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A FOATA BIJECTION FOR THE ALTERNATING GROUP AND FOR
¢-ANALOGUES

DAN BERNSTEIN AND AMITAI REGEV

ABSTRACT. The Foata bijection ® : S,, — S, is extended to the bijections ¥ : A,1; —
Apy1 and Wy 1 Syyg—1 — Spiq—1, where Sp,, A, are the symmetric and the alternating
groups. These bijections imply bijective proofs for recent equidistribution theorems, by
Regev and Roichman, for A,,+; and for S,4 1.

1. INTRODUCTION

In [MM16] MacMahon proved his remarkable theorem about the equidistribution in the
symmetric group S,, of the length (or the inversion-number) and the major index statistics.
This raised the natural question of constructing a canonical bijection on S,,, for each n, that
would correspond these length and major index statistics, and would thus yield a bijective
proof of that theorem of MacMahon. That problem was solved by Foata [Foa6§|, who
constructed such a canonical bijection, see Section |3| for a discussion of the Foata bijection
®. Throughout the years, MacMahon’s equidistribution theorem has received far reaching
refinements and generalizations, see for example [BWO9I], [Car54], [Car75], [FS7g|, [GGTI],
[Kra95] and [Sta02].

We remark that MacMahon’s equidistribution theorem fails when the .S, statistics are
restricted to the alternating subgroups A,,. However, by introducing new A,, statistics which
are natural analogues of the S, statistics, in [RR04], analogous equidistribution theorems
were proved for A,. This was done by first formulating the above S,, statistics in terms of the
Coxeter ganerators s; = (i,i+ 1), 1 <14 <n—1. By choosing the “Mitsuhashi” generators
a; = $18;41 for A,y [Mit01], analogous statistics on A, ; were obtained, via canonical
presentations by these generators. These canonical presentations allow the introduction of
the map f : A,.1 — S,, which is one of the main tools in [RR04], see Section [2| for a
discussion of these presentations and of f.

MacMahon-type theorems were obtained in [RR04] by introducing the delent statistics
for these groups (for S,, this statistic already appeared in [BW91]). Via the above map
f: Any1 — Sy, equidistribution theorems were then lifted from S, to A,1, thus yielding
(new) equidistribution theorems for A, ;. In particular, equidistribution theorems for the
A, 1-analogues of the length and (reverse) major-index statistics were obtained in this way,
see for example Theorem below.

These theorems naturally raise the question of constructing an A, ;-analogue of the Foata
bijection — with analogous properties. This problem is solved in Section [5] where indeed
we construct such a map ¥. That map ¥ is composed of a reflection of Foata’s original
bijection ®, together with the map f : A,.; — S, and of certain “local” inversions of f.
This of course gives a new — bijective — proof of Theorem [£.9}
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Statistics on symmetric groups which are g-analogues of the classical S, statistics were
introduced in [RR0O5], via S,, canonical presentations and the maps f, : Sp+q—1 — Sy, see
Section [7] below. This map f, sends the ¢ statistics on S,44_1 to the corresponding classical
statistics on S,,. As in the case of A, ., this allows the lifting of equidistribution theorems
from S,, to Sy4+4—1. This was done in [RR03], where in that process an interesting connection
with dashed patterns in permutations has appeared, see Theorems and below.

Again, these equidistribution theorems naturally raise the question of finding the (¢-)ana-
logue of the Foata bijection. In Section m we indeed construct such a bijection ¥,. As in the
case of W, the bijection ¥, is composed of f;, of a reflection of the original Foata bijection
®, and of certain “local” inversions of f,. As an application, ¥, yields new — bijective —

proofs of Theorems [7.7] and

The paper is organized as follows. Sections 2] [3|and [4] contain preliminary material, mostly
from [Foa68], [RR04] and [RR05], which is necessary for defining and studying the bijections
U and ¥,. A reader who is familiar with these three papers can skip these preliminary
sections. In Section [5] we introduce and study ¥, and Section [f] is an example, showing the
properties of W. Finally, the bijections ¥, are introduced and studied in Section m

2. CANONICAL PRESENTATIONS AND THE COVERING MAP

2.1. The S- and A-canonical presentations. In this subsection we review the presenta-
tions of elements in S,, and A,, by the corresponding generators and procedures for calculating
them.
The Coxeter generators of S,, are s; = (i,i+ 1), 1 <i <n— 1. Recall the definition of the
set Rf ,
R}S = {1, Sj, $58j—15 - -y SjSj—1" " Sl} - SjJrl,
and the following theorem.

Theorem 2.1 (see [Gol93, pp. 61-62]). Let w € S,. Then there exist unique elements
w; € Rf, 1 <5< n—1, such that w = wy ---w,_1. Thus, the presentation w = wy - - - wy_1
1s unique. Call that presentation the S-canonical presentation of w.

The number of s; in the S-canonical presentation of o € S, is its S-length, {s(c). The
descent set of o € S, is Desg(c) = {7 | 0(i) > o(i + 1) }; the S major-indez is majg(o) =
D icDess(o) I+ and the reverse S, major-index is rmajg (0) = > pey(o)(n — @). Note that
i € Desg(o) iff ls(0) > ls(0s;).

The S-procedure is a simple way to calculate the S-canonical presentation of a given

element in S,. Let 0 € S,, o(r) = n, 0 = [...,n,...]. Then by definition of the s;s,
n can be ‘pulled to its place on the right’: os,8,11-+-$,—1 = [...,n|. This gives w,_; =
Sp—1"""Sr+18r € Rs—r Looking at Uw;il = 088741 Sn_1 = [...,n—1,...,n] now, pull

n — 1 to its right place (second from the right) by a similar product $;8441 - - 8,2, yielding
Wp—9 = Sp_9- "+ S € RE_Q. Continue this way until finally ¢ = wy - - - w,,_1.

Example 2.2. Let ¢ = [5,6,3,2,1,4], then ws = s5s48352; ow; ' = [5,3,2,1,4,6], so in
order to ‘pull 5 to its place’” we need wy = $4835981; nNow awglwgl = [3,2,1,4,5,6], so
no need to move 4, hence wy = 1; continuing the same way, check that ws = s95; and
Wy = S1, S0 0 = WWawsW W5 = (S5545352)(54535281)(1)(s251)(s1). Thus fg(o) = 11. Here
Desg o = {2,3,4}, so majg(o) = rmajg (o) = 9.
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For A,, the “Mitsuhash” generators are a; = s15;41, 1 <7 <n — 2. Recall the definition
A —
Rj = {1, aj, ajaj,l, Cey CL]‘ c Ay, CLj c Qo0 aj RRH1e3) 1} g Aj+2
(for example, R{ = {1, a3, azay, azaza;, azasa;'}), and the following theorem.

Theorem 2.3 (see [RR04, Theorem 3.4]). Let v € A, 1. Then there exist unique elements
v; € Rj‘, 1<j5<n-—1, such that v = vy ---v,_1, and this presentation is unique. Call that
presentation the A-canonical presentation of v.

The number of a; in the A-canonical presentation of ¢ € A, 1 is defined to be its A-
length, £ 4(0). In analogy with S,,, the A-descent set of o € A,,,; is defined as Des4 (o) = {1 |
la(o) = La(oa;) }. Now define maj,(0) = 3 icpes, (o) & and rmajy  (0) = 37 cpes, (o) (R — 1),
see [RRO5].

The A-procedure is a simple procedure for obtaining the A-canonical presentation of
o€ A,.
A-procedure: Step 1: follow the S-procedure and obtain the S-canonical presentation of
o € A,. Step 2: pair the factors. Step 3: insert s;s; in the middle of each pair and obtain
the A-canonical presentation.

Example 2.4. . Let 0 = [6,4,3,7,5,2,1].

Step 1: 0= §1525153525154535554535251565554.

Step 2: 0 = ($152)(5153)(5251)(8453)(S554)(S352)(5156)(S554)-

Step 3: 0 = (51515152)(51515153)(82515151)(54515153) (S5515154)(S3515152)(S1515156)(S5515184) =
= (8182)(8183)(8281>(81848183)(81858184)(81838182>(8186)(81858184> =

= a1a20; 'a3aza4a3a2a,asa4a3 = (a1)(aza; ") (asas)(asasasar ) (asasas).

Thus £4(0) = 12 (while £5(c) = 16). It can be shown here that Des4 (o) = {1, 3,4, 5}, hence
rmaj, (o) = 10.

2.2. The covering map f. We can now introduce the covering map f, which plays an
important role in later sections in the constructions of the bijections ¥ and ¥,.

Definition 2.5 (see [RR04, Definition 5.1]). Define f : R — RY by
(1) flajaj—1---ag) = sjsj—1---s¢if £ > 2, and
(2) flag- ) = flay--ai") = 5,51
Now extend f : A,;.1 — S, as follows: let v € A,41, v = vy---v,_1 its A-canonical
presentation, then
f) = f(or) -+ f(vn-1),

which is clearly the S-canonical presentation of f(v).

3. THE FOATA BIJECTION

The second fundamental transformation on words ® was introduced in [Foa68] (for a full
description, see [Lot83, §10.6]). It is defined on any finite word r = xy25 . . . x,,, whose letters
x1,...,T, belong to a totally ordered alphabet.

Definition 3.1. Let X be a totally ordered alphabet, let r = z125 ... 2, be a word whose
letters belong to X, and let # € X such that z,, <z (respectively z,,, > z). Let

1,.2

r=rre...rP



4 DAN BERNSTEIN AND AMITAI REGEV

be the unique decomposition of r into subwords r* = riry...rl 1 < i < p, such that
rh,, < x (vespectively 77, > x) and r} > x (respectively r§ < x) for all 1 < j < m;. Define

V(1) by 1 1.1 1 2 .2 2
_ p P P
Va(T) = 1o T2« Ty 1Ty T - Tig—1 - - T e Ty 1

For example, with the usual order on the integers, r = 1267834 and x = 5, r decomposes
intor!=1,r2=2r3=6783 and r* =4, so

75(1267834) =1236784.

Definition 3.2. Define ® recursively as follows. First, ®(r) := r if r is of length 1. If z is a
letter and r is a nonempty word, define ®(rx) = ~,(P(r)) z.

For example,
D(653142) =

Ya(71(73(75(6) 5) 3) 1) 4) 2
=72 1

( )
7a(71(73(65)3) 1) 4) 2

= Y2(74(11(653) 1) 4) 2

= Y9(74(6531)4)2

= 15(36514)2

=365412.

o~ o~ o~ —~

The following algorithmic description of ® from [ES78] is more useful in calculations.

Algorithm 3.3 (®). Let r = zy25 ... 2, ;

1. Let i :=1, 7l := 2y ;

2. If i =m, let ®(r) := r} and stop; else continue;

3. If the last letter of 7/ is less than or equal to (respectively greater than) z;.q, cut r;
after every letter less than or equal to (respectively greater than) x;; ;

4. In each compartment of r, determined by the previous cuts, move the last letter in the
compartment to the beginning of it; let ¢, be the word obtained after all those moves; put
Tiyq = t; @i ; replace @ by i 4 1 and go to step 2.

Example 3.4. Calculating ®(r), where r = 653142, using the algorithm:

ry =6
r5=0615|
ry=615]3]
=6 5 3|1]

re=3|6|5|1 4]
O(r)y=rg=3 6 5 4 1 2
The main property of ® is the following theorem.

Theorem 3.5 (see [Foa6g|). (1) @ is a bijection of S, onto itself.
(2) For every o € S, majg(c) = ls(P(0)).

Some further properties of ® are given in Theorem
Let 0 = [01,09,...,0,] € S,,. Denote the reverse and the complement of o by

r(o):=|on,0n-1,...,01] €S,
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and
clo):=n+1—0oy,n+1—09,....,n+1—0,] €S,
respectively.

Remark 3.6. Let p = [n,n—1,...,1] € S,. Then for o € S, r(c) = op and c(o) = po.
Thus it is obvious that r and ¢ are involutions and that rc = cr. Moreover, (r(c))™! =
c(c™).

Definition 3.7. Let ® := r®r, the right-to-left Foata transformation.

While <a(w) is easy enough to calculate by reversing w, applying Algorithm and
reversing the result, it is easy to see that it can be calculated “directly” by applying a
“right-to-left” version of the Algorithm, namely:

Algorithm 3.8 (g) Let r = x129... 2., ;

1. Let i :=m, 1} := x,, ;

2. If i =1, let ®(r) := r, and stop; else continue;

3. If the first letter of 7} is less than or equal to (respectively greater than) z,,_;, cut 7}
before every letter less than or equal to (respectively greater than) z,, ; ;

4. In each compartment of 7} determined by the previous cuts, move the first letter in
the compartment to the end of it; let ¢, be the word obtained after all those moves; put
Ti_y = Zm_; t; ; replace i by i — 1 and go to step 2.

For an example of applying Algorithm , see the calculation of E(w) in Section @

The key property of D used in this paper is the following.

—

Theorem 3.9. For every o € S,,, 1majg (0) = ls( P (0)).
The proof requires the following lemmas.
Lemma 3.10. The bijections ® : S,, — S,, and c : S, — S, commute with each other.

Proof. We prove a slightly stronger claim, namely that ® and c; commute as maps on Z",
where ci(ay, as, ..., a,) := (k+1—ay, k+1—as, ..., k+1—a,). Let 0 = [0109...0,] € Z". We
need to show that ®c(c) = ¢, ®(0). The proof is by induction on n. For n = 1, everything
is trivial. For n > 2, write ®(oy ... 0—1) = by ... by and 75, (b1 ... by_1) = €1 ... Cp1-
Using the notation @ = k + 1 — a, we have

Ocp(0) = (P01 ... Tp1)) On
= Yo(biby .. by1) 0y
by the induction hypothesis, and

c®(0) =ciler ... cho100) =01 .. Cu_1 Op,

so it remains to show that fyﬁ(b_lg . m) =1 ... Cpq

Assume for now that b, 1 < o, (the case b,_; > 0, is entirely symmetric and will be left
to the reader). Let M ={1<m <n—1]|b, <o, }={my,....,m,}, my <--- <m,. Note
that b,_; > 0, and M = {1 <m <n—1] 0, > b,}. Therefore, using the notation from
Definition (3.1, we have the decompositions

_ 1 1,2 2 P p
b obnr =1y Ty T Ty T Ty
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and
a -bnfl_r_% rl_mlﬁ % ﬁ '@7
S0
CleeiCnt = You (b1 oo 1) =T Tl T To T T - Tiny T4 T 1
and
Yo (b1 .. bp_1) :ﬁﬁ...r#l_lgr_{..r%_l...%E...r%p_l
Thus (b1 by ... by_1) =1 ... cp_1 as desired. O

Lemma 3.11. For every w € S, {s(rc(w)) = lg(w).

Proof. The lemma follows from the definitions of r and ¢ and from the fact that for all
o€ Sy, ls(o)=inv(o) =#{(i,7) |1 <i<j<n,o()>oc(j)}:

Co(w) = #{ (4,7) | 1 < <j <n, wli) >w(j) }

=#{(,)) [1<i<j<n, c(w)(i) <c(w)(j)}

=#{(J) |1 <i<j<n re(w)(n+1—i) <rcw)(n+1-j)}
=#{(n+1l-—s,n+1—-r)|1<r<s<n,rclw)(s) <rc(w)(r)}
=#{(r,s) |1 <r<s<n,rc(w)(r) > rc(w)(s)}

= lg(rc(w)) O

Lemma 3.12. For every w € S,,, majg(rc(w)) = rmajg (w).

Proof. By the definitions of r, ¢ and Desg,

i € Desg(rc(w)) <= rc(w)(i) > rc(w)(i + 1)
<~ c(w)(n—i+1) > c(w)(n —1)
= n+l-wh—i+1)>n+1—(w)(n—1)
— wn—i+1) < (w)(n—1)
<= n —i € Desg(w).
Therefore
majg(rc(w)) = Z Z n —i=1majg (w). O
1€Desg(re(w)) i€Desg(w)
Proof of Theorem[3.9

by Lemma |3.12))
by Theorem [3.5)

by Lemma |3.11])
by Lemma and Remark O

rrnajsn(a) = majg(re(o))
= lg(Prc(o))
= ls(rcPrc(o))

— (5(D (o))

o~ o~ o~
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4. THE DELENT STATISTICS

Definition 4.1 (see [RR04, Definition 7.1]). Let o € S,,. Define Delg(o) as

Dels(o) ={1<j<n|Vi<j o(i)>0o(j)}
These are the positions of the 1.t.r.min, excluding the first position.
Definition 4.2. Let o € S,,. Define the left-to-right minima set of o as

El(O') =0 Delg(o)U{1}) ={c(y) |1 <j<n, Vi<j o(i)>o(j)}
These are the actual (letters) l.t.r.min, including the first letter.
Example 4.3. Let o = [5,2,3,1,4]. Then Delg(o) = {2,4} and min(o) = {5, 2, 1}.
—
Proposition 4.4. For every o € Sy, min(c) = Delg(c™') U {1}.
—
Proof. Let k € min(s). Then j = o~ '(k) € Delg(o) U {1}. Therefore, by negation, for
all 1 <4 < n, if 0(i) < o(j) = k then i« > j = o '(k). By the change of variables
i' = o(i), we get that for all 1 < ¢ < n, ¢ < k implies 0~'(i') > oc7'(k), so by definition,
—

k € Delg(oc~) U {1}. This proves that min(c) C Delg(c™1) U {1}.

The reverse containment is obtained by substituting ¢~! for o and applying o to both
sides. U

Definition 4.5 (see [RR04, Definition 7.4]). Let m € A, ;1. Define Dely(7) as
Dela(m) = {2 < j <n+ 1] there is at most one ¢ < j such that 7(i) < 7 (j) }.
Definition 4.6. Let m € A,, 1. Define the left-to-right almost-minima set of m as
amin(m) = m (Dela(m) U {1,2})
={m(j)|1<j<n+1and there is at most one i < j such that 7(i) < 7(j) }.
—_

Example 4.7. Let 7 = [4,2,6,3,1,5]. Then Dely(7) = {4,5} and amin(7) = {4,2,3,1}.
Proposition 4.8. For every m € A,41, amin(m) = Dely(7') U {1, 2}.

Proof. Let k € EH)I(W). Then j = 7~ 1(k) € Dely(m) U{1,2}. Therefore for all 1 <i <mn+1
except at most one, if 7(i) < 7(j) = k then i > j = 7 '(k). By the change of variables
i’ = (i), we get that for all 1 <7’ < n+1 except at most one, 7/ < k implies 7 (i") > 7~ 1(k),
so by definition, k € Dela(7~1) U {1,2}. This proves that El(ﬂ') C Dely(m 1) U {1,2}.
The reverse containment is obtained by substituting 7=! for = and applying 7 to both
sides. O

We now quote the following theorem. The bijection ¥ of Theorem [5.§] bellow provides a
(short) bijective proof of that theorem.

Theorem 4.9 (see [RR04, Theroem 9.1(2)]). For every subsets Dy C {1,...,n — 1} and
D2 Q {3,,n+1},

Z qrrnaujAnle (o) _ Z qﬁA(U) )

{o€Ant1|Desa(0~1)CD1, Dela(o~1)CD2} {0€An41|Desa(071)CD1, Dely(o—1)CD2}



8 DAN BERNSTEIN AND AMITAI REGEV

5. THE BIJECTION W

Recall the notations for the reverse and the complement of ¢ = [0109...0,] € S, which
are r(0) = [0,0p—1...01) and c(0) = [n+1—o01,n+1—0y,....,n+ 1 — g,], respectively,
and the notations ® and ® = rdr for Foata’s second fundamental transformation and the
right-to-left Foata transformation (both described in detail in Section , respectively.

H
We shall need the following properties of ® and &, see also Theorem .

Theorem 5.1. (1) @ is a bijection of S, onto itself.

(2) For every o € S, majg(c) = ls(P(0)).

(3) (see [BWO1, Example 5.3]) For every o € S,, El(a) = IEI(CI)(O')), where EI(U) =

{o(7)|1<j<n,Vi>j o(i)>o(j)} is the set of right-to-left minima of o.
(4) (see [FST8, Theorem 1]) For every o € S,,, Desg(c™!) = Desg([®(c0)] ).
(5) By Theor@m for every o € Sy, Ttmajg (0) = ES(E(J)).
The S- and the A-canonical presentations and the map f were discussed in Section 2] A

key property of f is the way it relates between certain pairs of statistics on A, and on .S,,.

Definition 5.2 (see [RR04, Definition 5.2]). Let mg be a statistic on the symmetric groups
and m 4 a statistic on the alternating groups. We say that (mg, ma)is an f-pair (of statistics)
if for any n and v € 4,11, ma(v) = mg(f(v)).

Proposition 5.3 (see [RR04, Propositions 5.3 and 5.4]). The following pairs are f-pairs:
(ls,l4), (rmajsn,rmajAnH), (delg, dels) and (Desga, Desg).

We also have

Proposition 5.4 (see [RR05, Propositions 8.4 and 8.5]). For every v € A, 1, f(v)™! =
f™).

The covering map f is obviously not injective. The family of maps g, defined next serve
as local inverses of f (see Remark [5.6).

Definition 5.5. For v € A, ,; with A-canonical presentation u = ujus---u,_1, define
Ju - Rf — Rf by
Gu(sjSj_1++-80) = aja;_1---ap if £>2, and g,(sjsj_1---51) = u;.
Now extend ¢, : S, — A,i1 as follows: let w € S,, w = w;---w,_1 its S-canonical
presentation, then
gu<w) = gu(wl) tee gu(wn—1)>
which is clearly the A-canonical presentation of g, (w).

Remark 5.6. Let w € S, and u € A,,41. Then f(g,(w)) =wifforal 1 <j<n-—1,

_ +1 o
Uj = aj--- 020 < Wj; = S+ 81,

where w = wy -+ w,_1 and v = uy ---u,_1 are the S- and A-canonical presentations of w
and u respectively.

We are now ready to define the bijection W.
Definition 5.7. Define U : A,,; — A1 by U(0) = gu(® (f(v))) -
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That is, the image of v under ¥ is obtained by applying T to f(v) in S, then using g,
as an “inverse” of f in order to “lift” the result back to A, 1.
The following is our main theorem, which can be seen as an A,,;-analogue of Theorem [5.1]

Theorem 5.8. (1) The mapping ¥ is a bijection of A,.1 onto itself.
(2) For every v € Apyy, tmajy  (v) = La(V(v)).
(3) For every v € Ay, dely(v) = dela(¥(v)).
(4) For every v € A, 11, Dely(v™!) = Dela([¥(v)]71).
(5) For every v € A, 11, Desa(v™') = Desa([¥(v)]7h).

In order to prove the theorem we need the following lemmas.

Lemma 5.9. (1) Let w € Sy, w = wy -+~ wy_1 its S-canonical presentation. Then for
every 1 < j <mn, j € min(w) if and only if wj_y = s;_1Sj_2- - 1.
(2) Letv € Api1, v =10y v,_1 its A-canonical presentation. Then for every 2 < j <

. — . . - +1
n+1, j € amin(v) if and only if v,_o = aj_saj_5---aj .

Proof. (1) By induction on n. Let 0 = wy---w,_2 € S,_1 C S, and assume that the

assertion is true for o. If w,_; = 1, then the claim is correct by the induction
hypothesis. Otherwise, w, 1 = s, 1Sp_2---S¢ for some 1 < ¢ < n — 1. Writing
o =[bi,...,by_1], we have that w = ow,,_1 = [b1,...,bi_1,n,by,...,b,_1]. For every

1<j7<n-—1,j =b for some k, so j is a left-to-right minimum of w if and only if
it is a left-to-right minimum of ¢, which, by the induction hypothesis, is true if and
only if w;j_y = sj_1---s1. Finally, n is an additional left-to-right minimum of w if
and only if £ = 1, that is if and only if w,_1 = s,,_18,_2 - s1.

(2) By induction on n. Let m = vy ---v, o € A, C A, 41 and assume that the assertion
is true for m. If v,y = 1, then the claim is correct by the induction hypothesis.
Otherwise, v,—1 = ap_1Gp_2---aj for some 1 < ¢ < n —1 and ¢ = £1. Writing

T =lc1, o, ..., Cpnl, we have that
([0102, ceo,n+1,¢oq, ... ¢, if€>1and n—/{is even;
[cac1, .. co,m+ 1, ¢coq1,. .. ¢,], if £ >1and n— ¢ is odd;
B B [cl,n—i—l €2y vy Cnl, if ¢ =1, nisodd and € = 1;
v = [co,m+1,¢c1,. .., ¢, if {=1, niseven and ¢ = 1;
n+1,¢1,¢9,..., ¢, if ¢ =1, niseven and € = —1;
([n+1c,c1,03,. .0, ¢l if {=1,nisodd and e = —1.

For every 2 < 7 < mn, 7 = ¢ for some k, so j is a left-to-right almost-minimum of
v if and only if it is a left-to-right almost-minimum of 7, which, by the induction
hypothesis, is true if and only if v;_» = a;_5---af’. Finally, n + 1 is an additional
left-to-right almost-minimum of v if and only if £ = 1, that is if and only if v,,_; =
+1
Ap—1Qp—2 " QA7 . O
— —
Corollary 5.10. For every v € A,41, amin(v) = min(f(v)) — 1, where X —1={z—1 |z €
X}.

— — —
Lemma 5.11. For every w € S, min(w) = min(® (w)), hence delg(w) = delg( P (w)).
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Proof. This follows immediately from the definitions and from Theorem [5.1|(3):

j €min(w) <= j € min(r(w))

e j € min(d(r(w))
= j € min(r(®(r(w))) = min(® (w)). O
The following is an easy corollary of Lemmas [5.9] and

Corollary 5.12. Let w € S,, w = w;y -+ wy,_1 its S-canonical presentation, and let o =
(—

¢ (w), 0 = 01---0,_1 its S-canonical presentation. Then o; = s;---s1 if and only if
wj = Sj 81,

D (f(v).

Proof. Let v = v1---v,_1 and w = <a(f(v)) = wp---w,_; be the A- and S-canonical
H
presentations of v and @ (f(v)) respectively. By definition of f and Corollary , for every
1<j<n-—1,w;=s;8;_1---s; if and only if v; = a; - - - azai". Therefore, by Remark
— —
f¥)) = flgo(@(f(v)) = fgo(w)) = w = @ (f(v)). m
Proof of Theorem [5.8 (1) To prove that ¥ is a bijection, it suffices to find its inverse.
h
Let v € Ayyq, and let v = vy v q, w = @ (f(v)) = wy -+ w,_1 and u = V(v) =
h
gu(w) = uy - -up—1 be the A-, S- and A-canonical presentations of v, ®(f(v)) and
U(v) respectively. By Lemma [5.13]

Df((0) = DD (f(v))) = f(v),

Lemma 5.13. Letv € A,y 1. Then f(¥(v))

SO

(%) 990y (2 T (F(TW)))) = g (F(©)) = gul F(0) = gu(F(01)) -+ gul f (va-1).

We claim that © — gﬂ(gfl(f(ﬂ))) is the inverse of ¥, or in other words, that the
right hand side of equals v1vg - Up—1. Let 1 < j <n—1 Ifv; =aa;_1---ay
¢ > 1, then g,(f(vj) = gu(5j8j_1--5¢) = aja;_1---a; = vj. If v; = a;---axai’,
then f(v;) = s;sj_1---s1, so by Corollary w; = $jSj—1---51, and therefore
u; = gy(w;) = v;, so again g,(f(v;)) = v;, and the claim is proved.

(2) By Proposition and Lemma , CA(T(v)) = Ls(f(T(v))) = Es(g(f(v))). By
Theorem and Proposition ﬁs(g(f(v))) = rmajg (f(v)) =rmaj, . (v). Thus
la(¥(v)) =1majy . (v) as desired.

—

(3) By Proposition [5.3 and Lemma m dels(W(v)) = dels(f(¥(v))) = dels(P (f(v))),
and by Lemma the definition of delg and Proposition dels(g( f(v)) =
dels(f(v)) = dela(v). Thus dels(¥(v)) = dela(v) as desired.

(4) By Corollary , a—rﬁi(\lf(v)) — min f(¥(v))) — 1, with the notation X — 1 =
{2—1| 2z € X }. Therefore by Lemmas|5.13 andh, amin(P(v)) = min(® (f(v)))—

— ' —_ —

1 = min(f(v)) — 1. Again by Lemma [5.9] we get that amin(¥(v)) = amin(v). By

Proposition [4.8] this implies that Del4([¥(v)]7!) U{1,2} = Del4(v™') U{1, 2}, hence

Del4([¥(v)]™!) = Dela(v™!) as desired.
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(5) By Propositions and and Lemma [5.13]
Des([W(v)] ") = Dess(f([¥(v)] 1)) = Dess([f(¥(v))] ") Dess([® (f(1))] ).

By Remark , ()t = (xPrf(v)" = c((@rf(v)) ™), so Dess([® (f(v)] ™) =
{1,...,n — 1} \ Desg([®rf(v)]™). By Theorem [5.1]

Dess([rf(v)] ™) = Dess([rf(v)] 7).

Hence, Dess([g(f(v))]_l) ={1,...,n — 1} \ Desg([rf(v)]™!) = Dess(c([rf(v)]™1)).
Since c([rf(v)]™!) = c(e([f(v)]™)) = f(v)™", we get that

[ 1
Dess([@ (f(v))]™) = Dess([f(v)]):

Finally, by Propositions [5.4] and [5.3| Dess([f(v)]™!) = Dess(f(v™1)) = Desa(v™1).
0

6. EXAMPLE

As an example, let v = [6,4,3,7,5,2,1] € A7. We now calculate v, v=!, ¥(v) and [¥(v)]™?,
and using the A-procedure — their A-canonical presentations. This yields the corresponding
sets Dely and Desy, hence also the {4 and the rmaj4, indices, thus demonstrating Theo-
rem in this example. Throughout the example, when writing a canonical presentation,

we will underline all factors of the form a; - - - azai" and s; - - ;.

The A-canonical presentations of v and of v=! are
U = U1VaU3U4V5 = (@)(agafl)(agag)(a4a3a2a1)(a5a4a3) (so dela(v) =3),
v ! =17,6,3,2,5,1,4] = (ﬂ)(agag)(a4a3a2af1)(a5a4a3aga1—1) (so dely(v) =3).

Thus Desy(v) = {1,3,4,5}, so rmaj, (v) = (6 = 1)+ (6 = 3) + (6 — 4) + (6 — 5) = 11.
Similarly Desa(v™') = {1,2,4}. Also, Dels(v) = {3,6,7} and Dely(v™') = {3,4,6}.

We have
w = f(v) = wwywswsws = (s1)(5251)(5352)(s4835251)(s55453) = [5,3,6,4,2,1].

Note that Desg(w) = Desg(f(v)) = {1,3,4,5} = Desa(v), and also, rmajg (w) = 11 =
rmaj,. (v) and delg(w) = 3 = dels(v), in accordance with Proposition .

Let us calculate ¥(v) and [¥(v)]~'. Using Algorithm m we obtain <g(w):

wy = |1
why = |21
wy = 4|21
W = 164 2 1
wy= |3 6]2]1]4

¢ (w)=wg= 5, 6, 3, 2, 1, 4.

Note that 65(6(11))) = 11 = rmajg, (w), as asserted by Theorem
The S-canonical presentation of <5(10), obtained by the S-procedure (see Example , is

-
u= @ (w) = uruguzusts = (51)(5251)(1)(54535251)(55545352).
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The underlined factors in the S-canonical presentation of w are the same as the underlined
h
factors in the S-canonical presentation of ® (w), as asserted by Corollary . This is a
H

result of the fact that Iﬁl(w) ={1,2,3,5} = El(fb (w)), which is a result of Lemma
Now

V(v) = go(u) = viva(1)va(asasasaz) =
(ﬂ)(agafl)(l)(a4a3a2a1)(a5a4a3a2) =[4,6,7,3,2,1,5],

so [U(v)] ™t =[6,5,4,1,7,2,3] = (1)(aza1)(asasa ) (asazaza; ) (asay). It follows that
Desa(v™') ={1,2,4} = Desa([¥(v)] ") and Dels(v™") = {3,4,6} = Dela([¥(v)] ).
Also

dels(¥(v)) = 3 = dela(v)
and
(a(¥(v)) =11 = rmaj, (v).
7. q-ANALOGUES
7.1. The ¢ statistics.

Definition 7.1 (see [RR05 Definition 4.1]). Let m € S,,, and let ¢ < n. Define the g-length
of m, ¢,(m), as the number of Coxeter generators in the S-canonical presentation of 7w, where
S1,...,54—1 are not counted. For example, let m = 51525154535655545352, then f5(7) = 6 while
ly(m) = 4. Clearly, ¢, = (5.

Definition 7.2 (see [RR05) Definition 5.1]). Let 7 € S,,. Define Dely () as
Delpi(m) ={k+1<j<n|#{i<j|n@i)<m()} <k}
Definition 7.3. Let m € S,,. Define the left-to-right k-almost-minima set of 7 as

—

ming1(7) = 7 (Delgy1 (m) U{1,2,...,k+1})
={m@) [ 1<j<n, #{i<j|n@) <7()} <k}

Proposition 7.4. For every m € Sp4q-1, Imk_i'_l(ﬂ-) = Delp (77 HU{L,2,...,k+1}.

Proof. Let r € ﬁk+1(ﬂ). Then j = 7 '(r) € Deljy1(7) U{1,...,k+ 1}. Therefore
#1<i<n+qg-1|7@)<n(j)=randi<j=na"'(r)} <k
By the change of variables i' = 7 (i), we get
#{1<i<n+q-1|i<randa (@) <7 '(r)} <k,

so by definition, r € Dely (7~ 1)U{1, ..., k+1}. This proves that ming () C Delgyi (771U
{1,...,k+1}.

The reverse containment is obtained by substituting 7=! for = and applying 7 to both
sides. U

Definition 7.5 (see [RRO5, Definition 5.8]). Let m € S, 44—1. Then i is a g-descent in 7 if
i > q and at least one of the following holds: a) i € Des(m); b) i + 1 € Del, ().
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Definition 7.6 (see [RR05, Definition 5.9]). (1) The g-descent set of m € Sy4q—1 is de-
fined as
Des,(m) = {i | i is a ¢g-descent in 7 }.
(2) For m € Sj44-1 define the ¢, m-reverse magjor index of m by
rmaj, ., (r) = Y (m—i),
i€Desq ()

where m =n+q— 1.

We need the notion of dashed patterns [RR05], and we introduce it via examples:

o € S, has the dashed pattern (1 —2—4,3)ifo=1[--,a,---,b,--+ ,d,c,---], and it has
the dashed pattern (2 —1—4,3)ifoc=1[--,b,--+,a, - ,d,c,---] for some a < b < ¢ < d.
Given ¢, denote by Pat(q) the following ¢! dashed patterns:

Pat(q) ={(m —m—-—my—(¢+2),(¢+1) |7 €S}

For example, Pat(2) = {(1 —2—-4,3), (2—1-4,3)}. If 0 € S,, does not have any of the
dashed pattern in Pat(q), then o avoids Pat(q). We denote by Avoid,(n + g — 1) the set of
permutations o € S,4,-1 avoiding all the ¢! dashed patterns in Pat(q).

The main equidistribution theorems here are the following two theorems. The bijection
U, below implies bijective proofs for these theorems.

Theorem 7.7 (see [RR05, Theorem 11.5]). For every positive integers n and q and every
subsets By, By C {q,...,n+q— 1},

E tﬁq(ﬂ') — g trmajq,n+q—1(7r)_
{m€Sn+tq—1|Desq(r=1)=By, Delg(m—1)=B3 } {mE€Sn+q—1|Desq(r=1)=By, Delg(m—1)=B3 }

Theorem 7.8 (see [RR05, Theorem 11.7]). For every positive integers n and q and every
subsets B C{q,...,n+q— 2},

Z tfq(ﬂ) — Z trma‘jq,’nJrqfl(Tr).
{m—1€Avoidg(n+q—1)|Desq(r—1)=B} {m—1€Avoidg(n+q—1)|Desq(r—1)=B}
7.2. The covering map f,.

Definition 7.9 (see [RR05, Definition 8.1)). Let w € S,44—1 and let w = s;, - -+ s;. be its
S-canonical presentation. Define f; : S,1,-1 — S, as follows:

fa(w) = fo(si) -+~ fa(si,),
where fy(s1) =+ = fo(sq-1) =1, and fy(s;) = sj-g+1 if j = ¢.

Remark 7.10. If w = wy - - - Wy 44—2 is the S-canonical presentation of w € Sy44-1, w; € RJS,
then fo(w) = fo(wg) - - - fo(Wn4q—2) is the S-canonical presentation of f,(w), fo(w;) € RS ;.

Proposition 7.11 (see [RR05, Proposition 8.6 and Remark 11.1]). For every m € Spiq-1,

Del,(7) — ¢ + 1 = Delg(f,(7)), Desy(m) — g+ 1 = Desg(fy(7)), ly(m) = Ls(fy(7)), and
rmaj, 4, 1(7) = rmajg (fy(7)). Here, X —r={x—r|ze€ X}

Proposition 7.12 (see [RR05, Proposition 8.4]). For any permutation w, f,(w)™ = fy(w™).

The map f, is obviously not injective for ¢ > 1. The family of maps g, , defined next serve
as local inverses of f; (see Remark [7.14]).
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Definition 7.13. For u € S,;,-1 with S-canonical presentation u = - - - Uy 442, define
Jgu - Rf — RJSJrq_1 by
gq,u<3j3jfl ce 8@) = Sj+q—1Sj+q—2 """ St+qg—1, gu(Sijfl s 31) = Ujtq—1-
Now extend g4, @ Sp — Sniq—1 as follows: let w € S,, w = w;---w,_; its S-canonical
presentation, then
Ggu(Ww) = U1 Ug—1* Ggu(W1) -+ Ggu(Wn—1),

which is clearly the S-canonical presentation of g, (w).

Remark 7.14. Let w € S,, and u € S, 4,—1. Then f,(g,u(w)) =wifforall 1 <j<n-—1,
Wj = 85081 = Ujrg1 = Sjg-17 50 L <G,

where w = wy -+ -w,—1 and © = Uy - - - Upq4—2 are the S-canonical presentations of w and u
respectively.

7.3. The map V¥,.
Definition 7.15. Define U, : Spiq-1 — Sniq-1 by Ty(v) = gou( @ (f,(v))) .

b
That is, the image of v under ¥, is obtained by applying ® to f,(v) in S,,, then using g, ,
as an “inverse” of f, in order to “lift” the result back to Syy4-1.

Theorem 7.16. (1) The mapping Y, is a bijection of Sp+q—1 onto itself.
(2) For every v € Syiq—1, Tmaj, . 1(v) = Le(Vy(v)).
(3) For every v € Spiq-1, Dely(v™1) = Del, (¥, (v) ).
(4) For every v € Spiq-1, Desy(v™1) = Desy (¥, (v) ™).

The proof is given below.

Lemma 7.17. Let v € S,1q-1, UV = U1+ VUppq_2 its S-canonical presentation. Then for
everyq<j<n—+q—1,j€ Iﬁlq(v) if and only if vj_1 = sj_15j_9- - S¢ for some { < q.

Proof. By induction on n. Let @ = v+ vUp_144-2 € Spyg—2 € Spiq—1 and assume that
the assertion is true for 7. If v,y, o = 1, then the claim is correct by the induction hy-
pothesis. Otherwise, vn4q-2 = Spiq—25n4¢—3---S¢ for some 1 < ¢ < n + ¢ — 2. Writing
T = [by,...,bnpiq—2), we have that v = T2 = [b1,. .., be—1,n+q— 1,by, ..., byigs], SO
clearly for every 1 < k < n+ q — 2, the set of numbers smaller than b, anﬂo its left in 7 is
equal to the set of numbers smaller than b and to its left in v. Thus by € min,(v) if and only
if b, € rzi?lq(ﬁ), which, by the induction hypothesis, is true if and only if vy, 1 = sp,—1 - - S,
for some r < ¢. Finally, n+¢q—1 € r_rﬁ?lq(v) if and only if n + ¢ — 1 occupies one of the ¢
leftmost places in v, that is, if and only if £ < q. O

Lemma 7.18. Let v € S,4-1. Then f,(V,(v)) = <a(fq(v)).

Proof. Let v = vy -+ Upq—2 and w = <5(]2(1))) = wy ++-wp—1 be the S-canonical presen-

tations of v and 6( fq(v)) respectively. By definition of f, and Corollary [5.12| for every
1<ji<n—1,w; =s;sj_1---s1 if and only if vj 141 = Sj49-1--- 5S¢, £ < q. Therefore, by

Remark [7.14]

fo(Vy(v)) = fq(gq,v(g(fq(v))» = fo(ggo(w)) =w = <6(fq(v)> O
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Proof of Theorem |7.16 (1) To prove that U, is a bijection, it suffices to find its in-

h
verse. Let v € Syiq-1, and let v = vy -+ Vpyg9, w = O (f,(v)) = wy---w,—; and
u=V,(v) = ggo(w) = vy Vy_1Uy - - Upiq—2 be the S-canonical presentations of v,

<a(fq(v)) and W, (v) respectively. By Lemma [7.18|
D (f(Wa(0)) = @7 (R(fy(0))) = fylv),

SO

-
(*) gq,\l’q(v)(q)_l(fq(qjq(v)))) 9q,94(v (fq( )
= 9qﬂt(fq( ) =1 “Vg—1- gqm(fq(vl» e 'gq,U(fq(Un—I»‘
We claim that 7 — gqm(g_l(fq(w))) is the inverse of ¥,, or in other words, that
the right hand side of equals V102 - - Upqg—2. Let ¢ < j < n+q— 2, and write

vj = 8j8j-1 - se. I 0> g, then gou(fo(v;)) = gqul(Sj—gr1- - Se—qu1) = 5+ 50 = v;.
If ¢ <gq, then f,(v;) = s;---s1, so by Corollary [5.12) w; = s;---s1, and therefore

uj = ggo(wj) = v;, so again g,,(f,(v;)) = v;, and the claim is proved.

(2) By Propositionand Lemmal7.18, £,(V,(v)) = ls(f, (Y, (v))) = fs(g(fq(v))). B
Theorem and Proposition |7.11] Kg(g(fq(v))) = 1majg, (f(v)) = rmaj, ., 1(v).
Thus £,(V,(v)) = rmaj, ., 1(v) as desired.

(3) By Lemma and the definition of f,, I_ITi?lq(\I/q(’U)) = r_rﬁ?l(fq(llfq(v))) —qg+1

(with the notation X —r = {z —r | * € X}). Therefore by Lemmas
— — —
and [5.11] min (¥,(v)) = min(® (f,(v))) — ¢+ 1 = min(f,(v)) — ¢+ 1. Again by
— —

Lemma [7.17, we get that min,(V,(v)) = min,(v). By Proposition , this implies
that Del,([¥,(v)] ") U{1,...,¢} = Del,(v™1) U{1,...,q}, hence Del,([¥,(v)]™) =
Del,(v™!) as desired.

(4) By Propositions and [7.12] and Lemma [7.18]

Des, ([T4(v)]™") = ¢ + 1 = Dess(f,([¥4(v)] ™))
—DeSS([fq( «(v)] )

= Dess([® (f,())] 7).
By Remark 3.6, [® (f,(0))]™ = r@rf,(v)] ! = c([@rf, ()] ). s
Dess([® (f,(v)] ™) = {1,...,n — 1} \ Dess([®rf,(v)] ).
By Theorem
Dess ([@rf,(v)] ) = Dess([rf,(v)] ™).

Hence, Dess ([ (f,(v))] ™) = {1,...,n—1}\ Dess([rf,(v)] ") = Dess(c([rf,(v)] ).
Since ([, (v)] ) = cle([f, ) ) = [fq(v)]”’ we get that

—

Dess([® (fq(v))] ") = Dess([fg(v)] ).
Finally, by Propositions and [7.11]
Dess([fy(v)] ") = Dess(fy(v™")) = Des,(v™1) — g + 1.
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