A FOATA BIJECTION FOR THE ALTERNATING GROUP AND FOR q-ANALOGUES

DAN BERNSTEIN AND AMITAI REGEV

Abstract

The Foata bijection $\Phi: S_{n} \rightarrow S_{n}$ is extended to the bijections $\Psi: A_{n+1} \rightarrow$ A_{n+1} and $\Psi_{q}: S_{n+q-1} \rightarrow S_{n+q-1}$, where S_{m}, A_{m} are the symmetric and the alternating groups. These bijections imply bijective proofs for recent equidistribution theorems, by Regev and Roichman, for A_{n+1} and for S_{n+q-1}.

1. Introduction

In MM16 MacMahon proved his remarkable theorem about the equidistribution in the symmetric group S_{n} of the length (or the inversion-number) and the major index statistics. This raised the natural question of constructing a canonical bijection on S_{n}, for each n, that would correspond these length and major index statistics, and would thus yield a bijective proof of that theorem of MacMahon. That problem was solved by Foata [Foa68], who constructed such a canonical bijection, see Section 3 for a discussion of the Foata bijection Φ. Throughout the years, MacMahon's equidistribution theorem has received far reaching refinements and generalizations, see for example BW91, Car54, Car75, FS78, GG79, [Kra95] and Sta02.

We remark that MacMahon's equidistribution theorem fails when the S_{n} statistics are restricted to the alternating subgroups A_{n}. However, by introducing new A_{n} statistics which are natural analogues of the S_{n} statistics, in [RR04], analogous equidistribution theorems were proved for A_{n}. This was done by first formulating the above S_{n} statistics in terms of the Coxeter ganerators $s_{i}=(i, i+1), \quad 1 \leq i \leq n-1$. By choosing the "Mitsuhashi" generators $a_{i}=s_{1} s_{i+1}$ for A_{n+1} Mit01, analogous statistics on A_{n+1} were obtained, via canonical presentations by these generators. These canonical presentations allow the introduction of the map $f: A_{n+1} \rightarrow S_{n}$, which is one of the main tools in [RR04], see Section 2 for a discussion of these presentations and of f.

MacMahon-type theorems were obtained in [RR04] by introducing the delent statistics for these groups (for S_{n}, this statistic already appeared in [BW91]). Via the above map $f: A_{n+1} \rightarrow S_{n}$, equidistribution theorems were then lifted from S_{n} to A_{n+1}, thus yielding (new) equidistribution theorems for A_{n+1}. In particular, equidistribution theorems for the
 see for example Theorem 4.9 below.

These theorems naturally raise the question of constructing an A_{n+1}-analogue of the Foata bijection - with analogous properties. This problem is solved in Section 5, where indeed we construct such a map Ψ. That map Ψ is composed of a reflection of Foata's original bijection Φ, together with the map $f: A_{n+1} \rightarrow S_{n}$ and of certain "local" inversions of f. This of course gives a new - bijective - proof of Theorem4.9.

Statistics on symmetric groups which are q-analogues of the classical S_{n} statistics were introduced in RR05, via S_{n} canonical presentations and the maps $f_{q}: S_{n+q-1} \rightarrow S_{n}$, see Section 7 below. This map f_{q} sends the q statistics on S_{n+q-1} to the corresponding classical statistics on S_{n}. As in the case of A_{n+1}, this allows the lifting of equidistribution theorems from S_{n} to S_{n+q-1}. This was done in RR05], where in that process an interesting connection with dashed patterns in permutations has appeared, see Theorems 7.7 and 7.8 below.

Again, these equidistribution theorems naturally raise the question of finding the (q -) analogue of the Foata bijection. In Section 7 we indeed construct such a bijection Ψ_{q}. As in the case of Ψ, the bijection Ψ_{q} is composed of f_{q}, of a reflection of the original Foata bijection Φ, and of certain "local" inversions of f_{q}. As an application, Ψ_{q} yields new - bijective proofs of Theorems 7.7 and 7.8 .

The paper is organized as follows. Sections 2,3 and 4 contain preliminary material, mostly from [Foa68, RR04 and RR05, which is necessary for defining and studying the bijections Ψ and Ψ_{q}. A reader who is familiar with these three papers can skip these preliminary sections. In Section 5 we introduce and study Ψ, and Section 6 is an example, showing the properties of Ψ. Finally, the bijections Ψ_{q} are introduced and studied in Section 7 .

2. Canonical presentations and the covering map

2.1. The S - and A-canonical presentations. In this subsection we review the presentations of elements in S_{n} and A_{n} by the corresponding generators and procedures for calculating them.

The Coxeter generators of S_{n} are $s_{i}=(i, i+1), 1 \leq i \leq n-1$. Recall the definition of the set R_{j}^{S},

$$
R_{j}^{S}=\left\{1, s_{j}, s_{j} s_{j-1}, \ldots, s_{j} s_{j-1} \cdots s_{1}\right\} \subseteq S_{j+1}
$$

and the following theorem.
Theorem 2.1 (see Gol93, pp. 61-62]). Let $w \in S_{n}$. Then there exist unique elements $w_{j} \in R_{j}^{S}, 1 \leq j \leq n-1$, such that $w=w_{1} \cdots w_{n-1}$. Thus, the presentation $w=w_{1} \cdots w_{n-1}$ is unique. Call that presentation the S-canonical presentation of w.

The number of s_{i} in the S-canonical presentation of $\sigma \in S_{n}$ is its S-length, $\ell_{S}(\sigma)$. The descent set of $\sigma \in S_{n}$ is $\operatorname{Des}_{S}(\sigma)=\{i \mid \sigma(i)>\sigma(i+1)\}$; the S major-index is maj${ }_{S}(\sigma)=$ $\sum_{i \in \operatorname{Des}_{S}(\sigma)} i$, and the reverse S_{n} major-index is $\operatorname{rmaj}_{S_{n}}(\sigma)=\sum_{i \in \operatorname{Des}_{S}(\sigma)}(n-i)$. Note that $i \in \operatorname{Des}_{S}(\sigma)$ iff $\ell_{S}(\sigma)>\ell_{S}\left(\sigma s_{i}\right)$.

The S-procedure is a simple way to calculate the S-canonical presentation of a given element in S_{n}. Let $\sigma \in S_{n}, \sigma(r)=n, \sigma=[\ldots, n, \ldots]$. Then by definition of the $s_{i} \mathrm{~s}$, n can be 'pulled to its place on the right': $\sigma s_{r} s_{r+1} \cdots s_{n-1}=[\ldots, n]$. This gives $w_{n-1}=$ $s_{n-1} \cdots s_{r+1} s_{r} \in R_{n-1}^{S}$. Looking at $\sigma w_{n-1}^{-1}=\sigma s_{r} s_{r+1} \cdots s_{n-1}=[\ldots, n-1, \ldots, n]$ now, pull $n-1$ to its right place (second from the right) by a similar product $s_{t} s_{t+1} \cdots s_{n-2}$, yielding $w_{n-2}=s_{n-2} \cdots s_{t} \in R_{n-2}^{S}$. Continue this way until finally $\sigma=w_{1} \cdots w_{n-1}$.

Example 2.2. Let $\sigma=[5,6,3,2,1,4]$, then $w_{5}=s_{5} s_{4} s_{3} s_{2} ; \sigma w_{5}^{-1}=[5,3,2,1,4,6]$, so in order to 'pull 5 to its place' we need $w_{4}=s_{4} s_{3} s_{2} s_{1}$; now $\sigma w_{5}^{-1} w_{4}^{-1}=[3,2,1,4,5,6]$, so no need to move 4 , hence $w_{3}=1$; continuing the same way, check that $w_{2}=s_{2} s_{1}$ and $w_{1}=s_{1}$, so $\sigma=w_{1} w_{2} w_{3} w_{4} w_{5}=\left(s_{5} s_{4} s_{3} s_{2}\right)\left(s_{4} s_{3} s_{2} s_{1}\right)(1)\left(s_{2} s_{1}\right)\left(s_{1}\right)$. Thus $\ell_{S}(\sigma)=11$. Here $\operatorname{Des}_{S} \sigma=\{2,3,4\}$, so $\operatorname{maj}_{S}(\sigma)=\operatorname{rmaj}_{S_{6}}(\sigma)=9$.

For A_{n}, the "Mitsuhash" generators are $a_{i}=s_{1} s_{i+1}, 1 \leq i \leq n-2$. Recall the definition

$$
R_{j}^{A}=\left\{1, a_{j}, a_{j} a_{j-1}, \ldots, a_{j} \cdots a_{2}, a_{j} \cdots a_{2} a_{1}, a_{j} \cdots a_{2} a_{1}^{-1}\right\} \subseteq A_{j+2}
$$

(for example, $R_{3}^{A}=\left\{1, a_{3}, a_{3} a_{2}, a_{3} a_{2} a_{1}, a_{3} a_{2} a_{1}^{-1}\right\}$), and the following theorem.
Theorem 2.3 (see RR04, Theorem 3.4]). Let $v \in A_{n+1}$. Then there exist unique elements $v_{j} \in R_{j}^{A}, 1 \leq j \leq n-1$, such that $v=v_{1} \cdots v_{n-1}$, and this presentation is unique. Call that presentation the A-canonical presentation of v.

The number of a_{i} in the A-canonical presentation of $\sigma \in A_{n+1}$ is defined to be its A length, $\ell_{A}(\sigma)$. In analogy with S_{n}, the A-descent set of $\sigma \in A_{n+1}$ is defined as $\operatorname{Des}_{A}(\sigma)=\{i \mid$ $\left.\ell_{A}(\sigma) \geq \ell_{A}\left(\sigma a_{i}\right)\right\}$. Now define $\operatorname{maj}_{A}(\sigma)=\sum_{i \in \operatorname{Des}_{A}(\sigma)} i$, and $\operatorname{rmaj}_{A_{n+1}}(\sigma)=\sum_{i \in \operatorname{Des}_{A}(\sigma)}(n-i)$, see RR05].

The A-procedure is a simple procedure for obtaining the A-canonical presentation of $\sigma \in A_{n}$.
A-procedure: Step 1: follow the S-procedure and obtain the S-canonical presentation of $\sigma \in A_{n}$. Step 2: pair the factors. Step 3: insert $s_{1} s_{1}$ in the middle of each pair and obtain the A-canonical presentation.

Example 2.4. . Let $\sigma=[6,4,3,7,5,2,1]$.
Step 1: $\sigma=s_{1} s_{2} s_{1} s_{3} s_{2} s_{1} s_{4} s_{3} s_{5} s_{4} s_{3} s_{2} s_{1} s_{6} s_{5} s_{4}$.
Step 2: $\sigma=\left(s_{1} s_{2}\right)\left(s_{1} s_{3}\right)\left(s_{2} s_{1}\right)\left(s_{4} s_{3}\right)\left(s_{5} s_{4}\right)\left(s_{3} s_{2}\right)\left(s_{1} s_{6}\right)\left(s_{5} s_{4}\right)$.
Step 3: $\sigma=\left(s_{1} s_{1} s_{1} s_{2}\right)\left(s_{1} s_{1} s_{1} s_{3}\right)\left(s_{2} s_{1} s_{1} s_{1}\right)\left(s_{4} s_{1} s_{1} s_{3}\right)\left(s_{5} s_{1} s_{1} s_{4}\right)\left(s_{3} s_{1} s_{1} s_{2}\right)\left(s_{1} s_{1} s_{1} s_{6}\right)\left(s_{5} s_{1} s_{1} s_{4}\right)=$ $=\left(s_{1} s_{2}\right)\left(s_{1} s_{3}\right)\left(s_{2} s_{1}\right)\left(s_{1} s_{4} s_{1} s_{3}\right)\left(s_{1} s_{5} s_{1} s_{4}\right)\left(s_{1} s_{3} s_{1} s_{2}\right)\left(s_{1} s_{6}\right)\left(s_{1} s_{5} s_{1} s_{4}\right)=$
$=a_{1} a_{2} a_{1}^{-1} a_{3} a_{2} a_{4} a_{3} a_{2} a_{1} a_{5} a_{4} a_{3}=\left(a_{1}\right)\left(a_{2} a_{1}^{-1}\right)\left(a_{3} a_{2}\right)\left(a_{4} a_{3} a_{2} a_{1}\right)\left(a_{5} a_{4} a_{3}\right)$.
Thus $\ell_{A}(\sigma)=12\left(\right.$ while $\left.\ell_{S}(\sigma)=16\right)$. It can be shown here that $\operatorname{Des}_{A}(\sigma)=\{1,3,4,5\}$, hence $\operatorname{rmaj}_{A_{7}}(\sigma)=10$.
2.2. The covering map f. We can now introduce the covering map f, which plays an important role in later sections in the constructions of the bijections Ψ and Ψ_{q}.
Definition 2.5 (see [RR04, Definition 5.1]). Define $f: R_{j}^{A} \rightarrow R_{j}^{S}$ by
(1) $f\left(a_{j} a_{j-1} \cdots a_{\ell}\right)=s_{j} s_{j-1} \cdots s_{\ell}$ if $\ell \geq 2$, and
(2) $f\left(a_{j} \cdots a_{1}\right)=f\left(a_{j} \cdots a_{1}^{-1}\right)=s_{j} \cdots s_{1}$.

Now extend $f: A_{n+1} \rightarrow S_{n}$ as follows: let $v \in A_{n+1}, v=v_{1} \cdots v_{n-1}$ its A-canonical presentation, then

$$
f(v):=f\left(v_{1}\right) \cdots f\left(v_{n-1}\right),
$$

which is clearly the S-canonical presentation of $f(v)$.

3. The Foata bijection

The second fundamental transformation on words Φ was introduced in [Foa68] (for a full description, see [Lot83, §10.6]). It is defined on any finite word $r=x_{1} x_{2} \ldots x_{m}$ whose letters x_{1}, \ldots, x_{m} belong to a totally ordered alphabet.
Definition 3.1. Let X be a totally ordered alphabet, let $r=x_{1} x_{2} \ldots x_{m}$ be a word whose letters belong to X, and let $x \in X$ such that $x_{m} \leq x$ (respectively $x_{m}>x$). Let

$$
r=r^{1} r^{2} \ldots r^{p}
$$

be the unique decomposition of r into subwords $r^{i}=r_{1}^{i} r_{2}^{i} \ldots r_{m_{i}}^{i}, 1 \leq i \leq p$, such that $r_{m_{i}}^{i} \leq x$ (respectively $r_{m_{i}}^{i}>x$) and $r_{j}^{i}>x$ (respectively $r_{j}^{i} \leq x$) for all $1 \leq j<m_{i}$. Define $\gamma_{x}(r)$ by

$$
\gamma_{x}(r)=r_{m_{1}}^{1} r_{1}^{1} r_{2}^{1} \ldots r_{m_{1}-1}^{1} r_{m_{2}}^{2} r_{1}^{2} \ldots r_{m_{2}-1}^{2} \ldots r_{m_{p}}^{p} r_{1}^{p} \ldots r_{m_{p}-1}^{p}
$$

For example, with the usual order on the integers, $r=1267834$ and $x=5, r$ decomposes into $r^{1}=1, r^{2}=2, r^{3}=6783$ and $r^{4}=4$, so

$$
\gamma_{5}(1267834)=1236784
$$

Definition 3.2. Define Φ recursively as follows. First, $\Phi(r):=r$ if r is of length 1 . If x is a letter and r is a nonempty word, define $\Phi(r x)=\gamma_{x}(\Phi(r)) x$.

For example,

$$
\begin{aligned}
\Phi(653142) & =\gamma_{2}\left(\gamma_{4}\left(\gamma_{1}\left(\gamma_{3}\left(\gamma_{5}(6) 5\right) 3\right) 1\right) 4\right) 2 \\
& =\gamma_{2}\left(\gamma_{4}\left(\gamma_{1}\left(\gamma_{3}(65) 3\right) 1\right) 4\right) 2 \\
& =\gamma_{2}\left(\gamma_{4}\left(\gamma_{1}(653) 1\right) 4\right) 2 \\
& =\gamma_{2}\left(\gamma_{4}(6531) 4\right) 2 \\
& =\gamma_{2}(36514) 2 \\
& =365412 .
\end{aligned}
$$

The following algorithmic description of Φ from [FS78] is more useful in calculations.
Algorithm $3.3(\Phi)$. Let $r=x_{1} x_{2} \ldots x_{m}$;

1. Let $i:=1, r_{i}^{\prime}:=x_{1}$;
2. If $i=m$, let $\Phi(r):=r_{i}^{\prime}$ and stop; else continue;
3. If the last letter of r_{i}^{\prime} is less than or equal to (respectively greater than) x_{i+1}, cut r_{i}^{\prime} after every letter less than or equal to (respectively greater than) x_{i+1};
4. In each compartment of r_{i}^{\prime} determined by the previous cuts, move the last letter in the compartment to the beginning of it; let t_{i}^{\prime} be the word obtained after all those moves; put $r_{i+1}^{\prime}:=t_{i}^{\prime} x_{i+1}$; replace i by $i+1$ and go to step 2.
Example 3.4. Calculating $\Phi(r)$, where $r=653142$, using the algorithm:

$$
\begin{aligned}
r_{1}^{\prime} & =6 \mid \\
r_{2}^{\prime} & =6|5| \\
r_{3}^{\prime} & =6|5| 3 \mid \\
r_{4}^{\prime} & =6 \text { } \\
r_{5}^{\prime} & 3 \mid \\
& =3|6| 5 \mid \\
\Phi(r)=r_{6}^{\prime} & =3
\end{aligned} 6 \begin{array}{llllll}
& 5 & 4 & 1 & 2
\end{array}
$$

The main property of Φ is the following theorem.
Theorem 3.5 (see [Foa68]). (1) Φ is a bijection of S_{n} onto itself.
(2) For every $\sigma \in S_{n}, \operatorname{maj}_{S}(\sigma)=\ell_{S}(\Phi(\sigma))$.

Some further properties of Φ are given in Theorem 5.1
Let $\sigma=\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right] \in S_{n}$. Denote the reverse and the complement of σ by

$$
\mathbf{r}(\sigma):=\left[\sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{1}\right] \in S_{n}
$$

and

$$
\mathbf{c}(\sigma):=\left[n+1-\sigma_{1}, n+1-\sigma_{2}, \ldots, n+1-\sigma_{n}\right] \in S_{n}
$$

respectively.
Remark 3.6. Let $\rho=[n, n-1, \ldots, 1] \in S_{n}$. Then for $\sigma \in S_{n}, \mathbf{r}(\sigma)=\sigma \rho$ and $\mathbf{c}(\sigma)=\rho \sigma$. Thus it is obvious that \mathbf{r} and \mathbf{c} are involutions and that $\mathbf{r c}=\mathbf{c r}$. Moreover, $(\mathbf{r}(\sigma))^{-1}=$ $\mathbf{c}\left(\sigma^{-1}\right)$.

Definition 3.7. Let $\overleftarrow{\Phi}:=\mathbf{r} \Phi \mathbf{r}$, the right-to-left Foata transformation
While $\overleftarrow{\Phi}(w)$ is easy enough to calculate by reversing w, applying Algorithm 3.3 and reversing the result, it is easy to see that it can be calculated "directly" by applying a "right-to-left" version of the Algorithm, namely:

Algorithm $3.8(\overleftarrow{\Phi})$. Let $r=x_{1} x_{2} \ldots x_{m}$;

1. Let $i:=m, r_{i}^{\prime}:=x_{m}$;
2. If $i=1$, let $\Phi(r):=r_{i}^{\prime}$ and stop; else continue;
3. If the first letter of r_{i}^{\prime} is less than or equal to (respectively greater than) x_{m-i}, cut r_{i}^{\prime} before every letter less than or equal to (respectively greater than) x_{m-i};
4. In each compartment of r_{i}^{\prime} determined by the previous cuts, move the first letter in the compartment to the end of it; let t_{i}^{\prime} be the word obtained after all those moves; put $r_{i-1}^{\prime}:=x_{m-i} t_{i}^{\prime}$; replace i by $i-1$ and go to step 2 .

For an example of applying Algorithm 3.8, see the calculation of $\overleftarrow{\Phi}(w)$ in Section 6
The key property of $\overleftarrow{\Phi}$ used in this paper is the following.
Theorem 3.9. For every $\sigma \in S_{n}, \operatorname{rmaj}_{S_{n}}(\sigma)=\ell_{S}(\overleftarrow{\Phi}(\sigma))$.
The proof requires the following lemmas.
Lemma 3.10. The bijections $\Phi: S_{n} \rightarrow S_{n}$ and $\mathbf{c}: S_{n} \rightarrow S_{n}$ commute with each other.
Proof. We prove a slightly stronger claim, namely that Φ and \mathbf{c}_{k} commute as maps on \mathbb{Z}^{n}, where $\mathbf{c}_{k}\left(a_{1}, a_{2}, \ldots, a_{n}\right):=\left(k+1-a_{1}, k+1-a_{2}, \ldots, k+1-a_{n}\right)$. Let $\sigma=\left[\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right] \in \mathbb{Z}^{n}$. We need to show that $\Phi \mathbf{c}_{k}(\sigma)=\mathbf{c}_{k} \Phi(\sigma)$. The proof is by induction on n. For $n=1$, everything is trivial. For $n \geq 2$, write $\Phi\left(\sigma_{1} \ldots \sigma_{n-1}\right)=b_{1} \ldots b_{n-1}$ and $\gamma_{\sigma_{n}}\left(b_{1} \ldots b_{n-1}\right)=c_{1} \ldots c_{n-1}$. Using the notation $\bar{a}=k+1-a$, we have

$$
\begin{aligned}
\Phi \mathbf{c}_{k}(\sigma) & =\gamma_{\overline{\sigma_{n}}}\left(\Phi\left(\overline{\sigma_{1}} \overline{\sigma_{2}} \ldots \overline{\sigma_{n-1}}\right)\right) \overline{\sigma_{n}} \\
& =\gamma_{\overline{\sigma_{n}}}\left(\overline{b_{1}} \overline{b_{2}} \ldots \overline{b_{n-1}}\right) \overline{\sigma_{n}}
\end{aligned}
$$

by the induction hypothesis, and

$$
\mathbf{c}_{k} \Phi(\sigma)=\mathbf{c}_{k}\left(c_{1} \ldots c_{n-1} \sigma_{n}\right)=\overline{c_{1}} \ldots \overline{c_{n-1}} \overline{\sigma_{n}}
$$

so it remains to show that $\gamma_{\overline{\sigma_{n}}}\left(\overline{b_{1}} \overline{b_{2}} \ldots \overline{b_{n-1}}\right)=\overline{c_{1}} \ldots \overline{c_{n-1}}$.
Assume for now that $b_{n-1}<\sigma_{n}$ (the case $b_{n-1}>\sigma_{n}$ is entirely symmetric and will be left to the reader). Let $M=\left\{1 \leq m \leq n-1 \mid b_{m}<\sigma_{n}\right\}=\left\{m_{1}, \ldots, m_{p}\right\}, m_{1}<\cdots<m_{p}$. Note that $\overline{b_{n-1}}>\overline{\sigma_{n}}$ and $M=\left\{1 \leq m \leq n-1 \mid \overline{\sigma_{m}}>\overline{b_{n}}\right\}$. Therefore, using the notation from Definition 3.1, we have the decompositions

$$
b_{1} \ldots b_{n-1}=r_{1}^{1} \ldots r_{m_{1}}^{1} r_{1}^{2} \ldots r_{m_{2}}^{2} \ldots r_{1}^{p} \ldots r_{m_{p}}^{p}
$$

and

$$
\overline{b_{1}} \ldots \overline{b_{n-1}}=\overline{r_{1}^{1}} \ldots \overline{r_{m_{1}}^{1}} \overline{r_{1}^{2}} \ldots \overline{r_{m_{2}}^{2}} \ldots \overline{r_{1}^{p}} \ldots \overline{r_{m_{p}}^{p}}
$$

so

$$
c_{1} \ldots c_{n-1}=\gamma_{\sigma_{n}}\left(b_{1} \ldots b_{n-1}\right)=r_{m_{1}}^{1} r_{1}^{1} \ldots r_{m_{1}-1}^{1} r_{m_{2}}^{2} r_{1}^{2} \ldots r_{m_{2}-1}^{2} \ldots r_{m_{p}}^{p} r_{1}^{p} \ldots r_{m_{p}-1}^{p}
$$

and

$$
\gamma_{\overline{\sigma_{n}}}\left(\overline{b_{1}} \ldots \overline{b_{n-1}}\right)=\overline{r_{m_{1}}^{1}} \overline{r_{1}^{1}} \ldots \overline{r_{m_{1}-1}^{1}} \overline{r_{m_{2}}^{2}} \overline{r_{1}^{2}} \ldots \overline{r_{m_{2}-1}^{2}} \ldots \overline{r_{m_{p}}^{p}} \overline{r_{1}^{p}} \ldots \overline{r_{m_{p}-1}^{p}}
$$

Thus $\gamma_{\overline{\sigma_{n}}}\left(\overline{b_{1}} \overline{b_{2}} \ldots \overline{b_{n-1}}\right)=\overline{c_{1}} \ldots \overline{c_{n-1}}$ as desired.
Lemma 3.11. For every $w \in S_{n}, \ell_{S}(\mathbf{r c}(w))=\ell_{S}(w)$.
Proof. The lemma follows from the definitions of \mathbf{r} and \mathbf{c} and from the fact that for all $\sigma \in S_{n}, \ell_{S}(\sigma)=\operatorname{inv}(\sigma)=\#\{(i, j) \mid 1 \leq i<j \leq n, \sigma(i)>\sigma(j)\}:$

$$
\begin{aligned}
\ell_{S}(w) & =\#\{(i, j) \mid 1 \leq i<j \leq n, w(i)>w(j)\} \\
& =\#\{(i, j) \mid 1 \leq i<j \leq n, \mathbf{c}(w)(i)<\mathbf{c}(w)(j)\} \\
& =\#\{(i, j) \mid 1 \leq i<j \leq n, \mathbf{r c}(w)(n+1-i)<\mathbf{r c}(w)(n+1-j)\} \\
& =\#\{(n+1-s, n+1-r) \mid 1 \leq r<s \leq n, \mathbf{r c}(w)(s)<\mathbf{r c}(w)(r)\} \\
& =\#\{(r, s) \mid 1 \leq r<s \leq n, \mathbf{r c}(w)(r)>\mathbf{r c}(w)(s)\} \\
& =\ell_{S}(\mathbf{r c}(w))
\end{aligned}
$$

Lemma 3.12. For every $w \in S_{n}, \operatorname{maj}_{S}(\mathbf{r c}(w))=\operatorname{rmaj}_{S_{n}}(w)$.
Proof. By the definitions of \mathbf{r}, \mathbf{c} and Des_{S},

$$
\begin{aligned}
i \in \operatorname{Des}_{S}(\mathbf{r c}(w)) & \Longleftrightarrow \mathbf{r c}(w)(i)>\mathbf{r c}(w)(i+1) \\
& \Longleftrightarrow \mathbf{c}(w)(n-i+1)>\mathbf{c}(w)(n-i) \\
& \Longleftrightarrow n+1-w(n-i+1)>n+1-(w)(n-i) \\
& \Longleftrightarrow w(n-i+1)<(w)(n-i) \\
& \Longleftrightarrow n-i \in \operatorname{Des}_{S}(w) .
\end{aligned}
$$

Therefore

$$
\operatorname{maj}_{S}(\mathbf{r c}(w))=\sum_{i \in \operatorname{Des}_{S}(\mathbf{r c}(w))} i=\sum_{i \in \operatorname{Des}_{S}(w)} n-i=\operatorname{rmaj}_{S_{n}}(w) .
$$

Proof of Theorem 3.9.

$$
\begin{aligned}
\operatorname{rmaj}_{S_{n}}(\sigma) & =\operatorname{maj}_{S}(\mathbf{r c}(\sigma)) & & \text { (by Lemma 3.12) } \\
& =\ell_{S}(\Phi \mathbf{r c}(\sigma)) & & \text { (by Theorem 3.5) } \\
& =\ell_{S}(\mathbf{r c} \Phi \mathbf{r c}(\sigma)) & & \text { (by Lemma 3.11) } \\
& =\ell_{S}(\overleftarrow{\Phi}(\sigma)) & & \text { (by Lemma 3.10 and Remark 3.6) }
\end{aligned}
$$

4. The delent statistics

Definition 4.1 (see [RR04, Definition 7.1]). Let $\sigma \in S_{n}$. Define $\operatorname{Del}_{S}(\sigma)$ as

$$
\operatorname{Del}_{S}(\sigma)=\{1<j \leq n \mid \forall i<j \quad \sigma(i)>\sigma(j)\}
$$

These are the positions of the l.t.r.min, excluding the first position.
Definition 4.2. Let $\sigma \in S_{n}$. Define the left-to-right minima set of σ as

$$
\overrightarrow{\min }(\sigma)=\sigma\left(\operatorname{Del}_{S}(\sigma) \cup\{1\}\right)=\{\sigma(j) \mid 1 \leq j \leq n, \forall i<j \quad \sigma(i)>\sigma(j)\}
$$

These are the actual (letters) l.t.r.min, including the first letter.
Example 4.3. Let $\sigma=[5,2,3,1,4]$. Then $\operatorname{Del}_{S}(\sigma)=\{2,4\}$ and $\overrightarrow{\min }(\sigma)=\{5,2,1\}$.
Proposition 4.4. For every $\sigma \in S_{n}, \overrightarrow{\min }(\sigma)=\operatorname{Del}_{S}\left(\sigma^{-1}\right) \cup\{1\}$.
Proof. Let $k \in \overrightarrow{\min }(\sigma)$. Then $j=\sigma^{-1}(k) \in \operatorname{Del}_{S}(\sigma) \cup\{1\}$. Therefore, by negation, for all $1 \leq i \leq n$, if $\sigma(i)<\sigma(j)=k$ then $i>j=\sigma^{-1}(k)$. By the change of variables $i^{\prime}=\sigma(i)$, we get that for all $1 \leq i^{\prime} \leq n, i^{\prime}<k$ implies $\sigma^{-1}\left(i^{\prime}\right)>\sigma^{-1}(k)$, so by definition, $k \in \operatorname{Del}_{S}\left(\sigma^{-1}\right) \cup\{1\}$. This proves that $\overrightarrow{\min }(\sigma) \subseteq \operatorname{Del}_{S}\left(\sigma^{-1}\right) \cup\{1\}$.

The reverse containment is obtained by substituting σ^{-1} for σ and applying σ to both sides.

Definition 4.5 (see [RR04, Definition 7.4]). Let $\pi \in A_{n+1}$. Define $\operatorname{Del}_{A}(\pi)$ as

$$
\operatorname{Del}_{A}(\pi)=\{2<j \leq n+1 \mid \text { there is at most one } i<j \text { such that } \pi(i)<\pi(j)\} .
$$

Definition 4.6. Let $\pi \in A_{n+1}$. Define the left-to-right almost-minima set of π as

$$
\begin{aligned}
\overrightarrow{\operatorname{amin}}(\pi) & =\pi\left(\operatorname{Del}_{A}(\pi) \cup\{1,2\}\right) \\
& =\{\pi(j) \mid 1 \leq j \leq n+1 \text { and there is at most one } i<j \text { such that } \pi(i)<\pi(j)\}
\end{aligned}
$$

Example 4.7. Let $\pi=[4,2,6,3,1,5]$. Then $\operatorname{Del}_{A}(\pi)=\{4,5\}$ and $\overrightarrow{\operatorname{amin}}(\pi)=\{4,2,3,1\}$.
Proposition 4.8. For every $\pi \in A_{n+1}, \overrightarrow{\operatorname{amin}}(\pi)=\operatorname{Del}_{A}\left(\pi^{-1}\right) \cup\{1,2\}$.
Proof. Let $k \in \overrightarrow{\operatorname{amin}}(\pi)$. Then $j=\pi^{-1}(k) \in \operatorname{Del}_{A}(\pi) \cup\{1,2\}$. Therefore for all $1 \leq i \leq n+1$ except at most one, if $\pi(i)<\pi(j)=k$ then $i>j=\pi^{-1}(k)$. By the change of variables $i^{\prime}=\pi(i)$, we get that for all $1 \leq i^{\prime} \leq n+1$ except at most one, $i^{\prime}<k$ implies $\pi^{-1}\left(i^{\prime}\right)>\pi^{-1}(k)$, so by definition, $k \in \operatorname{Del}_{A}\left(\pi^{-1}\right) \cup\{1,2\}$. This proves that $\overrightarrow{\min }(\pi) \subseteq \operatorname{Del}_{A}\left(\pi^{-1}\right) \cup\{1,2\}$.

The reverse containment is obtained by substituting π^{-1} for π and applying π to both sides.

We now quote the following theorem. The bijection Ψ of Theorem 5.8 bellow provides a (short) bijective proof of that theorem.

Theorem 4.9 (see [RR04, Theroem 9.1(2)]). For every subsets $D_{1} \subseteq\{1, \ldots, n-1\}$ and $D_{2} \subseteq\{3, \ldots, n+1\}$,

$$
\sum_{\left\{\sigma \in A_{n+1} \mid \operatorname{Des}_{A}\left(\sigma^{-1}\right) \subseteq D_{1}, \operatorname{Del}_{A}\left(\sigma^{-1}\right) \subseteq D_{2}\right\}} q^{\mathrm{rmaj}_{A_{n+1}}(\sigma)}=\sum_{\left\{\sigma \in A_{n+1} \mid \operatorname{Des}_{A}\left(\sigma^{-1}\right) \subseteq D_{1}, \operatorname{Del}_{A}\left(\sigma^{-1}\right) \subseteq D_{2}\right\}} q^{\ell_{A}(\sigma)}
$$

5. The bijection Ψ

Recall the notations for the reverse and the complement of $\sigma=\left[\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right] \in S_{n}$, which are $\mathbf{r}(\sigma)=\left[\sigma_{n} \sigma_{n-1} \ldots \sigma_{1}\right]$ and $\mathbf{c}(\sigma)=\left[n+1-\sigma_{1}, n+1-\sigma_{2}, \ldots, n+1-\sigma_{n}\right]$, respectively, and the notations Φ and $\overleftarrow{\Phi}=\mathbf{r} \Phi \mathbf{r}$ for Foata's second fundamental transformation and the right-to-left Foata transformation (both described in detail in Section 3), respectively.

We shall need the following properties of Φ and $\overleftarrow{\Phi}$, see also Theorem 3.5.
Theorem 5.1. (1) Φ is a bijection of S_{n} onto itself.
(2) For every $\sigma \in S_{n}, \operatorname{maj}_{S}(\sigma)=\ell_{S}(\Phi(\sigma))$.
(3) (see [BW91, Example 5.3]) For every $\sigma \in S_{n}, \overleftarrow{\min }(\sigma)=\overleftarrow{\min }(\Phi(\sigma))$, where $\overleftarrow{\min }(\sigma)=$ $\{\sigma(j) \mid 1 \leq j \leq n, \forall i>j \sigma(i)>\sigma(j)\}$ is the set of right-to-left minima of σ.
(4) (see [FS78, Theorem 1]) For every $\sigma \in S_{n}, \operatorname{Des}_{S}\left(\sigma^{-1}\right)=\operatorname{Des}_{S}\left([\Phi(\sigma)]^{-1}\right)$.
(5) By Theorem 3.9, for every $\sigma \in S_{n}, \operatorname{rmaj}_{S_{n}}(\sigma)=\ell_{S}(\overleftarrow{\Phi}(\sigma))$.

The S - and the A-canonical presentations and the map f were discussed in Section 2, A key property of f is the way it relates between certain pairs of statistics on A_{n+1} and on S_{n}.
Definition 5.2 (see [RR04, Definition 5.2]). Let m_{S} be a statistic on the symmetric groups and m_{A} a statistic on the alternating groups. We say that $\left(m_{S}, m_{A}\right)$ is an f-pair (of statistics) if for any n and $v \in A_{n+1}, m_{A}(v)=m_{S}(f(v))$.
Proposition 5.3 (see RR04, Propositions 5.3 and 5.4]). The following pairs are f-pairs: $\left(\ell_{S}, \ell_{A}\right),\left(\mathrm{rmaj}_{S_{n}}, \mathrm{rmaj}_{A_{n+1}}\right),\left(\operatorname{del}_{S}, \operatorname{del}_{A}\right)$ and $\left(\operatorname{Des}_{A}, \operatorname{Des}_{S}\right)$.

We also have
Proposition 5.4 (see RR05, Propositions 8.4 and 8.5]). For every $v \in A_{n+1}, f(v)^{-1}=$ $f\left(v^{-1}\right)$.

The covering map f is obviously not injective. The family of maps g_{u} defined next serve as local inverses of f (see Remark 5.6).
Definition 5.5. For $u \in A_{n+1}$ with A-canonical presentation $u=u_{1} u_{2} \cdots u_{n-1}$, define $g_{u}: R_{j}^{S} \rightarrow R_{j}^{A}$ by

$$
g_{u}\left(s_{j} s_{j-1} \cdots s_{\ell}\right)=a_{j} a_{j-1} \cdots a_{\ell} \quad \text { if } \ell \geq 2, \quad \text { and } \quad g_{u}\left(s_{j} s_{j-1} \cdots s_{1}\right)=u_{j}
$$

Now extend $g_{u}: S_{n} \rightarrow A_{n+1}$ as follows: let $w \in S_{n}, w=w_{1} \cdots w_{n-1}$ its S-canonical presentation, then

$$
g_{u}(w):=g_{u}\left(w_{1}\right) \cdots g_{u}\left(w_{n-1}\right),
$$

which is clearly the A-canonical presentation of $g_{u}(w)$.
Remark 5.6. Let $w \in S_{n}$ and $u \in A_{n+1}$. Then $f\left(g_{u}(w)\right)=w$ if for all $1 \leq j \leq n-1$,

$$
u_{j}=a_{j} \cdots a_{2} a_{1}^{ \pm 1} \Longleftrightarrow w_{j}=s_{j} \cdots s_{1},
$$

where $w=w_{1} \cdots w_{n-1}$ and $u=u_{1} \cdots u_{n-1}$ are the S - and A-canonical presentations of w and u respectively.

We are now ready to define the bijection Ψ.
Definition 5.7. Define $\Psi: A_{n+1} \rightarrow A_{n+1}$ by $\Psi(v)=g_{v}(\overleftarrow{\Phi}(f(v)))$.

That is, the image of v under Ψ is obtained by applying $\overleftarrow{\Phi}$ to $f(v)$ in S_{n}, then using g_{v} as an "inverse" of f in order to "lift" the result back to A_{n+1}.

The following is our main theorem, which can be seen as an A_{n+1}-analogue of Theorem 5.1.
Theorem 5.8. (1) The mapping Ψ is a bijection of A_{n+1} onto itself.
(2) For every $v \in A_{n+1}, \operatorname{rmaj}_{A_{n+1}}(v)=\ell_{A}(\Psi(v))$.
(3) For every $v \in A_{n+1}, \operatorname{del}_{A}(v)=\operatorname{del}_{A}(\Psi(v))$.
(4) For every $v \in A_{n+1}, \operatorname{Del}_{A}\left(v^{-1}\right)=\operatorname{Del}_{A}\left([\Psi(v)]^{-1}\right)$.
(5) For every $v \in A_{n+1}, \operatorname{Des}_{A}\left(v^{-1}\right)=\operatorname{Des}_{A}\left([\Psi(v)]^{-1}\right)$.

In order to prove the theorem we need the following lemmas.
Lemma 5.9. (1) Let $w \in S_{n}, w=w_{1} \cdots w_{n-1}$ its S-canonical presentation. Then for every $1<j \leq n, j \in \overrightarrow{\min }(w)$ if and only if $w_{j-1}=s_{j-1} s_{j-2} \cdots s_{1}$.
(2) Let $v \in A_{n+1}, v=v_{1} \cdots v_{n-1}$ its A-canonical presentation. Then for every $2<j \leq$ $n+1, j \in \overrightarrow{\operatorname{amin}}(v)$ if and only if $v_{j-2}=a_{j-2} a_{j-3} \cdots a_{1}^{ \pm 1}$.

Proof. (1) By induction on n. Let $\sigma=w_{1} \cdots w_{n-2} \in S_{n-1} \subseteq S_{n}$ and assume that the assertion is true for σ. If $w_{n-1}=1$, then the claim is correct by the induction hypothesis. Otherwise, $w_{n-1}=s_{n-1} s_{n-2} \cdots s_{\ell}$ for some $1 \leq \ell \leq n-1$. Writing $\sigma=\left[b_{1}, \ldots, b_{n-1}\right]$, we have that $w=\sigma w_{n-1}=\left[b_{1}, \ldots, b_{\ell-1}, n, b_{\ell}, \ldots, b_{n-1}\right]$. For every $1<j \leq n-1, j=b_{k}$ for some k, so j is a left-to-right minimum of w if and only if it is a left-to-right minimum of σ, which, by the induction hypothesis, is true if and only if $w_{j-1}=s_{j-1} \cdots s_{1}$. Finally, n is an additional left-to-right minimum of w if and only if $\ell=1$, that is if and only if $w_{n-1}=s_{n-1} s_{n-2} \cdots s_{1}$.
(2) By induction on n. Let $\pi=v_{1} \cdots v_{n-2} \in A_{n} \subseteq A_{n+1}$ and assume that the assertion is true for π. If $v_{n-1}=1$, then the claim is correct by the induction hypothesis. Otherwise, $v_{n-1}=a_{n-1} a_{n-2} \cdots a_{\ell}^{\epsilon}$ for some $1 \leq \ell \leq n-1$ and $\epsilon= \pm 1$. Writing $\pi=\left[c_{1}, c_{2}, \ldots, c_{n}\right]$, we have that
$v=\pi v_{n-1}= \begin{cases}{\left[c_{1} c_{2}, \ldots, c_{\ell}, n+1, c_{\ell+1}, \ldots, c_{n}\right],} & \text { if } \ell>1 \text { and } n-\ell \text { is even; } \\ {\left[c_{2} c_{1}, \ldots, c_{\ell}, n+1, c_{\ell+1}, \ldots, c_{n}\right],} & \text { if } \ell>1 \text { and } n-\ell \text { is odd; } \\ {\left[c_{1}, n+1, c_{2}, \ldots, c_{n}\right],} & \text { if } \ell=1, n \text { is odd and } \epsilon=1 ; \\ {\left[c_{2}, n+1, c_{1}, \ldots, c_{n}\right],} & \text { if } \ell=1, n \text { is even and } \epsilon=1 ; \\ {\left[n+1, c_{1}, c_{2}, \ldots, c_{n}\right],} & \text { if } \ell=1, n \text { is even and } \epsilon=-1 ; \\ {\left[n+1, c_{2}, c_{1}, c_{3}, \ldots, c_{n}\right],} & \text { if } \ell=1, n \text { is odd and } \epsilon=-1 .\end{cases}$
For every $2<j \leq n, j=c_{k}$ for some k, so j is a left-to-right almost-minimum of v if and only if it is a left-to-right almost-minimum of π, which, by the induction hypothesis, is true if and only if $v_{j-2}=a_{j-2} \cdots a_{1}^{ \pm 1}$. Finally, $n+1$ is an additional left-to-right almost-minimum of v if and only if $\ell=1$, that is if and only if $v_{n-1}=$ $a_{n-1} a_{n-2} \cdots a_{1}^{ \pm 1}$.

Corollary 5.10. For every $v \in A_{n+1}, \overrightarrow{\operatorname{amin}}(v)=\overrightarrow{\min }(f(v))-1$, where $X-1=\{x-1 \mid x \in$ $X\}$.

Lemma 5.11. For every $w \in S_{n}, \overrightarrow{\min }(w)=\overrightarrow{\min }(\overleftarrow{\Phi}(w))$, hence $\operatorname{del}_{S}(w)=\operatorname{del}_{S}(\overleftarrow{\Phi}(w))$.

Proof. This follows immediately from the definitions and from Theorem 5.1(3):

$$
\begin{aligned}
j \in \overrightarrow{\min }(w) & \Longleftrightarrow j \in \overleftarrow{\min }(\mathbf{r}(w)) \\
& \Longleftrightarrow j \in \overleftarrow{\min }(\Phi(\mathbf{r}(w)) \\
& \Longleftrightarrow j \in \overrightarrow{\min }(\mathbf{r}(\Phi(\mathbf{r}(w)))=\overrightarrow{\min }(\overleftarrow{\Phi}(w))
\end{aligned}
$$

The following is an easy corollary of Lemmas 5.9 and 5.11 .
Corollary 5.12. Let $w \in S_{n}, w=w_{1} \cdots w_{n-1}$ its S-canonical presentation, and let $\sigma=$ $\overleftarrow{\Phi}(w), \sigma=\sigma_{1} \cdots \sigma_{n-1}$ its S-canonical presentation. Then $\sigma_{j}=s_{j} \cdots s_{1}$ if and only if $w_{j}=s_{j} \cdots s_{1}$.
Lemma 5.13. Let $v \in A_{n+1}$. Then $f(\Psi(v))=\overleftarrow{\Phi}(f(v))$.
Proof. Let $v=v_{1} \cdots v_{n-1}$ and $w=\overleftarrow{\Phi}(f(v))=w_{1} \cdots w_{n-1}$ be the A - and S-canonical presentations of v and $\overleftarrow{\Phi}(f(v))$ respectively. By definition of f and Corollary 5.12, for every $1 \leq j \leq n-1, w_{j}=s_{j} s_{j-1} \cdots s_{1}$ if and only if $v_{j}=a_{j} \cdots a_{2} a_{1}^{ \pm 1}$. Therefore, by Remark 5.6,

$$
f(\Psi(v))=f\left(g_{v}(\overleftarrow{\Phi}(f(v)))\right)=f\left(g_{v}(w)\right)=w=\overleftarrow{\Phi}(f(v))
$$

Proof of Theorem 5.8. (1) To prove that Ψ is a bijection, it suffices to find its inverse. Let $v \in A_{n+1}$, and let $v=v_{1} \cdots v_{n-1}, w=\overleftarrow{\Phi}(f(v))=w_{1} \cdots w_{n-1}$ and $u=\Psi(v)=$ $g_{v}(w)=u_{1} \cdots u_{n-1}$ be the $A-, S$ - and A-canonical presentations of $v, \overleftarrow{\Phi}(f(v))$ and $\Psi(v)$ respectively. By Lemma 5.13,

$$
\overleftarrow{\Phi}^{-1}(f(\Psi(v)))=\overleftarrow{\Phi}^{-1}(\overleftarrow{\Phi}(f(v)))=f(v)
$$

so

$$
\begin{equation*}
g_{\Psi(v)}\left(\overleftarrow{\Phi}^{-1}(f(\Psi(v)))\right)=g_{\Psi(v)}(f(v))=g_{u}(f(v))=g_{u}\left(f\left(v_{1}\right)\right) \cdots g_{u}\left(f\left(v_{n-1}\right)\right) \tag{*}
\end{equation*}
$$

We claim that $\pi \mapsto g_{\pi}\left(\overleftarrow{\Phi}^{-1}(f(\pi))\right)$ is the inverse of Ψ, or in other words, that the right hand side of $(*)$ equals $v_{1} v_{2} \cdots v_{n-1}$. Let $1 \leq j \leq n-1$. If $v_{j}=a_{j} a_{j-1} \cdots a_{\ell}$, $\ell>1$, then $g_{u}\left(f\left(v_{j}\right)\right)=g_{u}\left(s_{j} s_{j-1} \cdots s_{\ell}\right)=a_{j} a_{j-1} \cdots a_{\ell}=v_{j}$. If $v_{j}=a_{j} \cdots a_{2} a_{1}^{ \pm 1}$, then $f\left(v_{j}\right)=s_{j} s_{j-1} \cdots s_{1}$, so by Corollary 5.12, $w_{j}=s_{j} s_{j-1} \cdots s_{1}$, and therefore $u_{j}=g_{v}\left(w_{j}\right)=v_{j}$, so again $g_{u}\left(f\left(v_{j}\right)\right)=v_{j}$, and the claim is proved.
(2) By Proposition 5.3 and Lemma 5.13. $\ell_{A}(\Psi(v))=\ell_{S}(f(\Psi(v)))=\ell_{S}(\overleftarrow{\Phi}(f(v)))$. By Theorem 3.9 and Proposition 5.3. $\ell_{S}(\overleftarrow{\Phi}(f(v)))=\operatorname{rmaj}_{S_{n}}(f(v))=\operatorname{rmaj}_{A_{n+1}}(v)$. Thus $\ell_{A}(\Psi(v))=\operatorname{rmaj}_{A_{n+1}}(v)$ as desired.
(3) By Proposition 5.3 and Lemma 5.13, $\operatorname{del}_{A}(\Psi(v))=\operatorname{del}_{S}(f(\Psi(v)))=\operatorname{del}_{S}(\overleftarrow{\Phi}(f(v)))$, and by Lemma 5.11, the definition of del_{S} and Proposition 5.3, $\operatorname{del}_{S}(\overleftarrow{\Phi}(f(v)))=$ $\operatorname{del}_{S}(f(v))=\operatorname{del}_{A}(v)$. Thus $\operatorname{del}_{A}(\Psi(v))=\operatorname{del}_{A}(v)$ as desired.
(4) By Corollary 5.10, $\overrightarrow{\operatorname{amin}}(\Psi(v))=\overrightarrow{\min }(f(\Psi(v)))-1$, with the notation $X-1=$ $\{x-\underset{\longrightarrow}{1 \mid x} \in X\}$. Therefore by Lemmas 5.13 and $5.11 \overrightarrow{\operatorname{amin}(\Psi(v))}=\overrightarrow{\min }(\overleftarrow{\Phi}(f(v)))-$ $1=\overrightarrow{\min }(f(v))-1$. Again by Lemma 5.9, we get that $\overrightarrow{\operatorname{amin}}(\Psi(v))=\overrightarrow{\operatorname{amin}}(v)$. By Proposition 4.8, this implies that $\operatorname{Del}_{A}\left([\Psi(v)]^{-1}\right) \cup\{1,2\}=\operatorname{Del}_{A}\left(v^{-1}\right) \cup\{1,2\}$, hence $\operatorname{Del}_{A}\left([\Psi(v)]^{-1}\right)=\operatorname{Del}_{A}\left(v^{-1}\right)$ as desired.
(5) By Propositions 5.3 and 5.4 and Lemma 5.13,
$\operatorname{Des}_{A}\left([\Psi(v)]^{-1}\right)=\operatorname{Des}_{S}\left(f\left([\Psi(v)]^{-1}\right)\right)=\operatorname{Des}_{S}\left([f(\Psi(v))]^{-1}\right) \operatorname{Des}_{S}\left([\overleftarrow{\Phi}(f(v))]^{-1}\right)$.
By Remark 3.6, $\overleftarrow{\Phi}(f(v))^{-1}=(\mathbf{r} \Phi \mathbf{r} f(v))^{-1}=\mathbf{c}\left((\Phi \mathbf{r} f(v))^{-1}\right)$, so $\operatorname{Des}_{S}\left([\overleftarrow{\Phi}(f(v))]^{-1}\right)=$ $\{1, \ldots, n-1\} \backslash \operatorname{Des}_{S}\left([\Phi \mathbf{r} f(v)]^{-1}\right)$. By Theorem 5.1.

$$
\operatorname{Des}_{S}\left([\Phi \mathbf{r} f(v)]^{-1}\right)=\operatorname{Des}_{S}\left([\mathbf{r} f(v)]^{-1}\right)
$$

Hence, $\operatorname{Des}_{S}\left([\overleftarrow{\Phi}(f(v))]^{-1}\right)=\{1, \ldots, n-1\} \backslash \operatorname{Des}_{S}\left([\mathbf{r} f(v)]^{-1}\right)=\operatorname{Des}_{S}\left(\mathbf{c}\left([\mathbf{r} f(v)]^{-1}\right)\right)$. Since $\mathbf{c}\left([\mathbf{r} f(v)]^{-1}\right)=\mathbf{c}\left(\mathbf{c}\left([f(v)]^{-1}\right)\right)=f(v)^{-1}$, we get that

$$
\operatorname{Des}_{S}\left([\overleftarrow{\Phi}(f(v))]^{-1}\right)=\operatorname{Des}_{S}\left([f(v)]^{-1}\right)
$$

Finally, by Propositions 5.4 and 5.3. $\operatorname{Des}_{S}\left([f(v)]^{-1}\right)=\operatorname{Des}_{S}\left(f\left(v^{-1}\right)\right)=\operatorname{Des}_{A}\left(v^{-1}\right)$.

6. Example

As an example, let $v=[6,4,3,7,5,2,1] \in A_{7}$. We now calculate $v, v^{-1}, \Psi(v)$ and $[\Psi(v)]^{-1}$, and using the A-procedure - their A-canonical presentations. This yields the corresponding sets Del_{A} and Des_{A}, hence also the ℓ_{A} and the $r m a j_{A_{7}}$ indices, thus demonstrating Theorem 5.8 in this example. Throughout the example, when writing a canonical presentation, we will underline all factors of the form $\underline{a_{j} \cdots a_{2} a_{1}^{ \pm 1}}$ and $\underline{s_{j} \cdots s_{1}}$.

The A-canonical presentations of v and of v^{-1} are

$$
\begin{gathered}
v=\underline{v_{1} v_{2}} v_{3} \underline{v_{4}} v_{5}=\left(\underline{a_{1}}\right)\left(\underline{a_{2} a_{1}^{-1}}\right)\left(a_{3} a_{2}\right)\left(\underline{a_{4} a_{3} a_{2} a_{1}}\right)\left(a_{5} a_{4} a_{3}\right) \quad\left(\text { so } \quad \operatorname{del}_{A}(v)=3\right), \\
v^{-1}=[7,6,3,2,5,1,4]=\left(\underline{a_{1}}\right)\left(a_{3} a_{2}\right)\left(\underline{a_{4} a_{3} a_{2} a_{1}^{-1}}\right)\left(\underline{a_{5} a_{4} a_{3} a_{2} a_{1}^{-1}}\right) \quad\left(\text { so } \quad \operatorname{del}_{A}\left(v^{-1}\right)=3\right) .
\end{gathered}
$$

Thus $\operatorname{Des}_{A}(v)=\{1,3,4,5\}$, so $\operatorname{rmaj}_{A_{7}}(v)=(6-1)+(6-3)+(6-4)+(6-5)=11$.
Similarly $\operatorname{Des}_{A}\left(v^{-1}\right)=\{1,2,4\}$. Also, $\operatorname{Del}_{A}(v)=\{3,6,7\}$ and $\operatorname{Del}_{A}\left(v^{-1}\right)=\{3,4,6\}$.
We have

$$
w=f(v)=\underline{w_{1} w_{2}} w_{3} \underline{w_{4}} w_{5}=\left(\underline{s_{1}}\right)\left(\underline{s_{2} s_{1}}\right)\left(s_{3} s_{2}\right)\left(\underline{s_{4} s_{3} s_{2} s_{1}}\right)\left(s_{5} s_{4} s_{3}\right)=[5,3,6,4,2,1] .
$$

Note that $\operatorname{Des}_{S}(w)=\operatorname{Des}_{S}(f(v))=\{1,3,4,5\}=\operatorname{Des}_{A}(v)$, and also, $\operatorname{rmaj}_{S_{6}}(w)=11=$ $\operatorname{rmaj}_{A_{7}}(v)$ and $\operatorname{del}_{S}(w)=3=\operatorname{del}_{A}(v)$, in accordance with Proposition 5.3.

Let us calculate $\Psi(v)$ and $[\Psi(v)]^{-1}$. Using Algorithm 3.8 we obtain $\overleftarrow{\Phi}(w)$:

$$
\begin{array}{rlr}
w_{1}^{\prime} & = & \mid 1 \\
w_{2}^{\prime} & = & |2| 1 \\
w_{3}^{\prime} & = & |4| 2 \mid 1 \\
w_{4}^{\prime} & = & |6| 421 \\
w_{5}^{\prime} & = & |3 \quad 6| 2|1| 4 \\
\overleftarrow{\Phi}(w)=w_{6}^{\prime} & =5, & 6,3,2,1,4 .
\end{array}
$$

Note that $\ell_{S}(\overleftarrow{\Phi}(w))=11=\operatorname{rmaj}_{S_{6}}(w)$, as asserted by Theorem 3.9.
The S-canonical presentation of $\overleftarrow{\Phi}(w)$, obtained by the S-procedure (see Example 2.2), is

$$
u=\overleftarrow{\Phi}(w)=\underline{u_{1} u_{2}} u_{3} \underline{u_{4}} u_{5}=\left(\underline{s_{1}}\right)\left(\underline{s_{2} s_{1}}\right)(1)\left(\underline{s_{4} s_{3} s_{2} s_{1}}\right)\left(s_{5} s_{4} s_{3} s_{2}\right)
$$

The underlined factors in the S-canonical presentation of w are the same as the underlined factors in the S-canonical presentation of $\overleftarrow{\Phi}(w)$, as asserted by Corollary 5.12. This is a result of the fact that $\overrightarrow{\min }(w)=\{1,2,3,5\}=\overrightarrow{\min }(\overleftarrow{\Phi}(w))$, which is a result of Lemma 5.11. Now

$$
\begin{aligned}
& \Psi(v)=g_{v}(u)=\underline{v_{1} v_{2}}(1) \underline{v_{4}}\left(a_{5} a_{4} a_{3} a_{2}\right)= \\
& \qquad \underline{\left(a_{1}\right)}\left(\underline{a_{2} a_{1}^{-1}}\right)(1)\left(\underline{a_{4} a_{3} a_{2} a_{1}}\right)\left(a_{5} a_{4} a_{3} a_{2}\right)=[4,6,7,3,2,1,5],
\end{aligned}
$$

so $[\Psi(v)]^{-1}=[6,5,4,1,7,2,3]=(1)\left(\underline{a_{2} a_{1}}\right)\left(\underline{a_{3} a_{2} a_{1}}\right)\left(\underline{a_{4} a_{3} a_{2} a_{1}^{-1}}\right)\left(a_{5} a_{4}\right)$. It follows that
$\operatorname{Des}_{A}\left(v^{-1}\right)=\{1,2,4\}=\operatorname{Des}_{A}\left([\Psi(v)]^{-1}\right) \quad$ and $\quad \operatorname{Del}_{A}\left(v^{-1}\right)=\{3,4,6\}=\operatorname{Del}_{A}\left([\Psi(v)]^{-1}\right)$.
Also

$$
\operatorname{del}_{A}(\Psi(v))=3=\operatorname{del}_{A}(v)
$$

and

$$
\ell_{A}(\Psi(v))=11=\operatorname{rmaj}_{A_{7}}(v)
$$

7. q-ANALOGUES

7.1. The q statistics.

Definition 7.1 (see RR05, Definition 4.1]). Let $\pi \in S_{n}$, and let $q<n$. Define the q-length of $\pi, \ell_{q}(\pi)$, as the number of Coxeter generators in the S-canonical presentation of π, where s_{1}, \ldots, s_{q-1} are not counted. For example, let $\pi=s_{1} s_{2} s_{1} s_{4} s_{3} s_{6} s_{5} s_{4} s_{3} s_{2}$, then $\ell_{3}(\pi)=6$ while $\ell_{4}(\pi)=4$. Clearly, $\ell_{1}=\ell_{S}$.
Definition 7.2 (see RR05, Definition 5.1]). Let $\pi \in S_{n}$. Define $\operatorname{Del}_{k+1}(\pi)$ as

$$
\operatorname{Del}_{k+1}(\pi)=\{k+1<j \leq n \mid \#\{i<j \mid \pi(i)<\pi(j)\} \leq k\}
$$

Definition 7.3. Let $\pi \in S_{n}$. Define the left-to-right k-almost-minima set of π as

$$
\begin{aligned}
\overrightarrow{\min }_{k+1}(\pi)=\pi\left(\operatorname{Del}_{k+1}(\pi) \cup\{1,2, \ldots,\right. & , k+1\}) \\
& =\{\pi(j) \mid 1 \leq j \leq n, \#\{i<j \mid \pi(i)<\pi(j)\} \leq k\}
\end{aligned}
$$

Proposition 7.4. For every $\pi \in S_{n+q-1}, \overrightarrow{\min }_{k+1}(\pi)=\operatorname{Del}_{k+1}\left(\pi^{-1}\right) \cup\{1,2, \ldots, k+1\}$. Proof. Let $r \in \overrightarrow{\min }_{k+1}(\pi)$. Then $j=\pi^{-1}(r) \in \operatorname{Del}_{k+1}(\pi) \cup\{1, \ldots, k+1\}$. Therefore

$$
\#\left\{1 \leq i \leq n+q-1 \mid \pi(i)<\pi(j)=r \text { and } i<j=\pi^{-1}(r)\right\} \leq k
$$

By the change of variables $i^{\prime}=\pi(i)$, we get

$$
\#\left\{1 \leq i^{\prime} \leq n+q-1 \mid i^{\prime}<r \text { and } \pi^{-1}\left(i^{\prime}\right)<\pi^{-1}(r)\right\} \leq k
$$

so by definition, $r \in \operatorname{Del}_{k+1}\left(\pi^{-1}\right) \cup\{1, \ldots, k+1\}$. This proves that $\overrightarrow{\min }_{k+1}(\pi) \subseteq \operatorname{Del}_{k+1}\left(\pi^{-1}\right) \cup$ $\{1, \ldots, k+1\}$.

The reverse containment is obtained by substituting π^{-1} for π and applying π to both sides.

Definition 7.5 (see RR05, Definition 5.8]). Let $\pi \in S_{n+q-1}$. Then i is a q-descent in π if $i \geq q$ and at least one of the following holds: a) $i \in \operatorname{Des}(\pi) ; \mathrm{b}) i+1 \in \operatorname{Del}_{q}(\pi)$.

Definition 7.6 (see RR05, Definition 5.9]). (1) The q-descent set of $\pi \in S_{n+q-1}$ is defined as

$$
\operatorname{Des}_{q}(\pi)=\{i \mid i \text { is a } q \text {-descent in } \pi\}
$$

(2) For $\pi \in S_{n+q-1}$ define the q, m-reverse major index of π by

$$
\operatorname{rmaj}_{q, m}(\pi)=\sum_{i \in \operatorname{Des}_{q}(\pi)}(m-i)
$$

where $m=n+q-1$.
We need the notion of dashed patterns RR05, and we introduce it via examples:
$\sigma \in S_{n}$ has the dashed pattern $(1-2-4,3)$ if $\sigma=[\cdots, a, \cdots, b, \cdots, d, c, \cdots]$, and it has the dashed pattern $(2-1-4,3)$ if $\sigma=[\cdots, b, \cdots, a, \cdots, d, c, \cdots]$ for some $a<b<c<d$. Given q, denote by $\operatorname{Pat}(q)$ the following q ! dashed patterns:

$$
\operatorname{Pat}(q)=\left\{\left(\pi_{1}-\pi_{2}-\cdots-\pi_{q}-(q+2),(q+1)\right) \mid \pi \in S_{q}\right\} .
$$

For example, $\operatorname{Pat}(2)=\{(1-2-4,3),(2-1-4,3)\}$. If $\sigma \in S_{m}$ does not have any of the dashed pattern in $\operatorname{Pat}(q)$, then σ avoids $\operatorname{Pat}(q)$. We denote by $\operatorname{Avoid}_{q}(n+q-1)$ the set of permutations $\sigma \in S_{n+q-1}$ avoiding all the q ! dashed patterns in $\operatorname{Pat}(q)$.

The main equidistribution theorems here are the following two theorems. The bijection Ψ_{q} below implies bijective proofs for these theorems.

Theorem 7.7 (see [RR05, Theorem 11.5]). For every positive integers n and q and every subsets $B_{1}, B_{2} \subseteq\{q, \ldots, n+q-1\}$,

$$
\sum_{\left\{\pi \in S_{n+q-1} \mid \operatorname{Des}_{q}\left(\pi^{-1}\right)=B_{1}, \operatorname{Del}_{q}\left(\pi^{-1}\right)=B_{2}\right\}} t^{\ell_{q}(\pi)}=\sum_{\left\{\pi \in S_{n+q-1} \mid \operatorname{Des}_{q}\left(\pi^{-1}\right)=B_{1}, \operatorname{Del}_{q}\left(\pi^{-1}\right)=B_{2}\right\}} t^{\mathrm{rmaj}_{q, n+q-1}(\pi)}
$$

Theorem 7.8 (see [RR05, Theorem 11.7]). For every positive integers n and q and every subsets $B \subseteq\{q, \ldots, n+q-2\}$,

$$
\sum_{\left\{\pi^{-1} \in \text { Avoid }_{q}(n+q-1) \mid \operatorname{Des}_{q}\left(\pi^{-1}\right)=B\right\}} t^{\ell_{q}(\pi)}=\sum_{\left\{\pi^{-1} \in \text { Avoid }_{q}(n+q-1) \mid \operatorname{Des}_{q}\left(\pi^{-1}\right)=B\right\}} t^{\mathrm{rmaj}_{q, n+q-1}(\pi)} .
$$

7.2. The covering $\operatorname{map} f_{q}$.

Definition 7.9 (see [RR05, Definition 8.1]). Let $w \in S_{n+q-1}$ and let $w=s_{i_{1}} \cdots s_{i_{r}}$ be its S-canonical presentation. Define $f_{q}: S_{n+q-1} \rightarrow S_{n}$ as follows:

$$
f_{q}(w)=f_{q}\left(s_{i_{1}}\right) \cdots f_{q}\left(s_{i_{r}}\right)
$$

where $f_{q}\left(s_{1}\right)=\cdots=f_{q}\left(s_{q-1}\right)=1$, and $f_{q}\left(s_{j}\right)=s_{j-q+1}$ if $j \geq q$.
Remark 7.10. If $w=w_{1} \cdots w_{n+q-2}$ is the S-canonical presentation of $w \in S_{n+q-1}, w_{j} \in R_{j}^{S}$, then $f_{q}(w)=f_{q}\left(w_{q}\right) \cdots f_{q}\left(w_{n+q-2}\right)$ is the S-canonical presentation of $f_{q}(w), f_{q}\left(w_{j}\right) \in R_{j-q+1}^{S}$.
Proposition 7.11 (see RR05, Proposition 8.6 and Remark 11.1]). For every $\pi \in S_{n+q-1}$, $\operatorname{Del}_{q}(\pi)-q+1=\operatorname{Del}_{S}\left(f_{q}(\pi)\right), \operatorname{Des}_{q}(\pi)-q+1=\operatorname{Des}_{S}\left(f_{q}(\pi)\right), \ell_{q}(\pi)=\ell_{S}\left(f_{q}(\pi)\right)$, and $\operatorname{rmaj}_{q, n+q-1}(\pi)=\operatorname{rmaj}_{S_{n}}\left(f_{q}(\pi)\right)$. Here, $X-r=\{x-r \mid x \in X\}$.
Proposition 7.12 (see RR05, Proposition 8.4]). For any permutation $w, f_{q}(w)^{-1}=f_{q}\left(w^{-1}\right)$.
The map f_{q} is obviously not injective for $q>1$. The family of maps $g_{q, u}$ defined next serve as local inverses of f_{q} (see Remark 7.14).

Definition 7.13. For $u \in S_{n+q-1}$ with S-canonical presentation $u=u_{1} \cdots u_{n+q-2}$, define $g_{q, u}: R_{j}^{S} \rightarrow R_{j+q-1}^{S}$ by

$$
g_{q, u}\left(s_{j} s_{j-1} \cdots s_{\ell}\right)=s_{j+q-1} s_{j+q-2} \cdots s_{\ell+q-1}, \quad g_{u}\left(s_{j} s_{j-1} \cdots s_{1}\right)=u_{j+q-1}
$$

Now extend $g_{q, u}: S_{n} \rightarrow S_{n+q-1}$ as follows: let $w \in S_{n}, w=w_{1} \cdots w_{n-1}$ its S-canonical presentation, then

$$
g_{q, u}(w):=u_{1} \cdots u_{q-1} \cdot g_{q, u}\left(w_{1}\right) \cdots g_{q, u}\left(w_{n-1}\right)
$$

which is clearly the S-canonical presentation of $g_{q, u}(w)$.
Remark 7.14. Let $w \in S_{n}$ and $u \in S_{n+q-1}$. Then $f_{q}\left(g_{q, u}(w)\right)=w$ if for all $1 \leq j \leq n-1$,

$$
w_{j}=s_{j} \cdots s_{1} \quad \Longrightarrow \quad u_{j+q-1}=s_{j+q-1} \cdots s_{\ell}, \ell \leq q
$$

where $w=w_{1} \cdots w_{n-1}$ and $u=u_{1} \cdots u_{n+q-2}$ are the S-canonical presentations of w and u respectively.

7.3. The $\operatorname{map} \Psi_{q}$.

Definition 7.15. Define $\Psi_{q}: S_{n+q-1} \rightarrow S_{n+q-1}$ by $\Psi_{q}(v)=g_{q, v}\left(\overleftarrow{\Phi}\left(f_{q}(v)\right)\right)$.
That is, the image of v under Ψ_{q} is obtained by applying $\overleftarrow{\Phi}$ to $f_{q}(v)$ in S_{n}, then using $g_{q, v}$ as an "inverse" of f_{q} in order to "lift" the result back to S_{n+q-1}.
Theorem 7.16. (1) The mapping Ψ_{q} is a bijection of S_{n+q-1} onto itself.
(2) For every $v \in S_{n+q-1}, \operatorname{rmaj}_{q, n+q-1}(v)=\ell_{q}\left(\Psi_{q}(v)\right)$.
(3) For every $v \in S_{n+q-1}, \operatorname{Del}_{q}\left(v^{-1}\right)=\operatorname{Del}_{q}\left(\Psi_{q}(v)^{-1}\right)$.
(4) For every $v \in S_{n+q-1}, \operatorname{Des}_{q}\left(v^{-1}\right)=\operatorname{Des}_{q}\left(\Psi_{q}(v)^{-1}\right)$.

The proof is given below.
Lemma 7.17. Let $v \in S_{n+q-1}, v=v_{1} \cdots v_{n+q-2}$ its S-canonical presentation. Then for every $q<j \leq n+q-1, j \in \min _{q}(v)$ if and only if $v_{j-1}=s_{j-1} s_{j-2} \cdots s_{\ell}$ for some $\ell \leq q$.
Proof. By induction on n. Let $\pi=v_{1} \cdots v_{n-1+q-2} \in S_{n+q-2} \subseteq S_{n+q-1}$ and assume that the assertion is true for π. If $v_{n+q-2}=1$, then the claim is correct by the induction hypothesis. Otherwise, $v_{n+q-2}=s_{n+q-2} s_{n+q-3} \cdots s_{\ell}$ for some $1 \leq \ell \leq n+q-2$. Writing $\pi=\left[b_{1}, \ldots, b_{n+q-2}\right]$, we have that $v=\pi v_{n+q-2}=\left[b_{1}, \ldots, b_{\ell-1}, n+q-1, b_{\ell}, \ldots, b_{n+q-2}\right]$, so clearly for every $1 \leq k \leq n+q-2$, the set of numbers smaller than b_{k} and to its left in π is equal to the set of numbers smaller than b_{k} and to its left in v. Thus $b_{k} \in \overrightarrow{\min }_{q}(v)$ if and only if $b_{k} \in \overrightarrow{\min }_{q}(\pi)$, which, by the induction hypothesis, is true if and only if $v_{b_{k}-1}=s_{b_{k}-1} \cdots s_{r}$ for some $r \leq q$. Finally, $n+q-1 \in \overrightarrow{\min }_{q}(v)$ if and only if $n+q-1$ occupies one of the q leftmost places in v, that is, if and only if $\ell \leq q$.
Lemma 7.18. Let $v \in S_{n+q-1}$. Then $f_{q}\left(\Psi_{q}(v)\right)=\overleftarrow{\Phi}\left(f_{q}(v)\right)$.
Proof. Let $v=v_{1} \cdots v_{n+q-2}$ and $w=\overleftarrow{\Phi}\left(f_{q}(v)\right)=w_{1} \cdots w_{n-1}$ be the S-canonical presentations of v and $\overleftarrow{\Phi}\left(f_{q}(v)\right)$ respectively. By definition of f_{q} and Corollary 5.12, for every $1 \leq j \leq n-1, w_{j}=s_{j} s_{j-1} \cdots s_{1}$ if and only if $v_{j+q-1}=s_{j+q-1} \cdots s_{\ell}, \ell \leq q$. Therefore, by Remark 7.14,

$$
f_{q}\left(\Psi_{q}(v)\right)=f_{q}\left(g_{q, v}\left(\overleftarrow{\Phi}\left(f_{q}(v)\right)\right)\right)=f_{q}\left(g_{q, v}(w)\right)=w=\overleftarrow{\Phi}\left(f_{q}(v)\right)
$$

Proof of Theorem 7.16. (1) To prove that Ψ_{q} is a bijection, it suffices to find its inverse. Let $v \in S_{n+q-1}$, and let $v=v_{1} \cdots v_{n+q-2}, w=\overleftarrow{\Phi}\left(f_{q}(v)\right)=w_{1} \cdots w_{n-1}$ and $u=\Psi_{q}(v)=g_{q, v}(w)=v_{1} \cdots v_{q-1} u_{q} \cdots u_{n+q-2}$ be the S-canonical presentations of v, $\overleftarrow{\Phi}\left(f_{q}(v)\right)$ and $\Psi_{q}(v)$ respectively. By Lemma 7.18,

$$
\overleftarrow{\Phi}^{-1}\left(f_{q}\left(\Psi_{q}(v)\right)\right)=\overleftarrow{\Phi}^{-1}\left(\overleftarrow{\Phi}\left(f_{q}(v)\right)\right)=f_{q}(v)
$$

so
$(*) g_{q, \Psi_{q}(v)}\left(\overleftarrow{\Phi}^{-1}\left(f_{q}\left(\Psi_{q}(v)\right)\right)\right)=g_{q, \Psi_{q}(v)}\left(f_{q}(v)\right)$

$$
=g_{q, u}\left(f_{q}(v)\right)=v_{1} \cdots v_{q-1} \cdot g_{q, u}\left(f_{q}\left(v_{1}\right)\right) \cdots g_{q, u}\left(f_{q}\left(v_{n-1}\right)\right) .
$$

We claim that $\pi \mapsto g_{q, \pi}\left(\overleftarrow{\Phi}^{-1}\left(f_{q}(\pi)\right)\right)$ is the inverse of Ψ_{q}, or in other words, that the right hand side of $(*)$ equals $v_{1} v_{2} \cdots v_{n+q-2}$. Let $q \leq j \leq n+q-2$, and write $v_{j}=s_{j} s_{j-1} \cdots s_{\ell}$. If $\ell>q$, then $g_{q, u}\left(f_{q}\left(v_{j}\right)\right)=g_{q, u}\left(s_{j-q+1} \cdots s_{\ell-q+1}\right)=s_{j} \cdots s_{\ell}=v_{j}$. If $\ell \leq q$, then $f_{q}\left(v_{j}\right)=s_{j} \cdots s_{1}$, so by Corollary 5.12, $w_{j}=s_{j} \cdots s_{1}$, and therefore $u_{j}=g_{q, v}\left(w_{j}\right)=v_{j}$, so again $g_{q, u}\left(f_{q}\left(v_{j}\right)\right)=v_{j}$, and the claim is proved.
(2) By Proposition 7.11 and Lemma 7.18, $\ell_{q}\left(\Psi_{q}(v)\right)=\ell_{S}\left(f_{q}\left(\Psi_{q}(v)\right)\right)=\ell_{S}\left(\overleftarrow{\Phi}\left(f_{q}(v)\right)\right)$. By Theorem 3.9 and Proposition $7.11, \ell_{S}\left(\overleftarrow{\Phi}\left(f_{q}(v)\right)\right)=\operatorname{rmaj}_{S_{n}}\left(f_{q}(v)\right)=\operatorname{rmaj}_{q, n+q-1}(v)$. Thus $\ell_{q}\left(\overline{\Psi_{q}(v)}\right)=\operatorname{rmaj}_{q, n+q-1}(v)$ as desired.
(3) By Lemma 7.17 and the definition of $f_{q}, \overrightarrow{\min }_{q}\left(\Psi_{q}(v)\right)=\overrightarrow{\min }\left(f_{q}\left(\Psi_{q}(v)\right)\right)-q+1$ (with the notation $X-r=\{x-r \mid x \in X\}$). Therefore by Lemmas 7.18 and 5.11, $\overrightarrow{\min }_{q}\left(\Psi_{q}(v)\right)=\overrightarrow{\min }\left(\overleftarrow{\Phi}\left(f_{q}(v)\right)\right)-q+1=\overrightarrow{\min }\left(f_{q}(v)\right)-q+1$. Again by Lemma 7.17, we get that $\overrightarrow{\min }_{q}\left(\Psi_{q}(v)\right)=\overrightarrow{\min }_{q}(v)$. By Proposition 7.4, this implies that $\operatorname{Del}_{q}\left(\left[\Psi_{q}(v)\right]^{-1}\right) \cup\{1, \ldots, q\}=\operatorname{Del}_{q}\left(v^{-1}\right) \cup\{1, \ldots, q\}$, hence $\operatorname{Del}_{q}\left(\left[\Psi_{q}(v)\right]^{-1}\right)=$ $\operatorname{Del}_{q}\left(v^{-1}\right)$ as desired.
(4) By Propositions 7.11 and 7.12 and Lemma 7.18 ,

$$
\begin{aligned}
\operatorname{Des}_{q}\left(\left[\Psi_{q}(v)\right]^{-1}\right)-q+1 & =\operatorname{Des}_{S}\left(f_{q}\left(\left[\Psi_{q}(v)\right]^{-1}\right)\right) \\
& =\operatorname{Des}_{S}\left(\left[f_{q}\left(\Psi_{q}(v)\right)\right]^{-1}\right) \\
& =\operatorname{Des}_{S}\left(\left[\overleftarrow{\Phi}\left(f_{q}(v)\right)\right]^{-1}\right)
\end{aligned}
$$

By Remark 3.6, $\left[\overleftarrow{\Phi}\left(f_{q}(v)\right)\right]^{-1}=\left[\mathbf{r} \Phi \mathbf{r} f_{q}(v)\right]^{-1}=\mathbf{c}\left(\left[\Phi \mathbf{r} f_{q}(v)\right]^{-1}\right)$, so

$$
\operatorname{Des}_{S}\left(\left[\overleftarrow{\Phi}\left(f_{q}(v)\right)\right]^{-1}\right)=\{1, \ldots, n-1\} \backslash \operatorname{Des}_{S}\left(\left[\Phi \mathbf{r} f_{q}(v)\right]^{-1}\right)
$$

By Theorem 5.1.

$$
\operatorname{Des}_{S}\left(\left[\operatorname{qr} f_{q}(v)\right]^{-1}\right)=\operatorname{Des}_{S}\left(\left[\mathbf{r} f_{q}(v)\right]^{-1}\right)
$$

Hence, $\operatorname{Des}_{S}\left(\left[\overleftarrow{\Phi}\left(f_{q}(v)\right)\right]^{-1}\right)=\{1, \ldots, n-1\} \backslash \operatorname{Des}_{S}\left(\left[\mathbf{r} f_{q}(v)\right]^{-1}\right)=\operatorname{Des}_{S}\left(\mathbf{c}\left(\left[\mathbf{r} f_{q}(v)\right]^{-1}\right)\right)$. Since $\mathbf{c}\left(\left[\mathbf{r} f_{q}(v)\right]^{-1}\right)=\mathbf{c}\left(\mathbf{c}\left(\left[f_{q}(v)\right]^{-1}\right)\right)=\left[f_{q}(v)\right]^{-1}$, we get that

$$
\operatorname{Des}_{S}\left(\left[\overleftarrow{\Phi}\left(f_{q}(v)\right)\right]^{-1}\right)=\operatorname{Des}_{S}\left(\left[f_{q}(v)\right]^{-1}\right)
$$

Finally, by Propositions 7.12 and 7.11 ,

$$
\operatorname{Des}_{S}\left(\left[f_{q}(v)\right]^{-1}\right)=\operatorname{Des}_{S}\left(f_{q}\left(v^{-1}\right)\right)=\operatorname{Des}_{q}\left(v^{-1}\right)-q+1 .
$$

References

[BW91] A. Björner and Michelle L. Wachs, Permutation statistics and linear extensions of posets. J. Combin. Theory Ser. A, 58(1):85-114, 1991.
[Car54] L. Carlitz, q-Bernoulli and Eulerian numbers, Trans. Amer. Math Soc., 76 (1954) 332-350.
[Car75] L. Carlitz, A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly 82 (1975) 51-54.
[Foa68] D. Foata, On the Netto inversion number of a sequence. Proc. Amer. Math. Soc., 19:236-240, 1968.
[FS78] D. Foata and M. P. Schützenberger, Major index and inversion number of permutations. Math. Nachr. 83 (1978) 143-159.
[GG79] A. Garsia and I. Gessel, Permutation statistics and partitions, Adv. Math. 31 (1979) 288-305.
[Gol93] David M. Goldschmidt, Group characters, symmetric functions, and the Hecke algebra, volume 4 of University Lecture Series. American Mathematical Society, Providence, RI, 1993.
[Kra95] C. Krattenthaler, The major counting of non intersecting lattice paths and generating functions for tableaux, Mem. Amer. Math.Soc. 115 (1995), no. 552.
[Lot83] M. Lothaire, Combinatorics on words, volume 17 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Publishing Co., Reading, Mass., 1983.
[MM16] P.A. MacMahon, Combinatory Analysis I-II, Cambridge Univ. Press. London/New York, 1916. Reprinted by Chelsea, New York, 1960.
[Mit01] Hideo Mitsuhashi, The q-analogue of the alternating group and its representations. J. Algebra, 240(2):535-558, 2001.
[RR04] A. Regev and Y. Roichman, Permutation statistics on the alternating group. Adv. in Appl. Math., 33(4):676-709, 2004.
[RR05] A. Regev and Y. Roichman, Generalized statistics on S_{n} and pattern avoidance. European J. Combin., 26(1):29-57, 2005.
[Sta02] R. P. Stanley, Some remarks on sign-balanced and maj-balanced posets, preprint, arXiv math.CO/0211113, 2002.

Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
E-mail address: dan.bernstein@weizmann.ac.il
Department of Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel E-mail address: am.regev@weizmann.ac.il

