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ON THE EXCEDANCE NUMBER OF COLORED
PERMUTATION GROUPS

ELI BAGNO AND DAVID GARBER

Abstract. We generalize the results of Ksavrelof and Zeng about
the multidistribution of the excedance number of Sn with some
natural parameters to the colored permutation group and to the
Coxeter group of type D. We define two different orders on these
groups which induce two different excedance numbers. Surpris-
ingly, in the case of the colored permutation group, we get the
same generalized formulas for both orders.

1. Introduction

Let r and n be two positive integers. The colored permutation group
Gr,n consists of all permutations of the set

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}

satisfying π(̄i) = π(i).
The symmetric group Sn is a special case of Gr,n for r = 1. In Sn

one can define the following well-known parameters: given σ ∈ Sn,
i ∈ [n] is an excedance of σ if and only if σ(i) > i. The number of
excedances is denoted by exc(σ). Two other natural parameters on Sn

are the number of fixed points and the number of cycles of σ, denoted
by fix(σ) and cyc(σ) respectively.

Consider the following generating function over Sn:

Pn(q, t, s) =
∑
σ∈Sn

qexc(σ)tfix(σ)scyc(σ).

Pn(q, 1, 1) is the classical Eulerian polynomial, while Pn(q, 0, 1) is the
counter part for the derangements, i.e., the permutations without fixed
points, see [2].

In the case s = −1, the two polynomials Pn(q, 1,−1) and Pn(q, 0,−1)
have simple closed formulas:

(1) Pn(q, 1,−1) = −(q − 1)n−1

(2) Pn(q, 0,−1) = −q[n− 1]q
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Recently, Ksavrelof and Zeng [1] proved some new recursive formulas
which induce Equations (1) and (2).

A natural problem is to generalize the results of [1] to the colored
permutation groups. The main challenge here is to choose a suitable
order on the alphabet Σ of the group Gr,n and define the parameters
properly.

In this paper we cope with this challenge. We define two different
orders on Σ, one of them ’forgets’ the colors, while the other is much
more natural, since it takes into account the color structure of Gr,n.
The parameter exc will be defined according to both orders in two
different ways. The interesting point is that for the group Gr,n we get
the same recursive formulas for both cases.

Define
PGr,n(q, t, s) =

∑
π∈Gr,n

qexc(π)tfix(π)scyc(π).

Concerning Gr,n, we prove the following two main results:

Theorem 1.1.

PAbs
Gr,n

(q, 1,−1) = PClr
Gr,n

(q, 1,−1) = (qr − 1)PGr,n−1(q, 1,−1).

Hence,

PAbs
Gr,n

(q, 1,−1) = PClr
Gr,n

(q, 1,−1) = −(qr − 1)n

q − 1
.

Theorem 1.2.

PAbs
Gr,n

(q, 0,−1) = PClr
Gr,n

(q, 0,−1) = [r]q(PGr,n−1(q, 0,−1)− qn−1[r]n−1
q ).

Hence,

PAbs
Gr,n

(q, 0,−1) = PClr
Gr,n

(q, 0,−1) = −q[r]nq [n− 1]q.

Even though PGr,n(q, 0,−1) is a special case of PGr,n(q, s, t), we can
deduce a formula for the exponential generating function of the general
case as presented in the following corollary:

Corollary 1.3.∑
n≥0

PGr,n(q, s, t)
xn

n!
=

(∑
n≥0

(
[r]nq

1− q
((q − s)n − q(1− s)n)

)
xn

n!

)−t

.

One can easily check that the formulas appeared in Theorem 1.1,
Theorem 1.2 and Corollary 1.3 indeed generalize the formulas of Ksa-
vrelof and Zeng (for r = 1).

As noted above, in the symmetric group case, the polynomials
Pn(q, 1, 1) are equal to the Eulerian polynomials, which are usually
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defined using descent numbers. It is possible to define descent num-
bers for the colored permutation groups, which are equidistributed with
our parameters. A work in this direction is in progress.

We apply our techniques also to obtain permutations statistics on
the group of even signed permutations, Dn, also known as the Coxeter
group of type D. We get the following results:

Theorem 1.4.

PClr
Dn

(q, 1,−1) = (q2 − 1)PClr
Dn−1

(q, 1,−1).

Hence,

PClr
Dn

(q, 1,−1) = (1− q2)n−1.

Theorem 1.5.

PAbs
Dn

(q, 1,−1) = −1

2
(q − 1)n−1((1 + q)n + (1− q)n).

This paper is organized as follows. In Section 2, we recall some prop-
erties of Gr,n. In Section 3 we define the new statistics on Gr,n. Sections
4 and 5 deal with the proofs of Theorems 1.1 and 1.2 respectively. Sec-
tion 6 deals with the proof of Corollary 1.3. Section 7 includes the
proofs of Theorems 1.4 and 1.5.

2. Preliminaries

2.1. Notations. For n ∈ N, let [n] := {1, 2, . . . , n} (where [0] := ∅).
Also, let

[n]q :=
1− qn

1− q
= 1 + q + · · ·+ qn−1

(so [0]q = 0), and

[n]q! := [n]q · [n− 1]q · · · [1]q.

2.2. The group of colored permutations.

Definition 2.1. Let r and n be positive integers. The group of colored
permutations of n digits with r colors is the wreath product

Gr,n = Zr o Sn = Zn
r o Sn,

consisting of all the pairs (z, τ) where z is an n-tuple of integers between
0 and r− 1 and τ ∈ Sn. The multiplication is defined by the following
rule: for z = (z1, ..., zn) and z′ = (z′1, ..., z

′
n)

(z, τ) · (z′, τ ′) = ((z1 + z′τ(1), ..., zn + z′τ(n)), τ ◦ τ ′)

(here + is taken modulo r).
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We use some conventions along this paper. For an element π =
(z, τ) ∈ Gr,n with z = (z1, ..., zn) we write zi(π) = zi. For π = (z, τ),
we denote |π| = (0, τ), (0 ∈ Zn

r ). An element

(z, τ) = ((1, 0, 3, 2), (2, 1, 4, 3)) ∈ G3,4

will be written as (2̄1¯̄̄4¯̄3).
A much more natural way to present Gr,n is the following. Consider

the alphabet Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]} as the set [n]
colored by the colors 0, . . . , r− 1. Then, an element of Gr,n is a colored

permutation, i.e., a bijection π : Σ → Σ such that π(̄i) = π(i).
In particular, G1,n = C1 oSn is the symmetric group Sn, while G2,n =

C2 o Sn is the group of signed permutations Bn, also known as the
hyperoctahedral group, or the classical Coxeter group of type B. We
also define here the following normal subgroup of Bn of index 2, called
the even signed permutation group or the Coxeter group of type D:

Dn = {π ∈ Bn |
n∑

i=1

zi(π) ≡ 0 (mod 2)}.

3. Statistics on Gr,n

Given any ordered alphabet Σ′, we recall the definition of the ex-
cedance set of a permutation π on Σ′:

Exc(π) = {i ∈ Σ′ | π(i) > i}
and the excedance number is defined to be exc(π) = |Exc(π)|.

We start by defining two orders on the set

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}.

Definition 3.1. The absolute order on Σ is defined to be

1[r−1]< · · · < 1̄ < 1 < 2[r−1] < · · · < 2̄ < 2 < · · · < n[r−1] < · · · < n̄<n.

The color order on Σ is defined to be

1[r−1] < · · · < n[r−1] < 1[r−2] < 2[r−2] < · · · < n[r−2] < · · · < 1 < · · ·< n.

Example 3.2. Given the color order

¯̄1 < ¯̄2 < ¯̄3 < 1̄ < 2̄ < 3̄ < 1 < 2 < 3,

we write σ = (31̄¯̄2) ∈ G3,3 in an extended form,(¯̄1 ¯̄2 ¯̄3 1̄ 2̄ 3̄ 1 2 3
¯̄3 1 2̄ 3̄ ¯̄1 2 3 1̄ ¯̄2

)
and calculate Exc(σ) = {¯̄1, ¯̄2, ¯̄3, 1̄, 3̄, 1} and exc(σ) = 6.
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Before defining the excedance numbers with respect to both orders,
we have to introduce some notions.

Let σ ∈ Gr,n. We define

csum(σ) =
n∑

i=1

zi(σ),

ExcA(σ) = {i ∈ [n− 1] | σ(i) > i},
where the comparison is with respect to the color order, and

excA(σ) = |ExcA(σ)|.

Example 3.3. Take σ = (1̄¯̄342̄) ∈ G3,4. Then csum(σ) = 4,
ExcA(σ) = {3} and hence excA(σ) = 1.

Let σ ∈ Gr,n. Recall that for σ = (z, τ) ∈ Gr,n, |σ| is the permutation

of [n] satisfying |σ|(i) = τ(i). For example, if σ = (2̄¯̄314̄) then |σ| =
(2314).

Now we can define the excedance numbers for Gr,n.

Definition 3.4. Define

excAbs(σ) = exc(|σ|) + csum(σ),

excClr(σ) = r · excA(σ) + csum(σ).

Note that the computation of the parameter excAbs uses the absolute
order.

The parameters excAbs and excClr are indeed different: for σ = (21) ∈
Gr,2, (r > 1) one has excAbs(σ) = 1 but excClr(σ) = r.

One can view excClr(σ) in a different way:

Lemma 3.5. Let σ ∈ Gr,n. Consider the set Σ ordered by the color
order. Then

exc(σ) = excClr(σ).

Proof. Let i ∈ [n]. We divide our proof into two cases: zi(σ) = 0 and
zi(σ) 6= 0.

If zi(σ) = 0, then i ∈ ExcA(σ) if and only if σ(i) > i. In this case,
we have σ(i[j]) > i[j] for every color 1 ≤ j ≤ r − 1. Hence, we have
{i, i[1], · · · , i[r−1]} ⊆ Exc(σ). Hence, each i ∈ ExcA(σ) contributes r
excedances to exc(σ).

On the other hand, if zi(σ) = k 6= 0, we have that i /∈ Exc(σ).
By definition, we have σ(i[j]) = |σ(i)|[(j+k) (mod r)] for all j. Thus, for
0 ≤ j ≤ r−k−1, i[j] /∈ Exc(σ), and for the k indices r−k ≤ j ≤ r−1,
i[j] ∈ Exc(σ). Consequently, we have

exc(σ) = excClr(σ).
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Recall that any permutation of Sn can be decomposed into a product
of disjoint cycles. This notion can be easily generalized to the group
Gr,n as follows. Given any π ∈ Gr,n we define the cycle number of
π = (z, τ) to be the number of cycles in τ .

We say that i ∈ [n] is an absolute fixed point of σ ∈ Gr,n if |σ(i)| = i.

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The idea of proving this type
of identities is constructing a subset S of Gr,n whose contribution to the
generating function is exactly the right side of the identity and a killing
involution on Gr,n − S, i.e., an involution on Gr,n − S which preserves
the number of excedances but changes the sign of every element of
Gr,n − S and hence shows that Gr,n − S contributes nothing to the
generating function.

4.1. Proof for the absolute order. We divideGr,n into 2r+1 disjoint
subsets as follows:

Kr,n = {σ ∈ Gr,n | |σ(n)| 6= n, |σ(n− 1)| 6= n},
T i

r,n = {σ ∈ Gr,n | σ(n) = n[i]}, (0 ≤ i ≤ r − 1),

Ri
r,n = {σ ∈ Gr,n | σ(n− 1) = n[i]}, (0 ≤ i ≤ r − 1).

We first construct a killing involution on the set Kr,n. Let σ ∈ Kr,n.
Define ϕ : Kr,n → Kr,n by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ.

Note that ϕ exchanges σ(n − 1) with σ(n). It is obvious that ϕ is
indeed an involution.

We will show that excAbs(σ) = excAbs(σ′). First, for i < n − 1, it is
clear that i ∈ Exc(|σ|) if and only if i ∈ Exc(|σ′|). Now, as σ(n−1) 6= n,
n − 1 /∈ Exc(|σ|) and thus n /∈ Exc(|σ′|). Finally, |σ(n)| 6= n implies
that n− 1 /∈ Exc(|σ′|) and thus excAbs(σ) = excAbs(σ′).

On the other hand, cyc(σ) and cyc(σ′) have different parities due
to a multiplication by a transposition. Hence, ϕ is indeed a killing
involution on Kr,n.

We turn now to the sets T i
r,n (0 ≤ i ≤ r − 1) . Note that there

is a natural bijection between T i
r,n and Gr,n−1 defined by ignoring the

last digit. Let σ ∈ T i
r,n. Denote the image of σ ∈ T i

r,n under this
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bijection by σ′. Since n 6∈ Exc(|σ|), we have exc(|σ|) = exc(|σ′|). Now,
csum(σ′) = csum(σ)− i, since zn(σ) = i and hence we have

excAbs(σ)− i = excAbs(σ′).

Finally, since n is an absolute fixed point of σ, cyc(σ′) = cyc(σ) − 1
and we get that the total contribution of T i

r,n is

PAbs
T i

r,n
= −qiPAbs

Gr,n−1
(q, 1,−1)

for 0 ≤ i ≤ r − 1.

Now, we treat the sets Ri
r,n (0 ≤ i ≤ r − 1). There is a bijection

between Ri
r,n and T i

r,n using the same function ϕ we used above. Let

σ ∈ Ri
r,n. Define ϕ : Ri

r,n → T i
r,n by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ.

In σ, we have that n − 1 ∈ Exc(|σ|) (since |σ(n − 1)| = n) and
n 6∈ Exc(|σ|), but in σ′, n − 1, n 6∈ Exc(|σ′|). Hence, exc(|σ|) − 1 =
exc(|σ′|). We also have that csum(σ) = csum(σ′) (since zn−1(σ) +
zn(σ) = zn−1(σ

′) + zn(σ′)). Hence, we have that

excAbs(σ)− 1 = excAbs(σ′).

As before, the number of cycles changes its parity due to the multi-
plication by a transposition, and thus (−1)cyc(σ) = −(−1)cyc(σ′).

Hence, the total contribution of the elements in Ri
r,n is

PAbs
Ri

r,n
= qi+1 · PAbs

Gr,n−1
(q, 1,−1)

for 0 ≤ i ≤ r − 1.
Now, if we sum up all the parts, we get

PAbs
Gr,n

(q, 1,−1) = PAbs
Kr,n

(q, 1,−1)

+
r−1∑
i=0

PAbs
T i

r,n
(q, 1,−1) +

r−1∑
i=0

PRi
r,n

(q, 1,−1)

=
r−1∑
i=0

(−qiPAbs
Gr,n−1

(q, 1,−1)) +
r−1∑
i=0

qi+1PAbs
Gr,n−1

(q, 1,−1)

= (qr − 1)PAbs
Gr,n−1

(q, 1,−1)

as claimed.
Now, for n = 1, Gr,1 is the cyclic group of order r and thus

PAbs
Gr,1

(q, 1,−1) = −(1 + q + · · ·+ qr−1) = −q
r − 1

q − 1
,
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so we have

PAbs
Gr,n

(q, 1,−1) = −(qr − 1)n

q − 1
.

4.2. Proof for the color order. As in the previous proof, we divide
Gr,n into the same 2r + 1 disjoint subsets Kr,n, T i

r,n (0 ≤ i ≤ r − 1)

and Ri
r,n (0 ≤ i ≤ r − 1) used there.

As before, we first construct a killing involution on the set Kr,n. Let
σ ∈ Kr,n. As before, define ϕ : Kr,n → Kr,n by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ.

The proof that ϕ is a killing involution is similar to the one we presented
in Section 4.1.

We turn now to the sets T i
r,n. We use again the bijection between

T i
r,n and Gr,n−1 defined by ignoring the last digit. Let σ ∈ Tr,n. As in

the previous proof, we have

excClr(σ)− i = excClr(σ′).

Now, since n is an absolute fixed point of σ, cyc(σ′) = cyc(σ)− 1.
To summarize, we get that the total contribution of elements in T i

r,n

is

PClr
T i

r,n
= −qiPClr

Gr,n−1
(q, 1,−1)

for 0 ≤ i ≤ r − 1.

Finally, we treat the sets Ri
r,n. Let σ ∈ Ri

r,n. Recall the bijection

ϕ : Ri
r,n → T i

r,n defined in Section 4.1 by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ.

When we compute the change in the excedance, we split our treat-
ment into two cases: i = 0 and i > 0. For the case i = 0, we
get excClr(σ) − r = excClr(σ′). For the case i > 0, we show that
excClr(σ) = excClr(σ′).

We start with case i = 0. Note that n−1 ∈ ExcA(σ) (since σ(n−1) =
n) and n 6∈ ExcA(σ). On the other hand, in σ′, n − 1, n 6∈ ExcA(σ′).
Hence, excA(σ)− 1 = excA(σ′).

Now, for the case i > 0 : n − 1, n 6∈ ExcA(σ) (since σ(n − 1) = n[i]

is not an excedance with respect to the color order). We also have
n− 1, n 6∈ ExcA(σ′), and thus ExcA(σ) = ExcA(σ′) for σ ∈ Ri

r,n where
i > 0.

In both cases, we have that csum(σ) = csum(σ′). Hence, we have
that excClr(σ) − r = excClr(σ′) for i = 0 and excClr(σ) = excClr(σ′) for
i > 0.
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As before, the number of cycles changes its parity due to the multipli-
cation by a transposition, and hence (−1)cyc(σ) = −(−1)cyc(σ′). Hence,
the total contribution of elements in Ri

r,n is

qrPClr
Gr,n−1

(q, 1,−1)

for i = 0, and
qiPClr

Gr,n−1
(q, 1,−1)

for i > 0.

Now, if we sum up all the parts, we get

PClr
Gr,n

(q, 1,−1) =
r−1∑
i=0

(−qiPClr
Gr,n−1

(q, 1,−1))

+ qrPClr
Gr,n−1

(q, 1,−1) +
r−1∑
i=1

qiPClr
Gr,n−1

(q, 1,−1)

= (qr − 1)PClr
Gr,n−1

(q, 1,−1)

as needed.

Now, for n = 1, Gr,1 is the cyclic group of order r and thus

PClr
Gr,1

(q, 1,−1) = −(1 + q + · · ·+ qr−1) = −q
r − 1

q − 1
,

so we have

PClr
Gr,n

(q, 1,−1) = −(qr − 1)n

q − 1
.

5. Derangements in Gr,n and the proof of Theorem 1.2

In this section, we prove Theorem 1.2. As in the previous section,
we will prove Theorem 1.2 for both orders.

We start with the definition of a derangement.

Definition 5.1. An element σ ∈ Gr,n is called a derangement if it has
no absolute fixed points, i.e., |σ(i)| 6= i for every i ∈ [n]. Denote by
Dr,n the set of all derangements in Gr,n

5.1. Proof for the absolute order. We divide Dr,n into r+2 disjoint
subsets in the following way:

Ai
r,n = {σ ∈ Dr,n | σ(2) = 1[i], |σ(1)| 6= 2}, i = 0, . . . , r − 1,

Tr,n = {σ ∈ Dr,n | |σ| = (123 · · ·n)},

D̂r,n = Dr,n − (
r−1⋃
i=0

Ai
r,n ∪ Tr,n).
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We start by constructing a killing involution ϕ on D̂r,n. Given any

σ ∈ D̂r,n, let i be the first number such that |σ(i)| 6= i+ 1. Define

σ′ = ϕ(σ) = (σ(i), σ(i+ 1))σ.

For example, if σ = (3̄41̄5̄¯̄2) then σ′ = (43̄1̄5̄¯̄2).

It is easy to see that ϕ is a well-defined involution on D̂r,n. We
proceed to prove that excAbs(σ) = excAbs(σ′). Indeed, csum(σ) =
csum(σ′).

Let i be the first number such that |σ(i)| 6= i+ 1 so that in the pass
from σ to σ′ we exchange σ(i) with σ(i + 1). For every j 6= i, i + 1,
clearly j ∈ Exc(|σ|) if and only if j ∈ Exc(|σ′|). Since σ ∈ Dr,n,
|σ(i)| 6= i+1 and |σ(j)| = j+1 for j < i, we have that |σ(i)|, |σ(i+1)| ∈
{1, i+ 2, · · · , n}. Thus, exchanging σ(i) with σ(i+ 1) does not change
Exc(|σ|).

Note also that the parity of cyc(σ′) is opposite to the parity of cyc(σ)
due to the multiplication by a transposition. Hence, we have proven
that ϕ is a killing involution.

Now, let us calculate the contribution of each set in our decompo-
sition to PAbs

Dr,n
(q, 0,−1). As we have shown, D̂r,n contributes nothing.

Define a bijection

ψ : Ai
r,n → Dr,n−1

by ψ(σ) = σ′, where σ′(1) = (|σ(1)| − 1)z1(σ) and for i > 1, σ′(i) =
(|σ(i + 1)| − 1)zi+1(σ). For example, if σ = (31̄42̄), then σ′ = (231̄). It
is easy to see that exc(|σ|) = exc(|σ′|). On the other hand, csum(σ′) =
csum(σ)− i and cyc(σ) = cyc(σ′) and thus the contribution of Ai

r,n to

PAbs
Dr,n

(q, 0,−1) is qiPAbs
Dr,n−1

(q, 0,−1) for 1 ≤ i ≤ r − 1.

Finally, we treat the set Tr,n. For every σ ∈ Tr,n we have exc(|σ|) =
n− 1 and cyc(σ) = 1. Concerning csum(σ) we have∑

σ∈Tr,n

qcsum(σ) = (1 + q + · · · qr−1)n.

To summarize, we get

PAbs
Dr,n

(q, 0,−1) =
r−1∑
i=0

(qiPAbs
Dr,n−1

(q, 0,−1)) + qn−1(1 + q + · · · qr−1)n

= (1 + q + · · · qr−1)PAbs
Dr,n−1

(q, 0,−1)

+ qn−1(1 + q + · · · qr−1)n

= [r]q(P
Abs
Dr,n−1

(q, 0,−1)− qn−1[r]n−1
q )

as needed.
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Now, for n = 2, we have

PAbs
Dr,2

(q, 0,−1) = −q[r]2q
and thus

PAbs
Dr,n

(q, 0,−1) = −q[r]nq [n− 1]q.

5.2. Proof for the color order. We use the same decomposition of
Dr,n as before. The killing involution will be also the same, due to the
following observation: one can replace Exc(|σ|) in the previous proof
by ExcA(σ), and the argument still holds. Note that i /∈ ExcA(σ) if
zi(σ) 6= 0.

Now, let us calculate the contribution of each set in our decomposi-
tion to PClr

Dr,n
(q, 0,−1). As we have shown, D̂r,n contributes nothing.

As before, define a bijection

ψ : Ai
r,n → Dr,n−1

by ψ(σ) = σ′, where σ′(1) = (|σ(1)| − 1)z1(σ) and for i > 1, σ′(i) =
(|σ(i+1)|−1)zi+1(σ). As before, it is easy to see that excA(σ) = excA(σ′)
(since |σ(2)| = 1). On the other hand, csum(σ′) = csum(σ) − i and
cyc(σ) = cyc(σ′), and thus the contribution of Ai

r,n to PClr
Dr,n

(q, 0,−1) is

qiPClr
Dr,n−1

(q, 0,−1) for 0 ≤ i ≤ r − 1.
Now, we treat the set Tr,n. Let σ ∈ Tr,n. Observe that for i < n,

i ∈ ExcA(σ) if and only if zi(σ) = 0. In this case, the place i contributes
r to excClr(σ). Hence, it will be natural to construct the following
bijection between Tr,n and the following subset W of Gr+1,n:

W = {σ ∈ Gr+1,n | |σ| = (12 · · ·n),

zi(σ) 6= 0 for 1 ≤ i ≤ n− 1, zn(σ) 6= r}

by ψ(σ) = σ′, where

σ′(i) =

{
σ(i) i = n or zi(σ) 6= 0,

|σ(i)|[r] otherwise.

Note that excClr(σ) = csum(σ′).
Now we compute∑

σ∈Tr,n

qexcClr(σ)(−1)cyc(σ) =
∑

σ′∈W

qcsum(σ′)(−1)cyc(σ′)

= −
∑

σ′∈W

qcsum(σ′)

= −(q + q2 + · · ·+ qr)n−1(1 + q + · · ·+ qr−1).
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To summarize, we get

PClr
Dr,n

(q, 0,−1) =
r−1∑
i=0

(qiPClr
Dr,n−1

(q, 0,−1))

− (q + q2 + · · ·+ qr)n−1(1 + q + · · ·+ qr−1)

= (1 + q + · · · qr−1)(PClr
Dr,n−1

(q, 0,−1) + (q + · · · qr)n−1)

= [r]q(P
Clr
Dr,n−1

(q, 0,−1)− qn−1[r]n−1
q )

Now, for n = 2, we have

PClr
Dr,2

(q, 0,−1) = −q[r]2q
and thus

PClr
Dr,n

(q, 0,−1) = −q[r]nq [n− 1]q.

6. Proof of Corollary 1.3

In this section, we provide a complete proof for Corollary 1.3. The
proof follows the ideas of Ksavrelov and Zeng [1].

We first compute PGr,n(q, s,−1). The polynomial counting the per-
mutations of Gr,n with a given number k of absolute fixed points
(0 ≤ k ≤ n) is

(−s)k(1 + q + · · · qr−1)kPGr,n−k
(q, 0,−1).

Hence,

PGr,n(q, s,−1) =
n∑

k=0

(
n

k

)
[r]kq(−s)kPGr,n−k

=

=
n∑

k=0

(
n

k

)
[r]kq(−s)k(−q)[r]n−k

q [n− k − 1]q =

= [r]nq

n∑
k=0

(
n

k

)
(−s)k(−q)1− qn−k−1

1− q
=

=
[r]nq

1− q

n∑
k=0

((
n

k

)
qn−k(−s)k − q

(
n

k

)
(−s)k

)
=

=
[r]nq

1− q
((q − s)n − q(1− s)n).

Thus

(3) PGr,n(q, s,−1) =
[r]nq

1− q
((q − s)n − q(1− s)n).
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Now we compute an exponential generating function for∑
n≥0

PGr,n(q, s, t).

Denote by Cr,n the set of cycles of length n in Gr,n. For example, in
G2,2 = B2 we have

C2,2 = {(12), (21), (1̄2), (21̄), (12̄), (21̄), (1̄2̄)}.

Note that in the following computation we use the fact that all pa-
rameters exc(π), fix(π), cyc(π) are additive. We have∑

n≥0

PGr,n(q, s, t)
xn

n!

=
∑
n≥0

∑
π∈Gr,n

(
qexc(π)sfix(π)tcyc(π)

) xn

n!

=
∑
n≥0

∑
(c1,...,ck)∈Cr,ni1

×···×Cr,nik
ni1

+···+nik
=n

1

k!

·

q
 

kP
i=1

exc(ci)

!
s

 
kP

i=1
fix(ci)

!
t

 
kP

i=1
cyc(ci)

! x|c1|+···+|ck|

|c1|! · · · |ck|!

=
∑
n≥0

∑
(c1,...,ck)∈Cr,ni1

×···×Cr,nik
ni1

+···+nik
=n

1

k!

·
k∏

i=1

(
qexc(ci)sfix(ci)tcyc(ci)

) x|c1|+···+|ck|

|c1|! · · · |ck|!

=
∑
k≥0

1

k!

∑
n≥0

∑
c∈Cr,n

qexc(c)sfix(c)tcyc(c)x
|c|

|c|!

k

= exp

∑
n≥0

∑
c∈Cr,n

qexc(c)sfix(c)tcyc(c)x
|c|

|c|!


=

exp

−∑
n≥0

∑
c∈Cr,n

qexc(c)sfix(c)x
|c|

|c|!

−t

.
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Hence we have

(4)
∑
n≥0

PGr,n(q, s, t)
xn

n!
=

exp

−∑
n≥0

∑
c∈Cr,n

qexc(c)sfix(c)x
|c|

|c|!

−t

.

Substituting t = −1 in Equation (4), we get

(5)
∑
n≥0

PGr,n(q, s,−1)
xn

n!
= exp

−∑
n≥0

∑
c∈Cr,n

qexc(c)sfix(c)x
|c|

|c|!

 .

Now, by Equation (3) we have∑
n≥0

(
[r]nq

1− q
((q − s)n − q(1− s)n)

)
xn

n!

= exp

−∑
n≥0

∑
c∈Cr,n

qexc(c)sfix(c)x
|c|

|c|!

 .

Substituting the last equation back in Equation (4) we get∑
n≥0

PGr,n(q, s, t)
xn

n!
=

(∑
n≥0

(
[r]nq

1− q
((q − s)n − q(1− s)n)

)
xn

n!

)−t

.

7. Statistics on the group of even signed permutations

In this section we deal with the Coxeter group of type D, namely
the group of even signed permutations. We recall its definition,

Dn = {π ∈ Bn |
n∑

i=1

zi(π) ≡ 0 (mod 2)}.

Unlike the case of the groups Gr,n, in Dn the distribution of the
excedance numbers with respect to the color order is different from the
distribution with respect to the absolute order. We start with the color
order.

7.1. Proof of Theorem 1.4. We divide Dn into 5 subsets:

Kn = {σ ∈ Dn | |σ(n)| 6= n, |σ(n− 1)| 6= n},
T 0

n = {σ ∈ Dn | σ(n) = n},
T 1

n = {σ ∈ Dn | σ(n) = n̄},
R0

n = {σ ∈ Dn | σ(n− 1) = n},
R1

n = {σ ∈ Dn | σ(n− 1) = n̄}.
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We write

an = PClr
Dn

(q, 1,−1),

bn = PClr
Dc

n
(q, 1,−1),

where Dc
n is the complement of Dn in Bn.

Define ϕ : Kn → Kn by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ.

Note that ϕ exchanges σ(n − 1) with σ(n). It is easy to see that ϕ is
a killing involution on Kn.

We turn now to the set T 0
n . Note that there is a natural bijection

between T 0
n and Dn−1, defined by ignoring the last digit. Let σ ∈ T 0

n .
Denote the image of σ under this bijection by σ′. Note that csum(σ′) =
csum(σ), ExcA(σ′) = ExcA(σ) and ExcClr(σ′) = ExcClr(σ). On the
other hand, cyc(σ′) = cyc(σ) − 1 and thus the restriction of an to T 0

n

is just −an−1.
For the contribution of the set T 1

n , note that the function ϕ de-
fined above gives us a bijection between T 1

n and Dc
n−1. In this case,

csum(σ′) = csum(σ)−1, excA(σ′) = excA(σ) and excClr(σ′) = excClr(σ).
On the other hand, cyc(σ′) = cyc(σ)− 1 as before. Hence, the restric-
tion of an to T 1

n is −qbn−1.
Now, for the set R0

n, we have the following bijection between R0
n and

Dn−1: for σ ∈ R0
n, exchange the last two digits, and then ignore the last

digit. If we denote the image of σ by σ′, we have csum(σ′) = csum(σ),
excA(σ′) = excA(σ)−1, excClr(σ′) = excClr(σ)−2 and cyc(σ′) ≡ cyc(σ)
(mod 2). Hence, the restriction of an to R0

n is q2an−1.
For the set R1

n, we have a bijection between R1
n andDc

n−1: for σ ∈ R1
n,

exchange the last two digits, and then ignore the last digit. Denoting
the image of σ by σ′, we have csum(σ′) = csum(σ) − 1, excA(σ′) =
excA(σ), and hence excClr(σ′) = excClr(σ)− 1. Also, we have cyc(σ′) ≡
cyc(σ) (mod 2). Hence, the restriction of an to R1

n is qbn−1.
We summarize all the contributions over all the four subsets, and we

have

an = −an−1 − qbn−1 + q2an−1 + qbn−1 = (q2 − 1)an−1

For computing a1, note that D1 = {1} and thus a1 = −1. Therefore,
we have

PClr
Dn

(q, 1,−1) = an = −(q2 − 1)n−1,

and we are done.
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7.2. Proof of Theorem 1.5. In this subsection we present the proof
of Theorem 1.5 which is based on the absolute order.

We start by dividing Dn into 5 subsets just as was shown in the proof
of Theorem 1.4 and define as before

an = PAbs
Dn

(q, 1,−1),

bn = PAbs
Dc

n
(q, 1,−1),

where Dc
n is the complement of Dn in Bn.

It is easy to check that the sets T 0
n and T 1

n give the same contributions
as before so we turn to the set R0

n. By using the bijection between
R0

n and Dn−1 defined above which exchanges the last two digits, and
then ignores the last digit, we have csum(σ′) = csum(σ), exc(|σ′|) =
exc(|σ|)− 1. Thus, excAbs(σ′) = excAbs(σ)− 1. Also, cyc(σ′) ≡ cyc(σ)
(mod 2). Hence, the restriction of an to R0

n is qan−1.
For the set R1

n, we use the same bijection, now between R1
n and

Dc
n−1 to get csum(σ′) = csum(σ) − 1, exc(|σ′|) = exc(|σ|) − 1. Thus

excAbs(σ′) = excAbs(σ) − 2. Also, we have cyc(σ′) ≡ cyc(σ) (mod 2).
Hence, the restriction of an to R1

n is q2bn−1.
To summarize, we have

an = (q − 1)(an−1 + qbn−1),

and by symmetry

bn = (q − 1)(bn−1 + qan−1).

Since D1 = {1} we get a1 = −1, b1 = −q. Solving the above system of
recursive equations yields

PAbs
Dn

(q, 1,−1) =
1

2
(q − 1)n−1

n∑
k=0

k even

(
n

k

)
qk

= −1

2
(q − 1)n−1((1 + q)n + (1− q)n),

as needed.
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