A NOTE ON SOME MAHONIAN STATISTICS

BOB CLARKE*

Abstract

We construct a class of mahonian statistics on words, related to the classical statistics maj and inv. These statistics are constructed via Foata's second fundamental transformation.

1. Introduction

Consider the alphabet $\mathcal{X}=[r]=\{1,2, \ldots, r\}$.
A word $w=w_{1} w_{2} \cdots w_{n}$ on \mathcal{X} is a finite string of not-necessarily distinct elements of \mathcal{X}. The set of all words on \mathcal{X} is written \mathcal{X}^{*}. The rearrangement class $R(w)$ of a word w is the set of all words that can be obtained by permuting the letters of w. If the letters of w are distinct, then w is a permutation and $R(w)$ is the set of elements of the symmetric group \mathcal{S}_{n}.

The statistics inv and maj are defined on \mathcal{X}^{*} by

$$
\begin{aligned}
\operatorname{inv} w & =\#\left\{(i, j) \mid 1 \leq i<j \leq n, w_{i}>w_{j}\right\} \\
\operatorname{maj} w & =\sum\left\{i \mid 1 \leq i<n, w_{i}>w_{i+1}\right\}
\end{aligned}
$$

It is a result of MacMahon [5] that inv and maj are equidistributed on any rearrangement class $R(c)$. Foata [2, 3] gave a bijective proof using his second fundamental transformation. A statistic equidistributed with inv (or maj) is called mahonian.

Let $a, b \in \mathcal{X}$. The cyclic interval $\rrbracket a, b \rrbracket$ has been defined by Han [4] as

$$
\rrbracket a, b \rrbracket= \begin{cases}(a, b], & \text { if } a \leq b \\ \mathcal{X} \backslash(b, a], & \text { otherwise }\end{cases}
$$

In particular, $\rrbracket a, a \rrbracket=\emptyset$.
Han has redefined the statistics maj and inv in terms of cyclic intervals as follows. If $1 \leq j \leq n$, define the j-factor of w as Fact ${ }_{j} w=$

[^0]$w_{1} w_{2} \ldots w_{j-1}$. Write $w_{n+1}=\infty$. Then
\[

$$
\begin{aligned}
\operatorname{inv} w & =\sum_{j=2}^{n}\left|\operatorname{Fact}_{j} w \cap \rrbracket w_{j}, \infty \rrbracket\right| \\
\operatorname{maj} w & =\sum_{j=2}^{n}\left|\operatorname{Fact}_{j} w \cap \rrbracket w_{j}, w_{j+1} \rrbracket\right|
\end{aligned}
$$
\]

We define the partial statistics s_{j} and t_{j} by

$$
\begin{aligned}
s_{j} & =s_{j}(w) \\
t_{j} & =\left|\operatorname{Fact}_{j} w \cap \rrbracket w_{j}, w_{j+1} \rrbracket\right| \mid, \\
& =\left|\operatorname{Fact}_{j} w \cap \rrbracket w_{j}, \infty \rrbracket\right|,
\end{aligned}
$$

$2 \leq j \leq n$. Then $s_{n}=t_{n}$ and

$$
\begin{aligned}
\operatorname{inv} w & =t_{2}(w)+\cdots+t_{n}(w), \\
\operatorname{maj} w & =s_{2}(w)+\cdots+s_{n}(w) .
\end{aligned}
$$

Our main result is the following.
Theorem 1. Let $\mathbf{e}=\left(e_{2}, \ldots, e_{n-1}\right)=\mathbb{Z}_{2}^{n-2}$. For each $j, 1<j \leq n$, let

$$
u_{j}= \begin{cases}s_{j}, & \text { if } e_{j}=0 \\ t_{j}, & \text { if } e_{j}=1\end{cases}
$$

Put $u_{n}=s_{n}=t_{n}$. Then the statistic

$$
\operatorname{inmaj}_{\mathbf{e}} w=u_{2}+\cdots+u_{n}
$$

is mahonian.
Note that maj $w=\operatorname{inmaj}_{(0, \ldots, 0)} w, \operatorname{inv} w=\operatorname{inmaj}_{(1, \ldots, 1)} w$. This theorem defines 2^{n-2} mahonian statistics, all but two of which seem to be new (although implicit in Foata's second fundamental transformation).

Although this result suggests that for each j, the partial statistics s_{j} and t_{j} are equidistributed, this is not in general true - on the rearrangement class $R(1123)$, the statistics s_{3} and t_{3} are differently distributed.

2. Foata's second fundamental transformation

Let $w=w_{1} w_{2} \ldots w_{n}$ be a word on \mathcal{X} and let $a \in \mathcal{X}$. If $w_{n} \leq a$, the a-factorization of w is $w=v_{1} b_{1} \ldots v_{p} b_{p}$, where each b_{i} is a letter less than or equal to a, and each v_{i} is a word (possibly empty), all of whose letters are greater than a. Similarly, if $w_{n}>a$, the a-factorization of w is $w=v_{1} b_{1} \ldots v_{p} b_{p}$, where each b_{i} is a letter greater than a, and each
v_{i} is a word (possibly empty), all of whose letters are less than or equal to a. In each case we define

$$
\gamma_{a}(w)=b_{1} v_{1} \ldots b_{p} v_{p}
$$

With the above notations, let $a=w_{n}$ and let $w^{\prime}=w_{1} \ldots w_{n-1}$. The second fundamental transformation Φ is defined recursively by $\Phi(w)=w$, if w has length 1 , and

$$
\Phi(w)=\gamma_{a}\left(\Phi\left(w^{\prime}\right)\right) a,
$$

if w has length $n>1$. Then

$$
\operatorname{inv} \Phi(w)=\operatorname{maj} w
$$

see [3].
Let us define the mapping Φ_{1} as the juxtaposition product

$$
\Phi_{1}(w)=\gamma_{a}\left(w^{\prime}\right) a .
$$

The following result follows easily from the proof of the result in [3].
Lemma 2. With the above notation,

$$
\begin{aligned}
\operatorname{inv} \Phi_{1}(w) & = \begin{cases}\operatorname{inv} w^{\prime} & \text { if } w_{n-1} \leq w_{n}, \\
\operatorname{inv} w^{\prime}+n-1 & \text { if } w_{n-1}>w_{n}\end{cases} \\
& =\operatorname{inv} w^{\prime}+\operatorname{maj} w-\operatorname{maj} w^{\prime} .
\end{aligned}
$$

Since Φ_{1} is a bijection, this shows that the statistic

$$
\operatorname{inv} w^{\prime}+\operatorname{maj} w-\operatorname{maj} w^{\prime}
$$

is mahonian. Now it is routine to verify that, in the notation of the previous section,

$$
\begin{aligned}
\operatorname{inv} w^{\prime}+\operatorname{maj} w-\operatorname{maj} w^{\prime} & =t_{2}+\cdots+t_{n-2}+s_{n-1}+s_{n} \\
& =\operatorname{inmaj}_{(1, \ldots, 1,0)} w .
\end{aligned}
$$

Hence inmaj ${ }_{(1, \ldots, 1,0)}$ is mahonian.
More generally, let $1 \leq j \leq n$. Write $w=u_{1} u_{2}$, where u_{1} is a word of length j. Then we can show in the same way as before that there is a bijection Φ^{\prime} satisfying

$$
\begin{aligned}
\operatorname{inv} \Phi^{\prime}(w)=\operatorname{inv} u_{1}+\operatorname{maj} w-\operatorname{maj} u_{1} & =t_{2}+\cdots+t_{j-1}+s_{j}+\cdots+s_{n} \\
& =\operatorname{inmaj}_{(1, \ldots, 1,0, \ldots, 0)}
\end{aligned}
$$

for all words w on n letters. Hence the statistic inmaj ${ }_{(1, \ldots, 1,0, \ldots, 0)}$ is mahonian (where the subscript contains $j-2$ ones and $n-j$ zeros).

Proof of Theorem 1. Let $\mathbf{e}=\left(e_{2}, \ldots, e_{n-1}\right) \in \mathbb{Z}^{n-1}$ as before. We will show that inmaj j_{e} is mahonian, by showing that there is a bijection Φ_{e} satisfying inv $\Phi_{\mathbf{e}}(w)=\operatorname{inmaj}_{\mathbf{e}} w$. We have shown this above for \mathbf{e} of the form $(1, \ldots, 1,0, \ldots, 0)$.

We use induction on the number of zeros in the vector \mathbf{e}. The result is true if \mathbf{e} contains no zeros, as in this case inmaj $j_{\mathbf{e}}=i n v$.

Suppose the result is true for all vectors \mathbf{e}^{\prime} containing fewer zeros than \mathbf{e}. Let k be the smallest index such that $e_{k}=0$ and let j be the largest index such that $e_{i}=0$ for $k \leq i \leq j$. If $j=n-1$ then the result follows, so suppose that $j<n-1$. Then $e_{j+1}=1$. Thus
$\operatorname{inmaj}_{\mathbf{e}} w=t_{2}+\cdots+t_{k-1}+s_{k}+\cdots+s_{j}+t_{j+1}+u_{j+2}+\cdots+u_{n}$,
where $u_{i}=t_{i}$ or s_{i}.
Let \mathbf{f} be the vector of length $j-1$ whose components are e_{2}, \ldots, e_{j}, i.e., $\mathbf{f}=(1, \ldots, 1,0, \ldots, 0)$ (with $k-2$ ones). Then there is a bijection Φ_{f} satisfying

$$
\operatorname{inv} \Phi_{\mathbf{f}} v=\operatorname{inmaj}_{\mathbf{f}} v
$$

for all words v of length $j+1$. Define a bijection θ on words of length n by

$$
\theta\left(v_{1} v_{2}\right)=\Phi_{\mathbf{f}}\left(v_{1}\right) v_{2},
$$

where v_{1} and v_{2} are words of lengths $j+1$ and $n-j-1$ respectively. Let $\mathbf{g}=\left(g_{i}\right)$ be the vector defined by

$$
g_{i}= \begin{cases}1, & \text { if } 2 \leq i \leq j \\ e_{i}, & \text { if } i>j\end{cases}
$$

Then

$$
\begin{aligned}
\operatorname{inmaj}_{\mathrm{g}} \theta\left(v_{1} v_{2}\right) & =\left(t_{2}+\cdots+t_{j+1}\right) \Phi_{\mathbf{f}}\left(v_{1}\right)+\left(u_{j+2}+\cdots+u_{n}\right) \Phi_{\mathbf{f}}\left(v_{1}\right) v_{2} \\
& =\left(u_{2}+\cdots+u_{j+1}\right) v_{1}+\left(u_{j+2}+\cdots+u_{n}\right) v_{1} v_{2} \\
& =\text { inmaj}_{\mathbf{e}} v_{1} v_{2} .
\end{aligned}
$$

Now, as \mathbf{g} contains fewer zeros than \mathbf{e}, there is a bijection $\Phi_{\mathbf{g}}$ such that

$$
\operatorname{inv} \Phi_{\mathbf{g}}(w)=\operatorname{inmaj}_{g} w
$$

for all words w on n letters. Hence, putting $\Phi_{\mathbf{e}}=\Phi_{\mathbf{g}} \circ \theta$,

$$
\operatorname{inv} \Phi_{\mathbf{e}}(w)=\operatorname{inv} \Phi_{\mathbf{g}}(\theta(w))=\operatorname{inmaj}_{\mathbf{g}} \theta(w)=\operatorname{inmaj}_{\mathbf{e}} w
$$

Finally, we refer the reader to [1] for a rather different application of Foata's second fundamental transformation.

References

[1] A. Björner and M. Wachs, Permutation statistics and linear extensions of posets, J. Combin. Theory Ser. A 58 (1991), 85-114.
[2] D. Foata, On the Netto inversion number of a sequence, Proc. Amer. Math. Soc. 19 (1968), 236-240.
[3] D. Foata, Rearrangements of Words, in M. Lothaire, Combinatorics on Words, Cambridge University Press, Cambridge, 1997.
[4] Guo-Niu Han, Une transformation fondamentale sur les réarrangements de mots, Advances in Math. 105 (1994), 26-41.
[5] (Major) P.A. MacMahon, Combinatory Analysis, vol. 1, Cambridge, Cambridge University Press, 1915. (Reprinted by Chelsea, New York, 1955.)

[^0]: *School of Mathematical Sciences, University of Adelaide, Australia 5005, robert.clarke at adelaide.edu.au.

