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A FOATA BIJECTION FOR THE ALTERNATING GROUP AND FOR
q-ANALOGUES

DAN BERNSTEIN AND AMITAI REGEV

Abstract. The Foata bijection Φ : Sn → Sn is extended to the bijections Ψ : An+1 →
An+1 and Ψq : Sn+q−1 → Sn+q−1, where Sm, Am are the symmetric and the alternating
groups. These bijections imply bijective proofs for recent equidistribution theorems, by
Regev and Roichman, for An+1 and for Sn+q−1.

1. Introduction

In [MM16] MacMahon proved his remarkable theorem about the equidistribution in the
symmetric group Sn of the length (or the inversion-number) and the major index statistics.
This raised the natural question of constructing a canonical bijection on Sn, for each n, that
would correspond these length and major index statistics, and would thus yield a bijective
proof of that theorem of MacMahon. That problem was solved by Foata [Foa68], who
constructed such a canonical bijection, see Section 3 for a discussion of the Foata bijection
Φ. Throughout the years, MacMahon’s equidistribution theorem has received far reaching
refinements and generalizations, see for example [BW91], [Car54], [Car75], [FS78], [GG79],
[Kra95] and [Sta02].

We remark that MacMahon’s equidistribution theorem fails when the Sn statistics are
restricted to the alternating subgroups An. However, by introducing new An statistics which
are natural analogues of the Sn statistics, in [RR04], analogous equidistribution theorems
were proved for An. This was done by first formulating the above Sn statistics in terms of the
Coxeter ganerators si = (i, i+1), 1 ≤ i ≤ n− 1. By choosing the “Mitsuhashi” generators
ai = s1si+1 for An+1 [Mit01], analogous statistics on An+1 were obtained, via canonical
presentations by these generators. These canonical presentations allow the introduction of
the map f : An+1 → Sn, which is one of the main tools in [RR04], see Section 2 for a
discussion of these presentations and of f .

MacMahon-type theorems were obtained in [RR04] by introducing the delent statistics
for these groups (for Sn, this statistic already appeared in [BW91]). Via the above map
f : An+1 → Sn, equidistribution theorems were then lifted from Sn to An+1, thus yielding
(new) equidistribution theorems for An+1. In particular, equidistribution theorems for the
An+1-analogues of the length and (reverse) major-index statistics were obtained in this way,
see for example Theorem 4.9 below.

These theorems naturally raise the question of constructing an An+1-analogue of the Foata
bijection — with analogous properties. This problem is solved in Section 5, where indeed
we construct such a map Ψ. That map Ψ is composed of a reflection of Foata’s original
bijection Φ, together with the map f : An+1 → Sn and of certain “local” inversions of f .
This of course gives a new — bijective — proof of Theorem 4.9.
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Statistics on symmetric groups which are q-analogues of the classical Sn statistics were
introduced in [RR05], via Sn canonical presentations and the maps fq : Sn+q−1 → Sn, see
Section 7 below. This map fq sends the q statistics on Sn+q−1 to the corresponding classical
statistics on Sn. As in the case of An+1, this allows the lifting of equidistribution theorems
from Sn to Sn+q−1. This was done in [RR05], where in that process an interesting connection
with dashed patterns in permutations has appeared, see Theorems 7.7 and 7.8 below.

Again, these equidistribution theorems naturally raise the question of finding the (q-)ana-
logue of the Foata bijection. In Section 7 we indeed construct such a bijection Ψq. As in the
case of Ψ, the bijection Ψq is composed of fq, of a reflection of the original Foata bijection
Φ, and of certain “local” inversions of fq. As an application, Ψq yields new — bijective —
proofs of Theorems 7.7 and 7.8.

The paper is organized as follows. Sections 2, 3 and 4 contain preliminary material, mostly
from [Foa68], [RR04] and [RR05], which is necessary for defining and studying the bijections
Ψ and Ψq. A reader who is familiar with these three papers can skip these preliminary
sections. In Section 5 we introduce and study Ψ, and Section 6 is an example, showing the
properties of Ψ. Finally, the bijections Ψq are introduced and studied in Section 7.

2. Canonical presentations and the covering map

2.1. The S- and A-canonical presentations. In this subsection we review the presenta-
tions of elements in Sn and An by the corresponding generators and procedures for calculating
them.

The Coxeter generators of Sn are si = (i, i+1), 1 ≤ i ≤ n− 1. Recall the definition of the
set RS

j ,

RS
j = {1, sj, sjsj−1, . . . , sjsj−1 · · · s1} ⊆ Sj+1,

and the following theorem.

Theorem 2.1 (see [Gol93, pp. 61–62]). Let w ∈ Sn. Then there exist unique elements
wj ∈ RS

j , 1 ≤ j ≤ n− 1, such that w = w1 · · ·wn−1. Thus, the presentation w = w1 · · ·wn−1

is unique. Call that presentation the S-canonical presentation of w.

The number of si in the S-canonical presentation of σ ∈ Sn is its S-length, `S(σ). The
descent set of σ ∈ Sn is DesS(σ) = { i | σ(i) > σ(i + 1) }; the S major-index is majS(σ) =∑

i∈DesS(σ) i, and the reverse Sn major-index is rmajSn
(σ) =

∑
i∈DesS(σ)(n − i). Note that

i ∈ DesS(σ) iff `S(σ) > `S(σsi).

The S-procedure is a simple way to calculate the S-canonical presentation of a given
element in Sn. Let σ ∈ Sn, σ(r) = n, σ = [. . . , n, . . . ]. Then by definition of the sis,
n can be ‘pulled to its place on the right’: σsrsr+1 · · · sn−1 = [. . . , n]. This gives wn−1 =
sn−1 · · · sr+1sr ∈ RS

n−1. Looking at σw−1
n−1 = σsrsr+1 · · · sn−1 = [. . . , n − 1, . . . , n] now, pull

n− 1 to its right place (second from the right) by a similar product stst+1 · · · sn−2, yielding
wn−2 = sn−2 · · · st ∈ RS

n−2. Continue this way until finally σ = w1 · · ·wn−1.

Example 2.2. Let σ = [5, 6, 3, 2, 1, 4], then w5 = s5s4s3s2; σw−1
5 = [5, 3, 2, 1, 4, 6], so in

order to ‘pull 5 to its place’ we need w4 = s4s3s2s1; now σw−1
5 w−1

4 = [3, 2, 1, 4, 5, 6], so
no need to move 4, hence w3 = 1; continuing the same way, check that w2 = s2s1 and
w1 = s1, so σ = w1w2w3w4w5 = (s5s4s3s2)(s4s3s2s1)(1)(s2s1)(s1). Thus `S(σ) = 11. Here
DesS σ = {2, 3, 4}, so majS(σ) = rmajS6

(σ) = 9.
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For An, the “Mitsuhash” generators are ai = s1si+1, 1 ≤ i ≤ n− 2. Recall the definition

RA
j = {1, aj, ajaj−1, . . . , aj · · · a2, aj · · · a2a1, aj · · · a2a

−1
1 } ⊆ Aj+2

(for example, RA
3 = {1, a3, a3a2, a3a2a1, a3a2a

−1
1 }), and the following theorem.

Theorem 2.3 (see [RR04, Theorem 3.4]). Let v ∈ An+1. Then there exist unique elements
vj ∈ RA

j , 1 ≤ j ≤ n− 1, such that v = v1 · · · vn−1, and this presentation is unique. Call that
presentation the A-canonical presentation of v.

The number of ai in the A-canonical presentation of σ ∈ An+1 is defined to be its A-
length, `A(σ). In analogy with Sn, the A-descent set of σ ∈ An+1 is defined as DesA(σ) = { i |
`A(σ) ≥ `A(σai) }. Now define majA(σ) =

∑
i∈DesA(σ) i, and rmajAn+1

(σ) =
∑

i∈DesA(σ)(n−i),

see [RR05].

The A-procedure is a simple procedure for obtaining the A-canonical presentation of
σ ∈ An.
A-procedure: Step 1: follow the S-procedure and obtain the S-canonical presentation of
σ ∈ An. Step 2: pair the factors. Step 3: insert s1s1 in the middle of each pair and obtain
the A-canonical presentation.

Example 2.4. . Let σ = [6, 4, 3, 7, 5, 2, 1].
Step 1: σ = s1s2s1s3s2s1s4s3s5s4s3s2s1s6s5s4.
Step 2: σ = (s1s2)(s1s3)(s2s1)(s4s3)(s5s4)(s3s2)(s1s6)(s5s4).
Step 3: σ = (s1s1s1s2)(s1s1s1s3)(s2s1s1s1)(s4s1s1s3)(s5s1s1s4)(s3s1s1s2)(s1s1s1s6)(s5s1s1s4) =
= (s1s2)(s1s3)(s2s1)(s1s4s1s3)(s1s5s1s4)(s1s3s1s2)(s1s6)(s1s5s1s4) =
= a1a2a

−1
1 a3a2a4a3a2a1a5a4a3 = (a1)(a2a

−1
1 )(a3a2)(a4a3a2a1)(a5a4a3).

Thus `A(σ) = 12 (while `S(σ) = 16). It can be shown here that DesA(σ) = {1, 3, 4, 5}, hence
rmajA7

(σ) = 10.

2.2. The covering map f . We can now introduce the covering map f , which plays an
important role in later sections in the constructions of the bijections Ψ and Ψq.

Definition 2.5 (see [RR04, Definition 5.1]). Define f : RA
j → RS

j by

(1) f(ajaj−1 · · · a`) = sjsj−1 · · · s` if ` ≥ 2, and
(2) f(aj · · · a1) = f(aj · · · a−1

1 ) = sj · · · s1.

Now extend f : An+1 → Sn as follows: let v ∈ An+1, v = v1 · · · vn−1 its A-canonical
presentation, then

f(v) := f(v1) · · · f(vn−1),

which is clearly the S-canonical presentation of f(v).

3. The Foata bijection

The second fundamental transformation on words Φ was introduced in [Foa68] (for a full
description, see [Lot83, §10.6]). It is defined on any finite word r = x1x2 . . . xm whose letters
x1, . . . , xm belong to a totally ordered alphabet.

Definition 3.1. Let X be a totally ordered alphabet, let r = x1x2 . . . xm be a word whose
letters belong to X, and let x ∈ X such that xm ≤ x (respectively xm > x). Let

r = r1r2 . . . rp
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be the unique decomposition of r into subwords ri = ri
1r

i
2 . . . ri

mi
, 1 ≤ i ≤ p, such that

ri
mi
≤ x (respectively ri

mi
> x) and ri

j > x (respectively ri
j ≤ x) for all 1 ≤ j < mi. Define

γx(r) by
γx(r) = r1

m1
r1
1r

1
2 . . . r1

m1−1r
2
m2

r2
1 . . . r2

m2−1 . . . rp
mp

rp
1 . . . rp

mp−1.

For example, with the usual order on the integers, r = 1 2 6 7 8 3 4 and x = 5, r decomposes
into r1 = 1, r2 = 2, r3 = 6 7 8 3 and r4 = 4, so

γ5(1 2 6 7 8 3 4) = 1 2 3 6 7 8 4.

Definition 3.2. Define Φ recursively as follows. First, Φ(r) := r if r is of length 1. If x is a
letter and r is a nonempty word, define Φ(rx) = γx(Φ(r)) x.

For example,

Φ(6 5 3 1 4 2) = γ2(γ4(γ1(γ3(γ5(6) 5) 3) 1) 4) 2

= γ2(γ4(γ1(γ3(6 5) 3) 1) 4) 2

= γ2(γ4(γ1(6 5 3) 1) 4) 2

= γ2(γ4(6 5 3 1) 4) 2

= γ2(3 6 5 1 4) 2

= 3 6 5 4 1 2.

The following algorithmic description of Φ from [FS78] is more useful in calculations.

Algorithm 3.3 (Φ). Let r = x1x2 . . . xm ;
1. Let i := 1, r′i := x1 ;
2. If i = m, let Φ(r) := r′i and stop; else continue;
3. If the last letter of r′i is less than or equal to (respectively greater than) xi+1, cut r′i

after every letter less than or equal to (respectively greater than) xi+1 ;
4. In each compartment of r′i determined by the previous cuts, move the last letter in the

compartment to the beginning of it; let t′i be the word obtained after all those moves; put
r′i+1 := t′i xi+1 ; replace i by i + 1 and go to step 2.

Example 3.4. Calculating Φ(r), where r = 6 5 3 1 4 2, using the algorithm:

r′1 = 6 |
r′2 = 6 | 5 |
r′3 = 6 | 5 | 3 |
r′4 = 6 5 3 | 1 |
r′5 = 3 | 6 | 5 | 1 4 |

Φ(r) = r′6 = 3 6 5 4 1 2 .

The main property of Φ is the following theorem.

Theorem 3.5 (see [Foa68]). (1) Φ is a bijection of Sn onto itself.
(2) For every σ ∈ Sn, majS(σ) = `S(Φ(σ)).

Some further properties of Φ are given in Theorem 5.1

Let σ = [σ1, σ2, . . . , σn] ∈ Sn. Denote the reverse and the complement of σ by

r(σ) := [σn, σn−1, . . . , σ1] ∈ Sn
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and
c(σ) := [n + 1− σ1, n + 1− σ2, . . . , n + 1− σn] ∈ Sn

respectively.

Remark 3.6. Let ρ = [n, n − 1, . . . , 1] ∈ Sn. Then for σ ∈ Sn, r(σ) = σρ and c(σ) = ρσ.
Thus it is obvious that r and c are involutions and that rc = cr. Moreover, (r(σ))−1 =
c(σ−1).

Definition 3.7. Let
←−
Φ := rΦr, the right-to-left Foata transformation.

While
←−
Φ(w) is easy enough to calculate by reversing w, applying Algorithm 3.3 and

reversing the result, it is easy to see that it can be calculated “directly” by applying a
“right-to-left” version of the Algorithm, namely:

Algorithm 3.8 (
←−
Φ). Let r = x1x2 . . . xm ;

1. Let i := m, r′i := xm ;
2. If i = 1, let Φ(r) := r′i and stop; else continue;
3. If the first letter of r′i is less than or equal to (respectively greater than) xm−i, cut r′i

before every letter less than or equal to (respectively greater than) xm−i ;
4. In each compartment of r′i determined by the previous cuts, move the first letter in

the compartment to the end of it; let t′i be the word obtained after all those moves; put
r′i−1 := xm−i t

′
i ; replace i by i− 1 and go to step 2.

For an example of applying Algorithm 3.8, see the calculation of
←−
Φ(w) in Section 6.

The key property of
←−
Φ used in this paper is the following.

Theorem 3.9. For every σ ∈ Sn, rmajSn
(σ) = `S(

←−
Φ(σ)).

The proof requires the following lemmas.

Lemma 3.10. The bijections Φ : Sn → Sn and c : Sn → Sn commute with each other.

Proof. We prove a slightly stronger claim, namely that Φ and ck commute as maps on Zn,
where ck(a1, a2, . . . , an) := (k+1−a1, k+1−a2, . . . , k+1−an). Let σ = [σ1σ2 . . . σn] ∈ Zn. We
need to show that Φck(σ) = ckΦ(σ). The proof is by induction on n. For n = 1, everything
is trivial. For n ≥ 2, write Φ(σ1 . . . σn−1) = b1 . . . bn−1 and γσn(b1 . . . bn−1) = c1 . . . cn−1.
Using the notation a = k + 1− a, we have

Φck(σ) = γσn(Φ(σ1 σ2 . . . σn−1)) σn

= γσn(b1 b2 . . . bn−1) σn

by the induction hypothesis, and

ckΦ(σ) = ck(c1 . . . cn−1 σn) = c1 . . . cn−1 σn,

so it remains to show that γσn(b1 b2 . . . bn−1) = c1 . . . cn−1.
Assume for now that bn−1 < σn (the case bn−1 > σn is entirely symmetric and will be left

to the reader). Let M = { 1 ≤ m ≤ n− 1 | bm < σn } = {m1, . . . ,mp}, m1 < · · · < mp. Note

that bn−1 > σn and M = { 1 ≤ m ≤ n − 1 | σm > bn}. Therefore, using the notation from
Definition 3.1, we have the decompositions

b1 . . . bn−1 = r1
1 . . . r1

m1
r2
1 . . . r2

m2
. . . rp

1 . . . rp
mp
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and

b1 . . . bn−1 = r1
1 . . . r1

m1
r2
1 . . . r2

m2
. . . rp

1 . . . rp
mp

,

so

c1 . . . cn−1 = γσn(b1 . . . bn−1) = r1
m1

r1
1 . . . r1

m1−1 r2
m2

r2
1 . . . r2

m2−1 . . . rp
mp

rp
1 . . . rp

mp−1

and

γσn(b1 . . . bn−1) = r1
m1

r1
1 . . . r1

m1−1 r2
m2

r2
1 . . . r2

m2−1 . . . rp
mp

rp
1 . . . rp

mp−1.

Thus γσn(b1 b2 . . . bn−1) = c1 . . . cn−1 as desired. �

Lemma 3.11. For every w ∈ Sn, `S(rc(w)) = `S(w).

Proof. The lemma follows from the definitions of r and c and from the fact that for all
σ ∈ Sn, `S(σ) = inv(σ) = #{ (i, j) | 1 ≤ i < j ≤ n, σ(i) > σ(j) }:

`S(w) = #{ (i, j) | 1 ≤ i < j ≤ n, w(i) > w(j) }
= #{ (i, j) | 1 ≤ i < j ≤ n, c(w)(i) < c(w)(j) }
= #{ (i, j) | 1 ≤ i < j ≤ n, rc(w)(n + 1− i) < rc(w)(n + 1− j) }
= #{ (n + 1− s, n + 1− r) | 1 ≤ r < s ≤ n, rc(w)(s) < rc(w)(r) }
= #{ (r, s) | 1 ≤ r < s ≤ n, rc(w)(r) > rc(w)(s) }
= `S(rc(w)) �

Lemma 3.12. For every w ∈ Sn, majS(rc(w)) = rmajSn
(w).

Proof. By the definitions of r, c and DesS,

i ∈ DesS(rc(w)) ⇐⇒ rc(w)(i) > rc(w)(i + 1)

⇐⇒ c(w)(n− i + 1) > c(w)(n− i)

⇐⇒ n + 1− w(n− i + 1) > n + 1− (w)(n− i)

⇐⇒ w(n− i + 1) < (w)(n− i)

⇐⇒ n− i ∈ DesS(w).

Therefore

majS(rc(w)) =
∑

i∈DesS(rc(w))

i =
∑

i∈DesS(w)

n− i = rmajSn
(w). �

Proof of Theorem 3.9.

rmajSn
(σ) = majS(rc(σ)) (by Lemma 3.12)

= `S(Φrc(σ)) (by Theorem 3.5)

= `S(rcΦrc(σ)) (by Lemma 3.11)

= `S(
←−
Φ(σ)) (by Lemma 3.10 and Remark 3.6) �
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4. The delent statistics

Definition 4.1 (see [RR04, Definition 7.1]). Let σ ∈ Sn. Define DelS(σ) as

DelS(σ) = { 1 < j ≤ n | ∀i < j σ(i) > σ(j) }.

These are the positions of the l.t.r.min, excluding the first position.

Definition 4.2. Let σ ∈ Sn. Define the left-to-right minima set of σ as
−−→
min(σ) = σ (DelS(σ) ∪ {1}) = {σ(j) | 1 ≤ j ≤ n, ∀i < j σ(i) > σ(j) }.

These are the actual (letters) l.t.r.min, including the first letter.

Example 4.3. Let σ = [5, 2, 3, 1, 4]. Then DelS(σ) = {2, 4} and
−−→
min(σ) = {5, 2, 1}.

Proposition 4.4. For every σ ∈ Sn,
−−→
min(σ) = DelS(σ−1) ∪ {1}.

Proof. Let k ∈ −−→min(σ). Then j = σ−1(k) ∈ DelS(σ) ∪ {1}. Therefore, by negation, for
all 1 ≤ i ≤ n, if σ(i) < σ(j) = k then i > j = σ−1(k). By the change of variables
i′ = σ(i), we get that for all 1 ≤ i′ ≤ n, i′ < k implies σ−1(i′) > σ−1(k), so by definition,

k ∈ DelS(σ−1) ∪ {1}. This proves that
−−→
min(σ) ⊆ DelS(σ−1) ∪ {1}.

The reverse containment is obtained by substituting σ−1 for σ and applying σ to both
sides. �

Definition 4.5 (see [RR04, Definition 7.4]). Let π ∈ An+1. Define DelA(π) as

DelA(π) = { 2 < j ≤ n + 1 | there is at most one i < j such that π(i) < π(j) }.

Definition 4.6. Let π ∈ An+1. Define the left-to-right almost-minima set of π as

−−−→
amin(π) = π (DelA(π) ∪ {1, 2})

= { π(j) | 1 ≤ j ≤ n + 1 and there is at most one i < j such that π(i) < π(j) }.

Example 4.7. Let π = [4, 2, 6, 3, 1, 5]. Then DelA(π) = {4, 5} and
−−−→
amin(π) = {4, 2, 3, 1}.

Proposition 4.8. For every π ∈ An+1,
−−−→
amin(π) = DelA(π−1) ∪ {1, 2}.

Proof. Let k ∈ −−−→amin(π). Then j = π−1(k) ∈ DelA(π)∪{1, 2}. Therefore for all 1 ≤ i ≤ n+1
except at most one, if π(i) < π(j) = k then i > j = π−1(k). By the change of variables
i′ = π(i), we get that for all 1 ≤ i′ ≤ n+1 except at most one, i′ < k implies π−1(i′) > π−1(k),

so by definition, k ∈ DelA(π−1) ∪ {1, 2}. This proves that
−−→
min(π) ⊆ DelA(π−1) ∪ {1, 2}.

The reverse containment is obtained by substituting π−1 for π and applying π to both
sides. �

We now quote the following theorem. The bijection Ψ of Theorem 5.8 bellow provides a
(short) bijective proof of that theorem.

Theorem 4.9 (see [RR04, Theroem 9.1(2)]). For every subsets D1 ⊆ {1, . . . , n − 1} and
D2 ⊆ {3, . . . , n + 1},∑

{σ∈An+1|DesA(σ−1)⊆D1, DelA(σ−1)⊆D2}

qrmajAn+1
(σ) =

∑
{σ∈An+1|DesA(σ−1)⊆D1, DelA(σ−1)⊆D2}

q`A(σ).
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5. The bijection Ψ

Recall the notations for the reverse and the complement of σ = [σ1σ2 . . . σn] ∈ Sn, which
are r(σ) = [σnσn−1 . . . σ1] and c(σ) = [n + 1 − σ1, n + 1 − σ2, . . . , n + 1 − σn], respectively,

and the notations Φ and
←−
Φ = rΦr for Foata’s second fundamental transformation and the

right-to-left Foata transformation (both described in detail in Section 3), respectively.

We shall need the following properties of Φ and
←−
Φ , see also Theorem 3.5.

Theorem 5.1. (1) Φ is a bijection of Sn onto itself.
(2) For every σ ∈ Sn, majS(σ) = `S(Φ(σ)).

(3) (see [BW91, Example 5.3]) For every σ ∈ Sn,
←−−
min(σ) =

←−−
min(Φ(σ)), where

←−−
min(σ) =

{σ(j) | 1 ≤ j ≤ n, ∀i > j σ(i) > σ(j) } is the set of right-to-left minima of σ.
(4) (see [FS78, Theorem 1]) For every σ ∈ Sn, DesS(σ−1) = DesS([Φ(σ)]−1).

(5) By Theorem 3.9, for every σ ∈ Sn, rmajSn
(σ) = `S(

←−
Φ(σ)).

The S- and the A-canonical presentations and the map f were discussed in Section 2. A
key property of f is the way it relates between certain pairs of statistics on An+1 and on Sn.

Definition 5.2 (see [RR04, Definition 5.2]). Let mS be a statistic on the symmetric groups
and mA a statistic on the alternating groups. We say that (mS, mA) is an f -pair (of statistics)
if for any n and v ∈ An+1, mA(v) = mS(f(v)).

Proposition 5.3 (see [RR04, Propositions 5.3 and 5.4]). The following pairs are f -pairs:
(`S, `A), (rmajSn

, rmajAn+1
), (delS, delA) and (DesA, DesS).

We also have

Proposition 5.4 (see [RR05, Propositions 8.4 and 8.5]). For every v ∈ An+1, f(v)−1 =
f(v−1).

The covering map f is obviously not injective. The family of maps gu defined next serve
as local inverses of f (see Remark 5.6).

Definition 5.5. For u ∈ An+1 with A-canonical presentation u = u1u2 · · ·un−1, define
gu : RS

j → RA
j by

gu(sjsj−1 · · · s`) = ajaj−1 · · · a` if ` ≥ 2, and gu(sjsj−1 · · · s1) = uj.

Now extend gu : Sn → An+1 as follows: let w ∈ Sn, w = w1 · · ·wn−1 its S-canonical
presentation, then

gu(w) := gu(w1) · · · gu(wn−1),

which is clearly the A-canonical presentation of gu(w).

Remark 5.6. Let w ∈ Sn and u ∈ An+1. Then f(gu(w)) = w if for all 1 ≤ j ≤ n− 1,

uj = aj · · · a2a
±1
1 ⇐⇒ wj = sj · · · s1,

where w = w1 · · ·wn−1 and u = u1 · · ·un−1 are the S- and A-canonical presentations of w
and u respectively.

We are now ready to define the bijection Ψ.

Definition 5.7. Define Ψ : An+1 → An+1 by Ψ(v) = gv(
←−
Φ(f(v))) .
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That is, the image of v under Ψ is obtained by applying
←−
Φ to f(v) in Sn, then using gv

as an “inverse” of f in order to “lift” the result back to An+1.
The following is our main theorem, which can be seen as an An+1-analogue of Theorem 5.1.

Theorem 5.8. (1) The mapping Ψ is a bijection of An+1 onto itself.
(2) For every v ∈ An+1, rmajAn+1

(v) = `A(Ψ(v)).
(3) For every v ∈ An+1, delA(v) = delA(Ψ(v)).
(4) For every v ∈ An+1, DelA(v−1) = DelA([Ψ(v)]−1).
(5) For every v ∈ An+1, DesA(v−1) = DesA([Ψ(v)]−1).

In order to prove the theorem we need the following lemmas.

Lemma 5.9. (1) Let w ∈ Sn, w = w1 · · ·wn−1 its S-canonical presentation. Then for

every 1 < j ≤ n, j ∈ −−→min(w) if and only if wj−1 = sj−1sj−2 · · · s1.
(2) Let v ∈ An+1, v = v1 · · · vn−1 its A-canonical presentation. Then for every 2 < j ≤

n + 1, j ∈ −−−→amin(v) if and only if vj−2 = aj−2aj−3 · · · a±1
1 .

Proof. (1) By induction on n. Let σ = w1 · · ·wn−2 ∈ Sn−1 ⊆ Sn and assume that the
assertion is true for σ. If wn−1 = 1, then the claim is correct by the induction
hypothesis. Otherwise, wn−1 = sn−1sn−2 · · · s` for some 1 ≤ ` ≤ n − 1. Writing
σ = [b1, . . . , bn−1], we have that w = σwn−1 = [b1, . . . , b`−1, n, b`, . . . , bn−1]. For every
1 < j ≤ n− 1, j = bk for some k, so j is a left-to-right minimum of w if and only if
it is a left-to-right minimum of σ, which, by the induction hypothesis, is true if and
only if wj−1 = sj−1 · · · s1. Finally, n is an additional left-to-right minimum of w if
and only if ` = 1, that is if and only if wn−1 = sn−1sn−2 · · · s1.

(2) By induction on n. Let π = v1 · · · vn−2 ∈ An ⊆ An+1 and assume that the assertion
is true for π. If vn−1 = 1, then the claim is correct by the induction hypothesis.
Otherwise, vn−1 = an−1an−2 · · · aε

` for some 1 ≤ ` ≤ n − 1 and ε = ±1. Writing
π = [c1, c2, . . . , cn], we have that

v = πvn−1 =



[c1c2, . . . , c`, n + 1, c`+1, . . . , cn], if ` > 1 and n− ` is even;

[c2c1, . . . , c`, n + 1, c`+1, . . . , cn], if ` > 1 and n− ` is odd;

[c1, n + 1, c2, . . . , cn], if ` = 1, n is odd and ε = 1;

[c2, n + 1, c1, . . . , cn], if ` = 1, n is even and ε = 1;

[n + 1, c1, c2, . . . , cn], if ` = 1, n is even and ε = −1;

[n + 1, c2, c1, c3, . . . , cn], if ` = 1, n is odd and ε = −1.

For every 2 < j ≤ n, j = ck for some k, so j is a left-to-right almost-minimum of
v if and only if it is a left-to-right almost-minimum of π, which, by the induction
hypothesis, is true if and only if vj−2 = aj−2 · · · a±1

1 . Finally, n + 1 is an additional
left-to-right almost-minimum of v if and only if ` = 1, that is if and only if vn−1 =
an−1an−2 · · · a±1

1 . �

Corollary 5.10. For every v ∈ An+1,
−−−→
amin(v) =

−−→
min(f(v))− 1, where X− 1 = {x− 1 | x ∈

X}.

Lemma 5.11. For every w ∈ Sn,
−−→
min(w) =

−−→
min(

←−
Φ(w)), hence delS(w) = delS(

←−
Φ(w)).
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Proof. This follows immediately from the definitions and from Theorem 5.1(3):

j ∈ −−→min(w) ⇐⇒ j ∈ ←−−min(r(w))

⇐⇒ j ∈ ←−−min(Φ(r(w))

⇐⇒ j ∈ −−→min(r(Φ(r(w))) =
−−→
min(

←−
Φ(w)). �

The following is an easy corollary of Lemmas 5.9 and 5.11.

Corollary 5.12. Let w ∈ Sn, w = w1 · · ·wn−1 its S-canonical presentation, and let σ =←−
Φ(w), σ = σ1 · · ·σn−1 its S-canonical presentation. Then σj = sj · · · s1 if and only if
wj = sj · · · s1.

Lemma 5.13. Let v ∈ An+1. Then f(Ψ(v)) =
←−
Φ(f(v)).

Proof. Let v = v1 · · · vn−1 and w =
←−
Φ(f(v)) = w1 · · ·wn−1 be the A- and S-canonical

presentations of v and
←−
Φ(f(v)) respectively. By definition of f and Corollary 5.12, for every

1 ≤ j ≤ n− 1, wj = sjsj−1 · · · s1 if and only if vj = aj · · · a2a
±1
1 . Therefore, by Remark 5.6,

f(Ψ(v)) = f(gv(
←−
Φ(f(v)))) = f(gv(w)) = w =

←−
Φ(f(v)). �

Proof of Theorem 5.8. (1) To prove that Ψ is a bijection, it suffices to find its inverse.

Let v ∈ An+1, and let v = v1 · · · vn−1, w =
←−
Φ(f(v)) = w1 · · ·wn−1 and u = Ψ(v) =

gv(w) = u1 · · ·un−1 be the A-, S- and A-canonical presentations of v,
←−
Φ(f(v)) and

Ψ(v) respectively. By Lemma 5.13,

←−
Φ−1(f(Ψ(v))) =

←−
Φ−1(

←−
Φ(f(v))) = f(v),

so

(∗) gΨ(v)(
←−
Φ−1(f(Ψ(v)))) = gΨ(v)(f(v)) = gu(f(v)) = gu(f(v1)) · · · gu(f(vn−1)).

We claim that π 7→ gπ(
←−
Φ−1(f(π))) is the inverse of Ψ, or in other words, that the

right hand side of (∗) equals v1v2 · · · vn−1. Let 1 ≤ j ≤ n − 1. If vj = ajaj−1 · · · a`,
` > 1, then gu(f(vj)) = gu(sjsj−1 · · · s`) = ajaj−1 · · · a` = vj. If vj = aj · · · a2a

±1
1 ,

then f(vj) = sjsj−1 · · · s1, so by Corollary 5.12, wj = sjsj−1 · · · s1, and therefore
uj = gv(wj) = vj, so again gu(f(vj)) = vj, and the claim is proved.

(2) By Proposition 5.3 and Lemma 5.13, `A(Ψ(v)) = `S(f(Ψ(v))) = `S(
←−
Φ(f(v))). By

Theorem 3.9 and Proposition 5.3, `S(
←−
Φ(f(v))) = rmajSn

(f(v)) = rmajAn+1
(v). Thus

`A(Ψ(v)) = rmajAn+1
(v) as desired.

(3) By Proposition 5.3 and Lemma 5.13, delA(Ψ(v)) = delS(f(Ψ(v))) = delS(
←−
Φ(f(v))),

and by Lemma 5.11, the definition of delS and Proposition 5.3, delS(
←−
Φ(f(v))) =

delS(f(v)) = delA(v). Thus delA(Ψ(v)) = delA(v) as desired.

(4) By Corollary 5.10,
−−−→
amin(Ψ(v)) =

−−→
min(f(Ψ(v))) − 1, with the notation X − 1 =

{x−1 | x ∈ X }. Therefore by Lemmas 5.13 and 5.11,
−−−→
amin(Ψ(v)) =

−−→
min(

←−
Φ(f(v)))−

1 =
−−→
min(f(v)) − 1. Again by Lemma 5.9, we get that

−−−→
amin(Ψ(v)) =

−−−→
amin(v). By

Proposition 4.8, this implies that DelA([Ψ(v)]−1)∪{1, 2} = DelA(v−1)∪{1, 2}, hence
DelA([Ψ(v)]−1) = DelA(v−1) as desired.
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(5) By Propositions 5.3 and 5.4 and Lemma 5.13,

DesA([Ψ(v)]−1) = DesS(f([Ψ(v)]−1)) = DesS([f(Ψ(v))]−1) DesS([
←−
Φ(f(v))]−1).

By Remark 3.6,
←−
Φ(f(v))−1 = (rΦrf(v))−1 = c((Φrf(v))−1), so DesS([

←−
Φ(f(v))]−1) =

{1, . . . , n− 1} \DesS([Φrf(v)]−1). By Theorem 5.1,

DesS([Φrf(v)]−1) = DesS([rf(v)]−1).

Hence, DesS([
←−
Φ(f(v))]−1) = {1, . . . , n − 1} \ DesS([rf(v)]−1) = DesS(c([rf(v)]−1)).

Since c([rf(v)]−1) = c(c([f(v)]−1)) = f(v)−1, we get that

DesS([
←−
Φ(f(v))]−1) = DesS([f(v)]−1).

Finally, by Propositions 5.4 and 5.3, DesS([f(v)]−1) = DesS(f(v−1)) = DesA(v−1).
�

6. Example

As an example, let v = [6, 4, 3, 7, 5, 2, 1] ∈ A7. We now calculate v, v−1, Ψ(v) and [Ψ(v)]−1,
and using the A-procedure — their A-canonical presentations. This yields the corresponding
sets DelA and DesA, hence also the `A and the rmajA7 indices, thus demonstrating Theo-
rem 5.8 in this example. Throughout the example, when writing a canonical presentation,
we will underline all factors of the form aj · · · a2a

±1
1 and sj · · · s1.

The A-canonical presentations of v and of v−1 are

v = v1v2v3v4v5 = (a1)(a2a
−1
1 )(a3a2)(a4a3a2a1)(a5a4a3) (so delA(v) = 3),

v−1 = [7, 6, 3, 2, 5, 1, 4] = (a1)(a3a2)(a4a3a2a
−1
1 )(a5a4a3a2a

−1
1 ) (so delA(v−1) = 3).

Thus DesA(v) = {1, 3, 4, 5}, so rmajA7
(v) = (6− 1) + (6− 3) + (6− 4) + (6− 5) = 11.

Similarly DesA(v−1) = {1, 2, 4}. Also, DelA(v) = {3, 6, 7} and DelA(v−1) = {3, 4, 6}.
We have

w = f(v) = w1w2w3w4w5 = (s1)(s2s1)(s3s2)(s4s3s2s1)(s5s4s3) = [5, 3, 6, 4, 2, 1].

Note that DesS(w) = DesS(f(v)) = {1, 3, 4, 5} = DesA(v), and also, rmajS6
(w) = 11 =

rmajA7
(v) and delS(w) = 3 = delA(v), in accordance with Proposition 5.3.

Let us calculate Ψ(v) and [Ψ(v)]−1. Using Algorithm 3.8 we obtain
←−
Φ(w):

w′
1 = | 1

w′
2 = | 2 | 1

w′
3 = | 4 | 2 | 1

w′
4 = | 6 | 4 2 1

w′
5 = | 3 6 | 2 | 1 | 4

←−
Φ(w) = w′

6 = 5, 6, 3, 2, 1, 4.

Note that `S(
←−
Φ(w)) = 11 = rmajS6

(w), as asserted by Theorem 3.9.

The S-canonical presentation of
←−
Φ(w), obtained by the S-procedure (see Example 2.2), is

u =
←−
Φ(w) = u1u2u3u4u5 = (s1)(s2s1)(1)(s4s3s2s1)(s5s4s3s2).
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The underlined factors in the S-canonical presentation of w are the same as the underlined

factors in the S-canonical presentation of
←−
Φ(w), as asserted by Corollary 5.12. This is a

result of the fact that
−−→
min(w) = {1, 2, 3, 5} =

−−→
min(

←−
Φ(w)), which is a result of Lemma 5.11.

Now

Ψ(v) = gv(u) = v1v2(1)v4(a5a4a3a2) =

(a1)(a2a
−1
1 )(1)(a4a3a2a1)(a5a4a3a2) = [4, 6, 7, 3, 2, 1, 5],

so [Ψ(v)]−1 = [6, 5, 4, 1, 7, 2, 3] = (1)(a2a1)(a3a2a1)(a4a3a2a
−1
1 )(a5a4). It follows that

DesA(v−1) = {1, 2, 4} = DesA([Ψ(v)]−1) and DelA(v−1) = {3, 4, 6} = DelA([Ψ(v)]−1).

Also

delA(Ψ(v)) = 3 = delA(v)

and

`A(Ψ(v)) = 11 = rmajA7
(v).

7. q-analogues

7.1. The q statistics.

Definition 7.1 (see [RR05, Definition 4.1]). Let π ∈ Sn, and let q < n. Define the q-length
of π, `q(π), as the number of Coxeter generators in the S-canonical presentation of π, where
s1, . . . , sq−1 are not counted. For example, let π = s1s2s1s4s3s6s5s4s3s2, then `3(π) = 6 while
`4(π) = 4. Clearly, `1 = `S.

Definition 7.2 (see [RR05, Definition 5.1]). Let π ∈ Sn. Define Delk+1(π) as

Delk+1(π) = { k + 1 < j ≤ n | #{i < j | π(i) < π(j)} ≤ k }.

Definition 7.3. Let π ∈ Sn. Define the left-to-right k-almost-minima set of π as

−−→
mink+1(π) = π (Delk+1(π) ∪ {1, 2, . . . , k + 1})

= { π(j) | 1 ≤ j ≤ n, #{i < j | π(i) < π(j)} ≤ k }.

Proposition 7.4. For every π ∈ Sn+q−1,
−−→
mink+1(π) = Delk+1(π

−1) ∪ {1, 2, . . . , k + 1}.

Proof. Let r ∈ −−→mink+1(π). Then j = π−1(r) ∈ Delk+1(π) ∪ {1, . . . , k + 1}. Therefore

#{1 ≤ i ≤ n + q − 1 | π(i) < π(j) = r and i < j = π−1(r)} ≤ k.

By the change of variables i′ = π(i), we get

#{1 ≤ i′ ≤ n + q − 1 | i′ < r and π−1(i′) < π−1(r)} ≤ k,

so by definition, r ∈ Delk+1(π
−1)∪{1, . . . , k+1}. This proves that

−−→
mink+1(π) ⊆ Delk+1(π

−1)∪
{1, . . . , k + 1}.

The reverse containment is obtained by substituting π−1 for π and applying π to both
sides. �

Definition 7.5 (see [RR05, Definition 5.8]). Let π ∈ Sn+q−1. Then i is a q-descent in π if
i ≥ q and at least one of the following holds: a) i ∈ Des(π); b) i + 1 ∈ Delq(π).
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Definition 7.6 (see [RR05, Definition 5.9]). (1) The q-descent set of π ∈ Sn+q−1 is de-
fined as

Desq(π) = { i | i is a q-descent in π }.
(2) For π ∈ Sn+q−1 define the q, m-reverse major index of π by

rmajq,m(π) =
∑

i∈Desq(π)

(m− i),

where m = n + q − 1.

We need the notion of dashed patterns [RR05], and we introduce it via examples:
σ ∈ Sn has the dashed pattern (1 − 2 − 4, 3) if σ = [· · · , a, · · · , b, · · · , d, c, · · · ], and it has
the dashed pattern (2− 1− 4, 3) if σ = [· · · , b, · · · , a, · · · , d, c, · · · ] for some a < b < c < d.
Given q, denote by Pat(q) the following q! dashed patterns:

Pat(q) = { (π1 − π2 − · · · − πq − (q + 2), (q + 1)) | π ∈ Sq }.
For example, Pat(2) = {(1 − 2 − 4, 3), (2 − 1 − 4, 3)}. If σ ∈ Sm does not have any of the
dashed pattern in Pat(q), then σ avoids Pat(q). We denote by Avoid q(n + q − 1) the set of
permutations σ ∈ Sn+q−1 avoiding all the q! dashed patterns in Pat(q).

The main equidistribution theorems here are the following two theorems. The bijection
Ψq below implies bijective proofs for these theorems.

Theorem 7.7 (see [RR05, Theorem 11.5]). For every positive integers n and q and every
subsets B1, B2 ⊆ {q, . . . , n + q − 1},∑
{π∈Sn+q−1|Desq(π−1)=B1, Delq(π−1)=B2 }

t`q(π) =
∑

{π∈Sn+q−1|Desq(π−1)=B1, Delq(π−1)=B2 }

trmajq,n+q−1(π).

Theorem 7.8 (see [RR05, Theorem 11.7]). For every positive integers n and q and every
subsets B ⊆ {q, . . . , n + q − 2},∑

{π−1∈Avoidq(n+q−1)|Desq(π−1)=B }

t`q(π) =
∑

{π−1∈Avoidq(n+q−1)|Desq(π−1)=B }

trmajq,n+q−1(π).

7.2. The covering map fq.

Definition 7.9 (see [RR05, Definition 8.1]). Let w ∈ Sn+q−1 and let w = si1 · · · sir be its
S-canonical presentation. Define fq : Sn+q−1 → Sn as follows:

fq(w) = fq(si1) · · · fq(sir),

where fq(s1) = · · · = fq(sq−1) = 1, and fq(sj) = sj−q+1 if j ≥ q.

Remark 7.10. If w = w1 · · ·wn+q−2 is the S-canonical presentation of w ∈ Sn+q−1, wj ∈ RS
j ,

then fq(w) = fq(wq) · · · fq(wn+q−2) is the S-canonical presentation of fq(w), fq(wj) ∈ RS
j−q+1.

Proposition 7.11 (see [RR05, Proposition 8.6 and Remark 11.1]). For every π ∈ Sn+q−1,
Delq(π) − q + 1 = DelS(fq(π)), Desq(π) − q + 1 = DesS(fq(π)), `q(π) = `S(fq(π)), and
rmajq,n+q−1(π) = rmajSn

(fq(π)). Here, X − r = {x− r | x ∈ X }.

Proposition 7.12 (see [RR05, Proposition 8.4]). For any permutation w, fq(w)−1 = fq(w
−1).

The map fq is obviously not injective for q > 1. The family of maps gq,u defined next serve
as local inverses of fq (see Remark 7.14).
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Definition 7.13. For u ∈ Sn+q−1 with S-canonical presentation u = u1 · · ·un+q−2, define
gq,u : RS

j → RS
j+q−1 by

gq,u(sjsj−1 · · · s`) = sj+q−1sj+q−2 · · · s`+q−1, gu(sjsj−1 · · · s1) = uj+q−1.

Now extend gq,u : Sn → Sn+q−1 as follows: let w ∈ Sn, w = w1 · · ·wn−1 its S-canonical
presentation, then

gq,u(w) := u1 · · ·uq−1 · gq,u(w1) · · · gq,u(wn−1),

which is clearly the S-canonical presentation of gq,u(w).

Remark 7.14. Let w ∈ Sn and u ∈ Sn+q−1. Then fq(gq,u(w)) = w if for all 1 ≤ j ≤ n− 1,

wj = sj · · · s1 =⇒ uj+q−1 = sj+q−1 · · · s`, ` ≤ q,

where w = w1 · · ·wn−1 and u = u1 · · ·un+q−2 are the S-canonical presentations of w and u
respectively.

7.3. The map Ψq.

Definition 7.15. Define Ψq : Sn+q−1 → Sn+q−1 by Ψq(v) = gq,v(
←−
Φ(fq(v))) .

That is, the image of v under Ψq is obtained by applying
←−
Φ to fq(v) in Sn, then using gq,v

as an “inverse” of fq in order to “lift” the result back to Sn+q−1.

Theorem 7.16. (1) The mapping Ψq is a bijection of Sn+q−1 onto itself.
(2) For every v ∈ Sn+q−1, rmajq,n+q−1(v) = `q(Ψq(v)).
(3) For every v ∈ Sn+q−1, Delq(v

−1) = Delq(Ψq(v)−1).
(4) For every v ∈ Sn+q−1, Desq(v

−1) = Desq(Ψq(v)−1).

The proof is given below.

Lemma 7.17. Let v ∈ Sn+q−1, v = v1 · · · vn+q−2 its S-canonical presentation. Then for

every q < j ≤ n + q − 1, j ∈ −−→minq(v) if and only if vj−1 = sj−1sj−2 · · · s` for some ` ≤ q.

Proof. By induction on n. Let π = v1 · · · vn−1+q−2 ∈ Sn+q−2 ⊆ Sn+q−1 and assume that
the assertion is true for π. If vn+q−2 = 1, then the claim is correct by the induction hy-
pothesis. Otherwise, vn+q−2 = sn+q−2sn+q−3 · · · s` for some 1 ≤ ` ≤ n + q − 2. Writing
π = [b1, . . . , bn+q−2], we have that v = πvn+q−2 = [b1, . . . , b`−1, n + q − 1, b`, . . . , bn+q−2], so
clearly for every 1 ≤ k ≤ n + q− 2, the set of numbers smaller than bk and to its left in π is

equal to the set of numbers smaller than bk and to its left in v. Thus bk ∈
−−→
minq(v) if and only

if bk ∈
−−→
minq(π), which, by the induction hypothesis, is true if and only if vbk−1 = sbk−1 · · · sr

for some r ≤ q. Finally, n + q − 1 ∈ −−→minq(v) if and only if n + q − 1 occupies one of the q
leftmost places in v, that is, if and only if ` ≤ q. �

Lemma 7.18. Let v ∈ Sn+q−1. Then fq(Ψq(v)) =
←−
Φ(fq(v)).

Proof. Let v = v1 · · · vn+q−2 and w =
←−
Φ(fq(v)) = w1 · · ·wn−1 be the S-canonical presen-

tations of v and
←−
Φ(fq(v)) respectively. By definition of fq and Corollary 5.12, for every

1 ≤ j ≤ n − 1, wj = sjsj−1 · · · s1 if and only if vj+q−1 = sj+q−1 · · · s`, ` ≤ q. Therefore, by
Remark 7.14,

fq(Ψq(v)) = fq(gq,v(
←−
Φ(fq(v)))) = fq(gq,v(w)) = w =

←−
Φ(fq(v)). �
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Proof of Theorem 7.16. (1) To prove that Ψq is a bijection, it suffices to find its in-

verse. Let v ∈ Sn+q−1, and let v = v1 · · · vn+q−2, w =
←−
Φ(fq(v)) = w1 · · ·wn−1 and

u = Ψq(v) = gq,v(w) = v1 · · · vq−1uq · · ·un+q−2 be the S-canonical presentations of v,
←−
Φ(fq(v)) and Ψq(v) respectively. By Lemma 7.18,

←−
Φ−1(fq(Ψq(v))) =

←−
Φ−1(

←−
Φ(fq(v))) = fq(v),

so

(∗) gq,Ψq(v)(
←−
Φ−1(fq(Ψq(v)))) = gq,Ψq(v)(fq(v))

= gq,u(fq(v)) = v1 · · · vq−1 · gq,u(fq(v1)) · · · gq,u(fq(vn−1)).

We claim that π 7→ gq,π(
←−
Φ−1(fq(π))) is the inverse of Ψq, or in other words, that

the right hand side of (∗) equals v1v2 · · · vn+q−2. Let q ≤ j ≤ n + q − 2, and write
vj = sjsj−1 · · · s`. If ` > q, then gq,u(fq(vj)) = gq,u(sj−q+1 · · · s`−q+1) = sj · · · s` = vj.
If ` ≤ q, then fq(vj) = sj · · · s1, so by Corollary 5.12, wj = sj · · · s1, and therefore
uj = gq,v(wj) = vj, so again gq,u(fq(vj)) = vj, and the claim is proved.

(2) By Proposition 7.11 and Lemma 7.18, `q(Ψq(v)) = `S(fq(Ψq(v))) = `S(
←−
Φ(fq(v))). By

Theorem 3.9 and Proposition 7.11, `S(
←−
Φ(fq(v))) = rmajSn

(fq(v)) = rmajq,n+q−1(v).
Thus `q(Ψq(v)) = rmajq,n+q−1(v) as desired.

(3) By Lemma 7.17 and the definition of fq,
−−→
minq(Ψq(v)) =

−−→
min(fq(Ψq(v))) − q + 1

(with the notation X − r = {x − r | x ∈ X }). Therefore by Lemmas 7.18

and 5.11,
−−→
minq(Ψq(v)) =

−−→
min(

←−
Φ(fq(v))) − q + 1 =

−−→
min(fq(v)) − q + 1. Again by

Lemma 7.17, we get that
−−→
minq(Ψq(v)) =

−−→
minq(v). By Proposition 7.4, this implies

that Delq([Ψq(v)]−1) ∪ {1, . . . , q} = Delq(v
−1) ∪ {1, . . . , q}, hence Delq([Ψq(v)]−1) =

Delq(v
−1) as desired.

(4) By Propositions 7.11 and 7.12 and Lemma 7.18,

Desq([Ψq(v)]−1)− q + 1 = DesS(fq([Ψq(v)]−1))

= DesS([fq(Ψq(v))]−1)

= DesS([
←−
Φ(fq(v))]−1).

By Remark 3.6, [
←−
Φ(fq(v))]−1 = [rΦrfq(v)]−1 = c([Φrfq(v)]−1), so

DesS([
←−
Φ(fq(v))]−1) = {1, . . . , n− 1} \DesS([Φrfq(v)]−1).

By Theorem 5.1,

DesS([Φrfq(v)]−1) = DesS([rfq(v)]−1).

Hence, DesS([
←−
Φ(fq(v))]−1) = {1, . . . , n−1}\DesS([rfq(v)]−1) = DesS(c([rfq(v)]−1)).

Since c([rfq(v)]−1) = c(c([fq(v)]−1)) = [fq(v)]−1, we get that

DesS([
←−
Φ(fq(v))]−1) = DesS([fq(v)]−1).

Finally, by Propositions 7.12 and 7.11,

DesS([fq(v)]−1) = DesS(fq(v
−1)) = Desq(v

−1)− q + 1.

�
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