct column. Then

uzzyv € Sh(uy, ..., ug) < uzaeyv € Sh(uy, ..., ug);
uyzav € Sh(uy, ..., u;) < uyrzv € Sh(uy, ..., ug).

For instance, in the alphabet [5], consider the word 524412211 € Sh(5421,421,21),
where the underlined letters define the word 421, the overlined letters define the word
21, and the remaining letters define the word 5421. The application of the elementary
Knuth transformation 412 =142 to0 524412211 gives the word w = 524142211,
which is still a shuffle of 5421, 421 and 21.
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If the Knuth transformation involves only two distinct letters of sh(u; ..., u,), it
is also clear that the output word is still a shuffle of u; ..., u,.
Proposition 2.2. Let uy...,u,, k > 2, be columns in A*, and x, z, uw and v as in
(1). Then
uzzzv € Sh(uy, ..., ug) < urzev € Sh(uq, ..., ug);
uzzav € Sh(uy, ..., u) < uzzzv € Sh(ug,. .., ug).

Corollary 2.3. Let uy ..., ux, k > 2, be columns in a two-letter alphabet A = {a, b},
and w € Sh(uy, ..., ux) of evaluation (p,q). Then
(a) P(w) € Sh(uy, ..., u).
(b) Sh(uq,...,u) is either
(i) the plactic class of P(w) = (ba)?1? or P(w) = (ba)Pb?, if the columns u; are
pairwise comparable for the inclusion order, fori=1,... k; or
(i) the union of the plactic classes of P(w) = (ba)"a®b’, r+s=p, r+v = q, and
P(w) = (ba)P*4, otherwise.

Let z <y < z € A. The columns zy and y z, in the elementary Knuth trans-
formations x 27y = Zx 7 (2), and y z 2 = y z z (3), respectively, are not broken
by these transformations and, therefore, the shuffle of Z7 and z, and y z and z
is preserved. The only column that is broken by these Knuth transformations is
zx which is transformed into zz. Consider again the columns 41 and 3. We have
Sh(41,3) = {341,413,431}, but 341 = 314 ¢ Sh(41,3) and 413 = 143 ¢ Sh(3,41).
Therefore, considering, for example, the tableau 432141, the Knuth transformation
341 = 314 implies 434121 = sh(4321,41) = 431421, but 431421 can not be obtained
by a shuffle of the columns 4321 and 41.

Supposing that uq, ..., u; are columns pairwise comparable in the inclusion order,
we raise the question: Under which conditions Sh(uy, ..., u) equals the plactic class
of the tableau T = uy---uy?

We start by noticing that the containment Sh(ui,...,u;) in the Knuth class of
7T follows from Greene’s theorem [17]. Since u; 2 -+ O wug, the maximum of the
sums of the lengths of j decreasing and disjoint subwords of w € Sh(uy,...,ug) is
lug| 4+ -+ + |u ], for all j > 1. It follows from Greene’s theorem that the conjugate
shape of P(w) is (Juq|,...,|ug|), which means that P(w) = wuy---u;. But as we
have seen above, in general, we do not have equality. In Section 4 we determine the
conditions for which equality holds.

3. KEYS AND 0-YAMANOUCHI WORDS

3.1. Parentheses matching operations. Given a set I, let S; be the set of all
bijections on I, and S; := Spy the symmetric group of order ¢. The symmetric group
S, t > 1, is generated by the simple transpositions s; = (i¢+ 1), i = 1,...,t — 1,
which satisfy the Moore-Coxeter relations:

(I) S? = Zd, (II) SiSj = 5S4, if |Z — jl §é 1, and (III) SiSi+1S5; = Si+1S5iSi+1,

where id denotes the identity.
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Let w be a word over the alphabet [t] and i,7 + 1 € [t]. An operation 6; on w
[6] consists of (a) a longest matching on w11} between letters ¢ + 1 and letters
7 to their right, by putting a left parenthesis on the left of each letter ¢ + 1, and a
right parenthesis on the right of each letter 4, such that the unmatched right and
left parentheses indicate a subword of the form (i 4+ 1)"; (b) this subword will be
replaced in wyg; ;1) with i"(i 4+ 1)°. By abuse of notation, we write 6;(w) to refer to
any word which is related with w in the defined way.

Let w = 31314221412 be a word over the alphabet [4]. For example, inserting
parentheses on the right of the letters 1 and on the left of the letters 2 of the word
w2y = 1122211, we get 1)1)(2(2(21)1). We may match the two left most letters
2 with the letters 1 to their right. The unmatched letters indicate the subword
w' =112 = 122", Thus, 61 (wjf12) = 1222211, where the underlined word is the
subword w’ replaced with 1'22. Finally, 6;(w) =31324222411.

A. Lascoux and M. P. Schiitzenberger [21, 20] have introduced the following in-
volutions 6, for i = 1,...,t — 1, on all words over the alphabet [t], based on the
standard matching of parentheses on words over a two-letter alphabet, a particular
matching of parentheses. Let w be a word over the alphabet [¢t]. To compute 65 (w),
first extract from w the subword v containing the letters ¢ and 2 + 1 only. Second,
bracket every factor ¢ + 14 of v. The letters which are not bracketed constitute a
subword v; of v. Then bracket every factor ¢ + 17 of v;. There remains a subword
v9. Continue this procedure until it stops, giving a word vy of type ¢" (i + 1)°. Then,
replace it with the word ¢* (i + 1)" and, after this, recover all the removed letters of
w, including the ones different from ¢ and ¢ + 1. The operations 67, 1 < <t —1,
satisfy the Moore-Coxeter relations [21, 20] and define an action of S; over [t]*.

Let w = 31314221412 as above. To compute 0} (w), we get v = 112(21)12, v; =
11(21)2 and vy = 112 = 1?2, Thus, 0;(w) =31324221412, where the underlined
word is the subword v, replaced with 1122,

The operations 0, 1 <4 <t — 1, are compatible with the plactic equivalence and
preserve the (Q-symbol.

Proposition 3.1. [21, 20] Let w,w’ be words in [t]*, and let i € [t]. Then, w = v’
if and only if 07 (w) = 65 (w'). In particular, P(0F(w)) = 0 (P(w)).

Note that in the examples above we have 0;(w) # 6;(w). In the case of words w
congruent to a tableau whose columns are comparable in the inclusion order, we will
give a criterion such that 0;(w) = 0 (w).

3.2. Keys and o-Yamanouchi words. By definition, a key is a tableau such that
its columns are pairwise comparable in the inclusion order [23]. Equivalently, a key
is a tableau whose evaluation is a permutation of its shape. For instance, over the
alphabet [6], 65431 641 41 is a key of shape (3, 3,2, 1, 1) and evaluation (3,0, 1,3, 1, 2).

Let (It,...,l2,l1) be a sequence of nonnegative integers. Then, m = (I; + --- +
liy..., li_1 + 1, 1;) is a partition and (#*,...,2%2 1%) its conjugate. For instance,
(1,1,...,1) defines the self-conjugate partition (¢,t —1,...,1).

Let 0 € S; written as a word a; ---a; in [t|*. For k = 1,... ¢, denote by r, the
column with underlying set {ai,...,ax}. In particular, when o = 12...¢, we get
ry =k...21. Clearly, {ri} D {ros—1} 2 ... D {ro1}
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Definition 3.1. Key of a permutation [23]. To each pair consisting of a permu-
tation ¢ € §; and a sequence of nonnegative integers (I, ..., l;), Ehresmann [§]
associated a key of shape m, here denoted by H,,,. . 1), by taking the sequence
(r)', (res—1)1, ..., (ro1)" of left reordered factors of o; that is,

Ho(trytr) i= (1) (rop—1)'1 - (rea),
(o) = (t---21)0 - (21)2 (1)1,

For ¢« = 1,...,t, the letter a; appears only in the columns r,...,7r,,. Hence,
the multiplicity of a; in Hoq,,. 1) = (r) (rog—1)=t .o (ren)™ is ZZZZ Iy, for 1 =
1,...,t. We put om = (ml, ..., my), where m; = ZZZU,I(i) l,, 7=1,...,t. Hence

Hoty,. ) = = (r)" (ro4—1)"" ... (ry1)" is also the key of o with evaluation om; equiv-
alently, the unique tableau of evaluation om and shape m.

Note that Hy(,e;) = (r0,), and Hoq,, .10y = Hogen)" - - (Ho@ien)™, with e; =
(0i), 1 = 1,...,t

On the other hand, if 7 = ¢;...q2q1 is a key, with ¢ = ¢t...21 and |¢_1| >

. > @i, we get that column ¢y is such that {g.} = {¢} \ {a,...,ak1} with
{ag,...;ap1t € {1,...,t}, 1 < k <t—1. Putting 0 := a;...a; this shows that
Hoq,..y =7T. T herefore given a sequence (I, ...,[1) of positive integers,

-----

0 — Hoy, o) = (r)" (T 1) (o),

defines an embedding of S; into the set of tableaux of conjugate shape (¢, ..., 22 11).
For example, with o = 3124 € §,, we have ry = 4321, 7,3 = 321,715,020 =31, 15,1 =

4 4
3, H _ 33 and H, _ (4321)(321)'(31)2(3)0 = © 3
) o(1,1,1,1) 2 2 3 ; (1,1,2,0) 2 2 3 3
1 11 3 1111
With sy = 1324, we have ry = 4321, r,,3 = 321,75,0 =31, 5,1 = 1, and
4
— (4321)'(321) (31 (1)° = 2 3 =
H32(1’172’0) _( 3 ) (3 ) (3 ) ( ) - 2 2 3 3 - HO’(LLZO)'
1111
Let I := [t]\ {i}, with i € [t], and let o)y := a1 ...ay; € S;. If 07'(i) = p, then
letter a, = % appears only in columns r;...,r,,. Hence, when we erase letter 7 in
column 7, ,, we obtain column 7,,_1, and we have
Ho(,...n) 1 = Hoy) Ui lpHp1.nr)-

With 0 = s4 = 12354, we have 5 = 54321,75,4 = 5321,75,3 = 321, 15,2 = 21,
rs,1 = 1 and

Hy01121) = (54321)°(5321)1(321)"(21)*(1)" =

— N W Ot
— N W
— N
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and with [ = [5] \ {2},

5
(Hoso120)18 = s o121 = (5431)°(531)'(31)1(1)° =3 3 :
1 1 111

Proposition 3.2. Let 0* €< 07 ...0;_, >, and let 0 be a permutation in S, with the
same reduced decomposition. Then

(@) *(rp) =10k, 1 <k <t

(0) 0" (Htat) = Holtyetn) = (0°(re))" (0% (rea))’s=r -+ (0%(r1))"

Proof: Follows from Definition 3.1. O

When there is no danger of confusion, we will drop the ”(I;,...,l;)” in the notation
Ho,,...0), to denote a key of o.

A word w over the alphabet [¢] is said to be Yamanouchi [20] if any right factor
v of w satisfies |v]y > |v|]g > -+ > |v|s. This is equivalent to saying that w €
Sh((r), -+, (r)"), where (|v|1, [v]2, -, |v]e) = (L4 -+l oo L1 + 1, 1), Thus,
for each (li,...,ls,l1), the key H,, 1,5, is a Yamanouchi tableau. Clearly, any
shuffle of a Yamanouchi word is still a Yamanouchi word.

Proposition 3.3. [20, Lemma 5.4.7] The set of Yamanouchi words with evaluation
m forms a single plactic class, whose representative word is the tableav H,, . 1,1,)-

Thus, the set of words obtained by shuffling the columns of H, . ;,:,) and the
one obtained by applying a finite sequence of Knuth transformations on the tableau
H,,...10,0,) are the same.

The dual of a tableau 7 is defined as the tableau with same shape and reverse
evaluation, obtained by applying the Schiitzenberger involution to 7. Thus the dual
of H is Hep. On the other hand, if w = 'H then w* = H* = 'H,,, where w* denotes the
dual word of w. The characterization of Yamanouchi words given by Proposition 3.3
leads to the following definition.

Definition 3.2. Let ¢ > 1 and 0 € S;. A word w over the alphabet [¢] is said to be
o-Yamanouchi if w = H,. In particular, when o is the identity, w is a Yamanouchi
word, and when o is the reverse permutation, w is a dual Yamanouchi word.

Since the operations ¢ are compatible with the plactic equivalence, we may char-
acterize o-Yamanouchi words using the operations 6; [21, 20] as well.

Proposition 3.4. Lett > 1 and o € S;. Let w be a word over the alphabet [t]. Then,
w s a o-Yamanouchi word if and only if 07 ---0; (w) is a Yamanouchi word, where
Siy v+ Si,. 15 a reduced decomposition of o.

r

Proof: We have w = 'H, if and only if 6*(w) = 6*(H,) = H, where 6* =07 ---6; . O
As in the case of Yamanouchi words, we find that a shuffle of o-Yamanouchi words
is still a o-Yamanouchi word.

Proposition 3.5. Leto € S;. Ifw and w' are o-Yamanouchi words over the alphabet
[t], then any word in Sh(w,w") is also a o-Yamanouchi word.



10 OLGA AZENHAS AND RICARDO MAMEDE

Proof: Let u € Sh(w,w’), and assume that w = H(o, (I;,...,11)) and w' = H(o, (],
...,01)). By Greene’s theorem [17], we find that the conjugate shape of P(u) is
(thetle .. 11F0) that is, P(u) = H(o, (I, + 1, ..., 11 +11)). O

By induction, we may easily extend Proposition 3.5 to a shuffle of k£ o-Yamanouchi
words, for every k € N.

Corollary 3.6. Leti € {1,...,t — 1}, w = sh((r)), ..., (r)h) and let 6;(w) =
sh((0r(r )k, ..., (0:(r1)"). Then 0;(w) is a s;- Yamanouchi word.

Proposition 3.7. [23, 20] If B is an interval of A, then
w=w' implies wp = wp.

Corollary 3.8. Let w be a word over the alphabet A, and let A" = A\ {f}. Then,
P(’LU|A/) = P('LU)|A/

Proof: From the previous proposition, we have wjy = P(w)ja. Thus P(w) is
obtained from P(w) by removing the letters f. O
If w is a o-Yamanouchi word then the word w(; 11y = Hof,i41) and, thus, w1y
is either a Yamanouchi or dual Yamanouchi word for 1 < i < ¢—1. (Consider a shift of
the alphabet {1,2}.) Moreover, if w has evaluation (my,...,m;), then w = sh(u, t™)
with v = Hy,,..., l2.11) | [p—1] and w1, a Yamanouchi or dual Yamanouchi word.

The word 3121 = 3211 is a s;-Yamanouchi word and 434 a dual Yamanouchi
word. Nevertheless, considering the words in {w € Sh(3121,44) : w34 = 434} =
{434121 = 432141, 431421 = 432141,431241 = 4321 14,431214 = 4321 14} we find
that 431241, 431214 are not o-Yamanouchi words, for any o € {4213;2413;2143;
2134} C S,.

This leads to the following question: given I = [t]\{i}, withi € [t], andu € I* con-
gruent to the key of evaluation (my,...,m;_1,Mis1,...,my), under which conditions
can u be embedded in a word congruent to the key of evaluation (mq, ..., mg)?

The answer is given by the following proposition.

Proposition 3.9. Let w € [t|* and 0 € S;. Given i € [t], let I = [t] \ {i}, and
suppose wir = Hyr. Then, w is a o-Yamanouchi word if and only if wyg; j11y is either
a Yamanouchi or a dual Yamanouchi word, for j =i — 1,1, and Gj(w)”j] = Hsj"l[j]’
forg=di—1,...;t—1.

Proof: The conditions are clearly necessary. Suppose now that w ey 1S either a
Yamanouchi or a dual Yamanouchi word, for j = — 1,4, and 6 (w)‘m = H, 1) for
j=i—1,...,t—1.

We start with the case i = ¢, and thus, I = [t — 1|. Consider (my,...,my), the
evaluation of w, and assume without loss of generality that m;_; > m;. From the
equality P(wy,_,) = P(w)j—1) = Ho—1), We find that the letters ¢ — 1 of w are in
the first m;_; columns of P(w).

Since wigi—144 = P(w)|qt—14 is a Yamanouchi word, the m, letters ¢ of w are
displayed in the first m;_; columns of P(w). On the other hand, the tableau
P(0;_,(w)z—1)) is obtained by erasing the m,_; letters ¢ in the first m;_; columns
of the tableau P(0; ,(w)) = 67 (P(w)). So if the letters ¢ in tableau P(w) are
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not in the first m; columns, the letters ¢ — 1 are not in the first m; columns of
P(0;_(w)p—1]) = Hs,1oyy_yy- This is absurd.

Assume now that i # t. Then, wj;_1 = Hoj—1], and since w14 is either a
Yamanouchi or a dual Yamanouchi word, and 6 (w) Hsi_lgui_l], by the case
1 =t we find that

[i-1] =

wi) = Hopi)-

Next, note that w41y is either a Yamanouchi or a dual Yamanouchi word, and
that Hf(w)‘[i] = Hs,0)y- Thus, again by the case 7 = t, we must have

W|[i+1] = HU|[2'+1]'

Noticing that, since w;; = H,, the word wg; 41y is either Yamanouchi or dual
Yamanouchi, for j =i+ 1,...,t — 1, we may repeat the process described above for
J=1i+1,...,t =1, obtaining wy = Hs - O

For instance, in the alphabet [5], let I := [5] \ {3}, 0 = 51324 € S;, and consider
the key Ho(1,0,2,0,1) = 543215315315, associated with o and (1,0, 2,0, 1), and the word
wyy 1= 555415211 = o020, Define w = 553541352131 Since w5 = 3323
is dual Yamanouchi, w4 = 3433 is Yamanouchi, 03(w)y = 212121 = Hyyo ),
05(w) 3 = 13211 = Hyo 3, and 05 (w)y = 44341342131 = H,,5 (4, by the previous
theorem the word w is o-Yamanouchi, and has w); as a subword. Consider now the
word w' = 533554135211, which also has w|; as a subword. Although wl’{%} = 3332
is dual Yamanouchi, wj;;,, = 3343 is Yamanouchi, 03(w)y = 221211 = Hs,o ),
and 03(w) ;5 = 13211 = Hyy 3, w' is not a o-Yamanouchi word since 0} (w') ) =
43344134211 is not in the plactic class of HS4U|[4].

Given the word w = wywg -+ wy, € A* and P = {iy,...,4;} C [k], we define the
restriction of w to the set P by w|P := w;, ---w;,. If w,w’ € A* have lengths k
and k', respectively, and P C [k + k'] has cardinality k, we denote by shp(w,w’) the
shuffle of w and w’ satisfying shp(w,w’)|P = w [16]. For instance, with P = {1,4},
we have shp(81,321) = 83211. Clearly, different sets P and () may give the same

word shp(w,w') = shg(w,w’). In the example above, we also have shp(81,321) =
sho(81,321), with Q = {1,5}.

Corollary 3.10. Let w = shp(t",u) = H, with u € [t — 1]*. If w' = shq(t",u) with
Q < P, then w' = H,.

Proof: By induction on t. If t = 1,2, the claim is obvious. Let t > 3 and write

O 1 (W) = shp((t = 1)", wip—2)) = Har_iopy_ps

071 (W)je—1) = sha((t = 1)", wy—g)-
Clearly, we must have @ < P. Then, by induction, it follows that 6; (w')|-1 =
Hstflgl[t_l], and by the previous proposition, we find that w’' = H,. O

An operation #; may not act on the set {H, : 0 € S;}. For example, consider
H = 432121, and 05(H) = 0,(432121) = 433121 ¢ {H, : o € S;}. Although
433121 = 432131 = H,,, we may have even worse w = 314321 = H,,s, and Oy(w) =
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314221 = 321412 ¢ {H, : 0 € S;}. Nevertheless, it is possible to give a criterion on
0; such that if w = H, then 6;(w) = Hy,,.

The criterion given by the previous proposition can be generalized to the operations
0;.

Lemma 3.11. Let w € [t]* and wjp—14 a Yamanouchi or dual Yamanouchi word.
Let u=0,_1(w), z = 0;_;(w) and v = wjg_y. Then

W1 = Shp(th_l},?}) and Wp—1] = ShQ(Z|{t—1}7U), with Q < P.

Proof: 1t is enough to consider the cases w1,y = tt —1t—1 and w14y =ttt —1.
Therefore, if 6,1 # 05 ,, we have

O (tt—1t—1)=ttt—1,
0 (tt—1t—1)=tt—1¢,
and
O, (ttt—1)=tt—1t—1,
0 ((ttt—1)=t—1tt—1.
O

Theorem 3.12. Let w € [t|* and o € S;. Gwen i € [t], let I = [t]\ {i}, and suppose
that wi; = Hey- Then, w is a o-Yamanouchi word if and only if wy; 41y is either a
Yamanouchi or a dual Yamanouchi word, for j =i—1,4, and 0, (w)M = Hs-f"l[j]’ for

some operation 0;, j =i—1,...,t —1.
Proof: According to the previous lemma and corollary, if 6; (w)m = Hajop,) then
Q;f(w)lm = Hsjal[ﬂ’ for j =17—1,...,t — 1. By the previous proposition, it follows

that w = H,. O

Corollary 3.13. Let w € [t|*, t > 2, and 0 € &;. If w = H,, then 0;(w) = Hs,o
if and only if (0;w)|i1,+2y 15 either a Yamanouchi or a dual Yamanouchi word,
O;(w) ;) = Hsia‘m, and 0;(0;(w)) ;) = Hsjsiglm, for some operation 0;, j = i+1,... t—
1.
Proof: Taking 6; = 07, j =i+ 1,...,t — 1, we find that the conditions are clearly
necessary. Assume now that w4142} is either a Yamanouchi or a dual Yamanouchi
word, 8;(w)ji = He,o; and 0;(6:(w));) = Hejsiogyp for j=i+1,..., 0 =1

Since 0;(w) | = HSNW], 0iw)(i,i4+1y 1s either a Yamanouchi or a dual Yamanouchi
word, and 0;(0;(w)|;;) = wjy = Hopy, by the previous theorem we must have

0i (W) i+1) = Hsio i)

Now, since (6;w)|{i41,i+2} is either a Yamanouchi or a dual Yamanouchi word, and
there is an operation 6,1 such that 6;,1(0;(w))i+1 = H5i+15i0\[i+1]7 again by the
previous theorem, we find that

0i (W) i+2) = Hsio 142
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Finally, note that, since 6;(w)(;j+13 = wj+13, the word 0;(w)j+13 is either a
Yamanouchi or a dual Yamanouchi word, for j = ¢+2,...,t—1. Therefore, repeating
the process above for j =i+ 2,...,t — 1, we obtain 0;(w)|y = Heiopg- O

Remark 3.1. In particular, it follows from the previous theorem and the corresponding
statement for dual words, that 01(w) = Hs,, if and only if 01(w)g = Hsyo),-

Consider w = 43143213321 a o-Yamanouchi word, where o = 3124, and the keys
Hoors) = 43214321313 and Hyyopo1) = 43214321212, We have 65(w) =
42143212321 = H,,,, but fy(w) = 43142213221 is not a s,o-Yamanouchi word.
Note that although 0y(w)|(343 = 4343 is Yamanouchi, 0(w)|;g = 1221221 is not
in the plactic class of Hs,o5. The word 63(w) = 42143213221 is a sy0-Yamanouchi
word, since 05(w)(3,4y = 4433 is Yamanouchi, 0(w)g) = 2121221 = H,oy, and
03(05(w)) 3 = O5(w) g3 = 213213221 = Hyr0 )

4. 0-YAMANOUCHI WORDS AS SHUFFLES OF COLUMNS OF A KEY

It has been shown in [6] that, when ¢ < 3, a word in [t]* of evaluation m is o-
Yamanouchi if and only if it is a shuffle of the columns of Hy,, . ). For t > 4
this is no longer true in general. For example, consider the Yamanouchi tableau
432121 and 421321 = sh(4321,21). We have 6565(421321) = 05(431321) = 431421 =
sh(4321,41), but 431421 is not a shuffle of the columns of s3so-Yamanouchi tableau
4321 41. We have already seen that shuffling together the columns of H,, has the same
effect as performing Knuth transformations on the tableau H,. The reciprocal is not
true in general. In what follows, we identify the keys for which Knuth transformations
on the key tableau and shuffling together its columns lead to the same words.

Let w be a word obtained by applying an elementary Knuth transformation to
sh(uy, ...,u), k > 2, where uy,...,u; are columns pairwise comparable in the
inclusion order. From Propositions 2.1 and 2.2 and the discussion therein, we may
assume that w is obtained by applying an elementary Knuth transformation to a
shuffle of two of these columns, u and v say, where the transformation involves three
distinct letters x < y < z, with zx a factor of v and y a letter of u. Since the letter
y is in u, but not in v, and u and v are comparable in the inclusion order, we have

{v} € {u}.
Lemma 4.1. Let uq,us be columns in A*, and x, z € A such that zuiusx is a column.
Then,

(i) sh(ug,uiusx) € Sh(ugz, uyus).

(ii) sh(uq, zuiug) € Sh(zuy, ujus).
Proof: (i) Write uy = ay - --a,, and sh(ug, ujusx) = ¢y ---¢. For each j =1,...,r,
let p; := min{i : ¢; = a;}, and let p’ € [I] such that ¢, = z. Then, it is clear that

sh(ug, uyusx) = shp(ugw, ujusg),

where P :={p1,...,p: D'}

(ii) Write uy = ay - - a,, and sh(uy, zujug) = ¢ ---¢. For each j = 1,... 7, let
p; =max{i: ¢; = a;}, and let p’ € [{] such that ¢, = x. Then, we have

sh(uy, zuyus) = shp(zuy, ugus),
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where P :={p1,...,p D'} O

Lemma 4.2. Let u and v be columns in A* with u = ujuszyrusuy and v = uszxus,
where x,y, z are letters. Then, Sh(u,v) is closed under Knuth transformations, that
is, Sh(u,v) is the Knuth class of the two-column key uv.

Proof: As before, the only cases to consider are the application of the elementary
Knuth transformations zxy = zzy and yzx = yxz, respectively, to sh(u,v) =
wy z x g wy and sh(u,v) = wy §J z & we, where y is a letter of u, zx a factor of v,
wy = sh(ug, ugugz) and wy = sh(zusuy, usz).

In the case of the elementary Knuth transformation zxy = zzy, we have

sh(u,v) = w1z £ Jws = 1T 2 Jws, (4)

where w; = sh(ug, ugusz), we = sh(rusuy,uz). By Lemma 4.1 (i), we must have
wy = shp(usz, ujus), for some set P. Thus, we have for the right-hand side of (4)
that
wyxzywe = sh(ugzxus, uyusz Y rusuy) € Sh(u,v).
The case of the elementary Knuth transformation yzx = yxz is analogous to the
previous one. ]

As an illustration of the lemma above, consider, in the alphabet [6], the columns
u = 654321 and v = 542, and let sh(u,v) = 565442321, where the underlined
letters define the word v, and the remaining letters define u. Applying the Knuth
transformation 423 = 243, to sh(u,v), we get the word 565424 321, which is also
a shuffle of v and v.

Next, we identify keys for which Knuth transformations on the key tableau are
equivalent to shuffling together its columns. First, however, we need the following
definition.

Definition 4.1. Let w € A* be a column. We say that w has a gap of size ¢ > 0,
with respect to the alphabet A, if there exists a factor 7+ k j, kK > 1, of w such that
j+1,7+k—1NA =q.

For instance, the column 41 has a gap of size 2 with respect to the alphabet [5],
but has only a gap of size 1 with respect to the alphabet {1,2,4,5}. The column 531
has two gaps of size 1 with respect to the alphabet [6], but has no gap if we consider
the alphabet to be {1,3,5,6}. In this case, 531 is an interval of the ordered alphabet
{1,3,5,6}.

Theorem 4.3. Let ‘H be a key with first column A. Then, the Knuth class of H is
equal to the set of all shuffies of its columns if and only if each of its column is either
an interval of A or is obtained from an interval of A by removing a single letter.

Proof: The only if part. Assume that each column of H is either an interval of A or
is obtained from an interval of A by removing a single letter, and let w = H. We
may assume, without loss of generality, that w is obtained by performing a single
elementary Knuth transformation xzy = zxy, or yzox = yxrz, with r < y < z, on a
shuffle of two columns of H, say u and v, such that zx is a factor of v and y is a
letter of u. Since {v} C {u}, we must have u = ujuszyrusuy, and v = ugzxug, for
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some columns w;, i = 1,2, 3,4. Since, by Lemma 4.2, the set Sh(u,v) is closed under
Knuth transformations, we find that w is still a shuffle of the columns of H.

The if part. Suppose that the key H = Awy - - - vy, is such that the column v; has (i)
a gap of size at least two or (ii) two or more gaps, both with respect to the ambient
alphabet A, for some 2 < i < k. Without loss of generality, we may assume that in
these cases, v; has one of the following forms:

(i) v; = wedaus, where ug = s(s —1)---d+1, u3 = (a — 1)---(r + 1)r, with
s,r,d,a € [t] such that d — a = 3;

(i) v; = uafduscauy, where ug = s(s —1)---(f+ 1), u3=(d—1)---(c+ 1), and
ug=(a—1)---(r+1)r, with f —d,c —a = 2.

Let wy = vy v;_1041 -+ V. In case (i), write A = wjuodcbauguy and consider
the word

H = wiuyuyus de(dab)ausug us, (5)

where the underlined letters define column v; and the remaining define column A.
Applying the transformation dab = adb on (5), we get

(5) = willy uy up d ¢ (@ db) ausuy s (6)

Clearly, the right-hand side of (6) is in the plactic class of H, but is not a shuffle of
its columns.
In case (ii), write A = ujus feduscbauyus, and consider the following word

H=wuiug feduscu,y f dug(cab)u, auyus, (7)

where the underlined letters define column v;. Applying the transformation cab = acb
on (7), we get

(7) = Wi1Uq u2fedu3 cﬂ2?8ﬂ3(aéb)ﬂ4au4 Us. (8)

As in case (i), it is clear that the right-hand side of (8) is in the plactic classe of H,
but is not a shuffle of its columns. O

Corollary 4.4. [6] If o = id or the reverse permutation tt —1---21, a word over
the alphabet [t] is a o-Yamanouchi word if and only if it is a shuffle of the columns

of H,.

Corollary 4.5. (a) If H is a key over a three-letter alphabet, then the Knuth class
of H equals the set of shuffles of its columns.

(b) [6] If o0 € S, t = 2,3, a word over the alphabet [t] is a o-Yamanouchi word if
and only if it is a shuffle of the columns of H,.

As keys are characterized by their evaluation, we may consider the planar repre-
sentation of the evaluation to check whether the condition of the previous theorem
is satisfied. Let H be a key of evaluation (myq,...,m;) and consider the planar rep-
resentation obtained by drawing m; bullets in row ¢, for i = 1,...,t. After deleting
empty rows we are in the ambient alphabet of the first column of ‘H and the condi-
tion stated in Theorem 4.3 says that the plactic class of H is the set of all shuffles
of its columns if and only if each column has, at most, a single gap of size 1 with
respect to the ambient alphabet given by the first column. For instance, the planar
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representation of the evaluation (4,0, 1,2,6,3,5) of the key H(o, (0,1,...,1)), with
o = 5716432 € S, is

7 o o o o
6|le e
H|le e e o o
4|0 e
3|e
l|lo o o @

2 3 45 6 7

The conjugate shape of H(o, (0,1,...,1)) is (7°,6,5,4,3,2,1), the number of bullets
in each column of the planar representation of the evaluation. The third column of
this representation has a gap of size 2, and the fourth column has two gaps with
respect to the first column. Thus, the plactic class of Hy (0,1,....1) is not the set of all
shuffles of its columns. On the other hand, the plactic class of Hg (0,1,1,0,0,1,1) is the
shuffle of its columns, since the columns of the planar representation of the evaluation
(2,0,1,2,4,2,3),

— W ks Ot O
e o6 o o

2 367

has, at most, one gap of size 1. Each column is either an interval of A = {1, 3,4, 5,6, 7}
or is obtained from an interval of A by removing one letter.

As we have seen in the example above, in &;, t > 3, there are permutations
for which the associated keys do not satisfy the conditions of Theorem 4.3. For
s3s9 = 1423 € S, we have H,,,, = (4321)4(421)%(41)21% and column 41 has a
gap of length 2 with respect to the column 4321. The word w = 431421 is a s3So-
Yamanouchi word and is not a shuffle of the columns of the tableau Hs,,, = 432141.
It is easy to check that in Sy, the only permutations for which there are associated
keys that fail to satisfy the conditions of Theorem 4.3 are 1423, 1432, 4123 and 4132.

Corollary 4.6. (a) Let H be a key with first column A = {a,b,c,d}. Then the plactic
class of H 1s the shuffle of its columns if and only if H does not contain the column
da.

(b) Let 0 € Sy, and let (l4,13,12,11) be a sequence of nonnegative integers with
ly,ls > 0. The plactic class of Ho(iyiso.0) 8 Sh((ra)", (15.3)", (r52)2, (r51)") if and
only if o is in Sy \ {1423, 1432, 4123, 4132}.

In the Appendix, the permutations of S5 and Sg, such that the set Sh((r;)%,
(Tou—1)71, ooy (ro2), (ro1)™), with [; > 0,4 =1,...,t, t = 5,6, is not the whole
plactic class of 'H,, are listed.

For t > 3 the columns of H, are not enough to characterize the o-Yamanouchi
words in terms of shuffling them together. In the case of S, the next theorem
shows that it is necessary and sufficient to include the word 431421 in the set of
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distinct columns of H,q,,. 1), la,l2 > 0, to characterize by shuffle operations the
o-Yamanouchi words over the alphabet [4], for any o € {1423, 1432, 4123,4132}.

Theorem 4.7. Let 0 € Sy, and let (ly,...,11) be a sequence of nonnegative integers
with Iy > 0. Then, the plactic class of Hy,,...1,) 18

Sh((14)", (153)", (15.2)"2, (ro))™), ifly = 0 oro € Sy\ {1423, 1432, 4123, 4132}, (9)
and, otherwise,

Sh((ra)", (ra5)", (r52)", (ro,0)"") U Sh((431421)™ (r4)™, (ro3)"™, (ra2)™, (ran)™),
(10)
where Z?:l li|rsjli = ns|431421]; + Z?Zl nilreli, fori=1, 2, 3,4.

Proof: Assume [l > 0, otherwise the conditions of Theorem 4.3 hold. When o €
S84\ {1423, 1432,4123,4132}, we have already proved in Corollary 4.6 that the plactic
class of Hy(,,...1,) 18 the set

Sh(HO'(l4,...,l1)) - Sh((r4)l47 <r0,3)l37 (TJ,Q)l27 (To,l)ll)-

Assume now that o € {1423, 1432,4123,4132}, noticing that r,o = 41. As dis-
cussed before, the only case to consider, when analyzing the effect of a single Knuth
transformation on a shuffle of the columns of Hy(,,..1,), is when the Knuth transfor-
mation zxy = xzy or yzr = yxz involves three distinct letters, z > y > x, with zx a
factor of a column, and y a letter of another column of H,. Thus, using Lemma 4.2,
we find that any word obtained by application of a single Knuth transformation on a
shuffle of two columns of H(,,. 1), other than sh(ry,752) = 434121, is still a shuffle
of the columns of Hy(,,...1,)-

In the case of the shuffle sh(ry,r,2) = 434121, the application of the transformation
341 = 314 or 412 = 142 gives the word 431421, which is not a shuffle of the columns
of Ha(l4,...,11)-

Now, an exhaustive analysis of the effect of a single Knuth transformation on all
possible shuffles between any two words from the set {431421, 74,753,752, 701 }, Shows
that the resulting word is still a shuffle of two, or more, words of this set.

Thus, if w = H,q,,..1,), w is obtained by a finite number of Knuth transformations
on Hyq,,..1)- Hence, it must be a shuffle of the words 431421, 74,743,752, and 741,
with appropriate multiplicities. [

5. MATRIX REALIZATIONS OF PAIRS OF TABLEAUX

Let R, be a local principal ideal domain with maximal ideal (p). The matrices
under consideration have entries in R,. Let U, be the group of n x n unimodular
matrices over R,. Given nxn matrices A and B, we say that B is left equivalent to A
(written B ~ A) if B = UA for some unimodular matrix U; B is right equivalent to
A (written B ~gr A) if B = AV for some unimodular matrix V; and B is equivalent
to A (written B ~ A) if B = UAV for some unimodular matrices U, V. The relations
~r, ~r and ~ are equivalence relations on the set of all n x n matrices over R,,.
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Let A be an n x n non-singular matrix. By the Smith normal form theorem [7, 26],
there exist nonnegative integers Ay, ..., A, with A\; > ... > A\, such that A is equivalent
to the diagonal matrix

diag(p™, ..., p™).
The sequence A = (Aq, ..., \,) of exponents of the p-powers in the Smith normal form
of A is a partition of length < n uniquely determined by the matrix A. The partition
A is a full invariant of the equivalence class containing A and we call A the invariant
partition of A. More generally, if we are given a sequence (fi, ..., f,) of nonnegative
integers, the following notation for p-powered diagonal matrices will be used:

diag,(f1,..., fn) == diag(p™, ..., p™).

Given J C [n], we write x/ = (fi, ..., f) with f; = 1if i € J and 0 otherwise, thus,
we put D := diag,(x”). Given a partition A of length < n, we write A = diag,(}).
If A=(0), Ay = I,, the identity matrix of order n.

Let o € §;, t > 1, and let m be a partition of length ¢ such that om = (my, ..., my).
In what follows, 7" will denote a skew-tableau of evaluation (mj,...,m;) and shape
A/ where the length of A is < n. Next we define the matrix realization of a pair
of Young tableaux (7, F), with F a tableau of evaluation (mq,...,m;) and shape v,
following [5, 6, 4]. (Note that in this paper the tableaux are strictly increasing up
along columns.)

Definition 5.1. Let 7 = (A°, A', .., \Y) and F = (0, !, ..., u*) be tableaux, both
of evaluation (my, ...,m;). We say that a sequence of n x n non-singular matrices
Ay, By, ..., By is a matrix realization of the pair of tableaux (7, F) (or realizes (7, F))
if:
I. For each r € {1, ...,t}, the matrix B, has invariant partition (1™, 0"~™).
II. For each r € {0,1,...,t}, the matrix A, := AgB;...B, has invariant partition
the conjugate of \".
III. For eachr € {1,...,t}, the matrix B;...B, has invariant partition the conjugate
of u".
(7, F) is called an admissible pair of tableaux.

Conditions (I) and (II) alone are trivially feasible. But, in conjunction with condi-
tion (III), they impose a non-trivial restriction on the concept of matrix realization.
Here, we restrict ourselves to pairs (7, Ho(lt,...,ll))- The next theorem, proved in
6, 4], shows that, without loss of generality, we may consider matrix realizations of
(T, Ho,,..1,)) with a particular simple form.

Theorem 5.1. The following conditions are equivalent:

(a) (T, Hoq,,..11)) 15 an admissible pair.
(b) There exists U € Uy, such that A\U, D1, .., Dy, realizes (T, Hoq,,. 00))-

The characterization of o-Yamanouchi words as shuflles of the columns H, has been
used to determine necessary and sufficient conditions for the admissibility of a pair of
Young tableaux (7, Hg(lt’m,ll)), when o is the identity or the reverse permutation in
S, t > 1[4, 5], or any permutation in S3 [6]. In these cases, the pair (7, Hsq,,..1))
is admissible only if the word of 7 is in the Knuth class of H,,, . ;,)). The next
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theorem extends the necessary condition of this result to any o € &;, ¢t > 1, and
verifies the recursive criterion for o-Yamanouchi words given in Theorem 3.12. The
proof of this theorem needs the following proposition, proved in [6].

Proposition 5.2. [6] Let (my,mq) be a partition. Let w and w' be the words of
the tableauz realized by the sequences A\U, Diy,1, Dy, and A\U, Diyyp, Dy, . Tespec-
tively. Then, there exists an operation 01 such that w' = 01(w).

The following example shows that the operation #; in the previous proposition is
not necessarily 6j.

Example 5.1. Let U = Pj301T14(p), where Py39; is the permutation matrix associated
with 4321 € S; and Ti4(p) is the elementary matrix obtained from the identity
by placing the prime p in position (1,4). It is a simple task to check that, with
A= (2,1) and U = Pys91T14(p), the sequences AU, Dy3}, Dy and AyU, Dyg}, Dyg)
are matrix realizations for the pairs (7, H(id,(2,1))) and (77, H(s1,(2,1)), where

2 2
T=e 1 2 and7'=e 2 2 . The words w(7) = 21211 and w(7") = 22211
e o 1 1 e o 1 1

satisfy 0, (w(7)) = w(7T"), where 6, is the operation based on a parentheses matching
defined as (21(21)1).

Thus, the matrix setting generates parentheses matching operations, different from
the standard ones defined by Lascoux and Schiitzenberger. However, if we choose
U' = Ps41T24(p), the sequences A\U’, Dyg), Djgj and A\U’, Dyy, Djg) are matrix real-

2
izations for the pairs (7, H(id, (2,1))) and (7", H(s1,(2,1)), where 7" =e 1 2 .
o o 1 2
In this case, we have 07 (w(7)) = w(7") = 21212 # 6,(7T) = 22211.
Theorem 5.3. Let 0 € S;, and let (I;,--- ,11) be a sequence of nonnegative integers.

The pair (T, Hoq,,..11)) 15 admissible only if w(7T) = Hoq,,...1,)-

Proof: By induction on t > 1. When t = 1 there is nothing to prove, and the
case t = 2 has been proved in [5, 4]. Assume the claim for ¢ —1 > 2. Thanks to
Theorem 5.1 we may assume the existence of an unimodular matrix U € U, such
that Ax,UDpy,), ..., Dy, realizes (7, Hoq,,..1,)). Put w :=w(7). By the inductive
step, the word w;_y) of the tableau realized by the sequence

Ax,UDpn 15 - -+, Dpy ]

satisfies P(wii—1)) = Hoji—1)-
We consider the case m;_; > m;, the other one is similar. There exists an unimod-
ular matrix U’ € U,, such that
ANUDppy -+ Dy ) D)~ AU Dign,_ 3 Din,

where A" = diag, (A + X7+ -+ x%2). Since my_y > my, by the case t = 2, the
sequence A'U’, Dy, 11, Djm, realizes a tableau whose word w)g;—1, is a Yamanouchi
word. Finally, consider the sequence

A\U, Dyngys -+ 5 Dimy_o)s Dy
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and let w’ be the word of the corresponding tableau. According to the previous
proposition, we must have w’ = (6;—i(w))|—1), for some operation ¢;_;, and by
the inductive step, P(w') = Hsi oy By Theorem 3.12, we find that w is a

o-Yamanouchi word.

Below we list the permutations o in S5 and Sg for which the set Sh((r)", (r54-1)"1,
oy (re2)2, (rg1)), with [; > 0,4 =1,...,t, t = 5,6, is not the whole plactic class
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6. APPENDIX

of H,.
S5
wdw', w € Spapy, W € Spuay;
w3w’', w € Spapy, W E Spray;
’LUU)/, w e 8{17475}, w' € 8{273};
ww',  w e Spssy, W E Spay;
wa’, w e 8{174}, w' e 8{275};
w2w', w e 8{1y4}, w' e 8{375};
ww’, w € 8{17275}, w'’ S 8{3’4}.
Ss
ww'w”, w € Sgzey, w' € Ssy, W' € Spay;
ww'w”, w € Spapy, w' € Sgzay, W' € Sy
ww'w”, w € Spay, w' € Sy, W' € Sgs ey
wdw',  w € Spsey, W E Sy
wdw',  w € Sppuey, W € Spzy
wibw', w € Spapy, w' € Sp13y;
wdH2w', w € Sz}, w' € Sp4y;
wdw',  w € Sppe, W E Spay
whw',  w € Sppzey, W E Spay;
w3bw’, w € Si251, w' € Spiay;
wi2w', w € S, w' € S5y
w3w',  w € Spaey, W E Sy
wdw',  w € Spsey, W E Sy
’LUU)/, w e 8{1747576}, w' € 8{273};
ww’, w € 8{1737576}, w' e 8{274};
ww’, w e 8{1737476}, w' € 3{275};
w3w', w e 8{17475}, w' € 8{276};
w4w’, w € 5{17375}, w' S 8{276};
w3bw', w € Sii4p, w' € Si2,6);
ww', w e 8{1,275,6}, w' € 5{3,4};
ww', w e Sppaey, W E Ssy
wdlw', w € Spos, w' € Sis6y;
w2w',  w e Spusy, W E Spey
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/

wdw', w e 8{17275}, w' e 8{3’6};
w2bw', w € 8{174}, w' e 8{376};
ww’, w e 8{1,2,3,6}7 w' € 8{475};
w31w’, w e 3{275}, w' € 8{476};

/

w2w s w € 8{173’5}, w’ S 8{476};

IUB’IU/, w € 8{172’5}, w’ S 8{4,6}-
There are a total of 52 permutations in S5 and 488 permutations in Sg that fail to
satisfy the conditions of Theorem 4.3.
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