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INVERSION OF INTEGRAL SERIES ENUMERATING
PLANAR TREES

JEAN-LOUIS LODAY

Abstract. We consider an integral series f(X, t) which depends
on the choice of a set X of labelled planar rooted trees. We prove
that its inverse with respect to composition is of the form f(Z, t) for
another set Z of trees, deduced from X. The proof is self-contained,
though inspired by the Koszul duality theory of quadratic operads.
In the same vein we give a conceptual proof for the formulas giving
the coefficients of the inverse with respect to composition of the
generic formal power series.

1. Introduction

Let I be a finite set of indices. Let Yn×In be the set of planar binary
rooted trees whose n vertices are labelled by elements in the index set I.
Let X be a subset of Y2×I2 and let Z be its complement. Define Xn as
the subset of Yn× In made of labelled trees whose local patterns are in
X. In other words, a tree is in Xn if for every pair of adjacent vertices
the subtree defined by this pair is in X. By convention X0 = Y0 × I0

and X1 = Y1×I. From the definition of Xn it follows immediately that
X2 = X. The set Z determines similarly a sequence Zn.

The alternating generating series of X is by definition

f(X, t) :=
∑
n≥0

(−1)n+1(#Xn)tn+1 = −t + (#I)t2 − (#X)t3 + · · · .

Theorem. If Z is the complement of X, i.e., X t Z = Y2 × I2, then
the generating series of X and Z are inverse to each other with respect
to composition:

f(X, f(Z, t)) = t.

For some choices of I and X the integer sequence (#Xn)n≥0 appear
in the data base “On-line Encyclopedia of Integer sequences!” [Sl], but
for some others they do not.
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Here is an application of this theorem. Given an integer sequence
a = (a0, . . . , an, . . .), it is often interesting to know a combinatorial
interpretation of these numbers, that is, to know a family Xn of combi-
natorial objects such that an = #Xn. The theorem provides a solution
for some integer sequences as follows. Suppose that the inverse with
respect to composition of the alternating series of a gives an integer
sequence b which can be interpreted combinatorially by labelled trees.
Then the integer sequence a admits also such an interpretation, see 2.3.

Our proof of the theorem consists in constructing a chain complex
whose Poincaré series is exactly f(X, f(Z, t)). Then we prove that
this chain complex is acyclic (i.e., the homology groups are 0 except
H1 which is of dimension 1) by reducing it to the sum of subcomplexes
which turn out to be augmented chain complexes of standard simplices.
Hence the Poincaré series is t.

Our proof is self-contained but the idea of considering this particular
chain complex is inspired by the theory of quadratic operads. Indeed
the choice of X determines a certain type of algebras, i.e., a certain
quadratic operad, and the choice of Z gives the “dual operad” in the
Koszul duality sense cf. [G-K]. Then the chain complex is the Koszul
complex attached to this dual pair of operads. So our main theorem
gives a large family of Koszul operads.

We give all the details for the case of binary trees, but this method
can be generalized to planar trees. We outline the case of k-ary trees.
A surprising consequence is the following property of the Catalan num-
bers cn. The series h(t) =

∑
n≥0(−1)n+1cnt

3n+1 is its own inverse with
respect to composition: h(h(t)) = t.

The formula for the inverse of the generic formal power series is well-
known. The coefficients which show up are the numbers of the planar
trees of a given type. In the last section we give a conceptual proof of
this formula by using Koszul duality of an elementary operad.

After the release of the first version of this paper, I was informed by
Prof. I. Gessel that his student S.F. Parker obtained the same result by
combinatorial methods in her thesis (unpublished). A far reaching gen-
eralization of our result has been obtained subsequently by R. Bacher
in [B] using a different technique.

2. Labelled trees

2.1. Planar binary rooted trees. Denote by Yn the set of planar
binary rooted trees of degree n, that is, with n vertices (with valency
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2 + 1):

Y0 = { | } , Y1 =
{ ��

?? }
, Y2 =

{
L :=

�� �����

????? , R :=
??�����

?????
}

Y3 =

{
�� ����

������

?????? ,

??����
������

?????? ,
�� ??������

?????? ,
��????

������

?????? ,

??????
������

??????

}
Observe that the end of the leaves and of the root are not considered

as vertices. This notion of vertex is sometimes referred to as “internal
vertex” in the literature.

The number of elements in Yn is the so-called Catalan number cn =
(2n)!

n!(n+1)!
, cf. 2.3 (b). Let I be a finite set of indices. By definition

a labelled tree is a planar binary rooted tree such that each vertex
is labelled by an element of I. These elements need not be distinct.
Therefore the set of labelled trees of degree n is in bijection with Yn×In.

An element of Y2 × I2 is either of the form (L; i1, i2) or of the form
(R; i1, i2):

i1

xxx
>>

i2

��������
444

i2

FFF ��

i1






777777777

.

Let X be a subset of Y2× I2 and let Z be its complement. We define
a subset Xn of Yn × In as follows. A pair of adjacent vertices in the
labelled tree y determines a subtree of degree 2, called a local pattern.
The labelled tree y is in Xn if and only if all its local patterns belong to
X. In other words we exclude all the trees which have a local pattern
which belongs to Z. It is clear that X2 = X. By convention we define
X0 = Y0 × I0 and X1 = Y1 × I.

The alternating generating series of X is determined by the integer
sequence (#Xn)n≥0 as follows:

f(X, t) :=
∑
n≥0

(−1)n+1(#Xn)tn+1 = −t + (#I)t2 − (#X)t3 + . . . .

If, instead of X, we start with Z, then we get another family Zn. For
n = 2, Z2 is the complement of X2, but this property does not hold for
higher n’s.

2.2. Theorem. If Z is the complement of X, i.e., X t Z = Y2 × I2,
then the generating series of X and Z are inverse to each other with
respect to composition:

f(X, f(Z, t)) = t.
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The proof is given in the next section.

2.3. Examples. We list a few interesting examples of integer sequences
and their dual which appear in the study of quadratic operads (cf. [L3]).
The notation is as follows: the sequence (a0, · · · , an, · · · ) is such that
an = #Xn and f(t) =

∑
n≥0(−1)n+1ant

n+1. The dual sequence is

(b0, · · · , bn, · · · ) where bn = #Zn and g(t) =
∑

n≥0(−1)n+1bnt
n+1.

Observe that a0 = 1, a1 = #I, a2 = #X and 0 ≤ a2 ≤ 2(a1)
2.

In the following examples we can write g(t) as a rational function,
hence we get a combinatorial interpretation of the integer sequence a
whose alternating series f(t) is determined by the functional equation
g(f(t)) = t.

(a) (1, 1, 1, . . . , 1, . . .) versus itself.

• I = {1}, X = {L} and Z = {R}.
• f(t) = g(t) = −t

1+t
.

(b) (1, 1, 2, 5, 14, 42, 132, · · · , cn = (2n)!
(n+1)!n!

, . . .) versus (1, 1, 0, . . . , 0, . . .).

• I = {1}, Z = ∅, X = Y2.
• g(t) = −t + t2.
• We get the well known functional equation for the generating

series of the Catalan numbers c(t) :=
∑

n≥0 cnt
n,

tc(t)2 − c(t) + 1 = 0.

(c) (1, 2, 6, 22, 90, · · · , 2Cn, . . .) versus (1, 2, 2, . . . , 2, . . .).

• Cn is the super Catalan number (also called Schröder number),
that is, the number of planar trees with n + 1 leaves.
• I = {1, 2}, Z = {(L; 1, 1), (R; 2, 2)} and X has 6 elements.
• It is immediate to see that Zn has only two elements: the left

comb indexed by 1’s and the right comb indexed by 2’s. There-
fore g(t) = −t+t2

1+t
. On the other hand, one can show that, for

n ≥ 2, there is a bijection between the elements of Xn and two
copies of the set of planar trees with n+1 leaves (see [L-R2] for a
variant of this result). The theorem gives the well known func-
tional equation for the generating series of the super Catalan
numbers C(t) :=

∑
n≥0 Cnt

n,

tC(t)2 + (1− t)C(t)− 1 = 0.

(d) (1, 2, 6, 21, 80, . . .) versus (1, 2, 2, 1, 0, . . . , 0, . . .).

• I = {1, 2}, Z = {(L; 2, 1), (R; 1, 2)} and X has 6 elements.
• It is immediate to see that Z3 has only one element and that

Zn is empty for n ≥ 4. Hence g(t) = −t + 2t2 − 2t3 + t4.
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• This example and the previous one show that the integer se-
quence determined by X does not depend only on the number
of elements of I and X.

(e) (1, 2, 7, 31, 154, . . .) versus (1, 2, 1, 1, . . . , 1, . . .).

• Let I = {1, 2}, Z = {(L; 1, 1)} and X has 7 elements.
• It is immediate to see that for n ≥ 2, Zn has only one element:

the left comb indexed by 1’s. Hence g(t) = −t+t2+t3

1+t
.

(f) (1, 3, 17, 121, 965, · · · ) versus (1, 3, 1, 1, . . . , 1, . . .), and
(1, k, 2k2 − 1, 5 3k − 5k + 1 · · · , ?, · · · ) versus (1, k, 1, 1, . . . , 1, . . .).

• I = {1, · · · , k}, Z = {(L; 1, 1)} and X has 2k2 − 1 elements.
• It is immediate to see that, for n ≥ 2, Zn has only one element.

Hence g(t) = −t+(k−1)(1+t)t2

1+t
.

(g) (1, 3, 14, 80, 510, · · · ) versus (1, 3, 4, 5, . . . , n + 2, . . .).

• I={1, 2, 3}, Z = {(L; 1, 1), (L; 2, 1), (R; 2, 2), (R; 3, 3)}, X has
14 elements.
• One checks that Zn is made of (n + 1) + 1 elements. Hence

g(t) = t(−1+t+t2)
(1+t)2

.

(h) (1, 4, 23, 156, 1162, · · · ) versus (1, 4, 9, 16, . . . , (n + 1)2, . . .).

• I={↖,↗,↘,↙}, in the following we write Rij in place of
(R; i, j):

Z =

 R↖↖ R↗↖ L↗↗
R↙↖ R↘↖ L↘↗
R↙↙ L↘↙ L↘↘


• We have shown in [A-L, Proposition 4.4] that Zn = (n + 1)2,

hence g(t) = t(−1+t)
(1+t)3

.

• The first sequence has been given a different combinatorial in-
terpretation in terms of connected non-crossing configurations
in [F-N].

(i) (1, 9, 113, · · · ) versus (1, 9, 49, . . . , ).

• I is a set of 9 indices denoted
↖ ↑ ↗
← ◦ →
↙ ↓ ↘

and Z is made of the

following 49 elements (indexed by the cells of ∆2 ×∆2):
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R↖↖ R↗↖ L↗↗ R↗↑ R↖↑ R ↑↖ R ↑↑
R↙↖ R↘↖ L↘↗ R↘↑ R↙↑ L ↓↖ R ↓↑
R↙↙ L↘↙ L↘↘ R↘↓ L↙↓ L ↓↙ L ↓↓
R↙← R↘← L↘→ R↘ ◦ R↙ ◦ L ↓← R ↓ ◦
R↖← R↗← L↗→ R↗ ◦ R↖ ◦ L ↑← R ↑ ◦
R←↖ L→↖ L→↗ R→↑ L←↑ L◦ ↖ L◦ ↑
R←← R→← L→→ R→ ◦ R← ◦ L◦ ← R ◦ ◦
• Unfortunately we do not know how to compute the number of

elements in Zn. This example is strongly related to dendriform
trialgebras [L-R1] and motivated by the ennea-algebras [Le].

Added after the release of the first version: a thorough study of this
example has been performed in [B].

3. Koszul complex and the Theorem

Only elementary homological algebra methods are used in the proof.
The reader may find them in standard textbooks on homological alge-
bra such as, for instance, [Bbki].

3.1. Koszul complex. Given a planar binary rooted tree y ∈ Yn, one
numbers the leaves from left to right by 0, . . . , n. Accordingly, one
numbers the vertices by 1, . . . , n, the ith vertex being in between the
leaves i− 1 and i. So a decoration is a map ε from {1, . . . , n} to I. A
vertex of y is said to be a cup if it is directly connected to two leaves
(no intermediate node). In the following example z has a cup at vertex
1 and vertex 3:

�� ??������

??????

The grafting of two treees y and y′ is the new tree y∨ y′ obtained from
y and y′ by joining the roots to a new vertex and adding a new root.

For instance, the above tree is the grafting ��
?? ∨ ��

??
.

We define a chain complex K∗ = (Kn, d)n>0 over the field K as fol-
lows. The space of (n + 1)-chains is

Kn+1 :=
⊕

K[Zn ×Xi0 × · · · ×Xin ]

where the sum is over all (n + 1)-tuples (i0, · · · , in), where ij ≥ 0. The
boundary map d : Kn+1 → Kn is of the form d =

∑n
i=1(−1)idi, where

di sends a basis vector to a basis vector or 0 according to the following
rule.



INVERSION OF INTEGRAL SERIES ENUMERATING PLANAR TREES 7

Let z ∈ Zn and xj ∈ Xij . If the ith vertex of z is not a cup, then
di(z; x0, . . . , xn) := 0. If the ith vertex of z is a cup, then

di(z; x0, . . . , xn) := (di(z); x0, . . . , xi−1 ∨ε(i) xi, . . . , xn)

where di(z) is the labelled tree obtained from z by deleting the ith node
(replace it by a leaf), and where ∨ε(i) means the grafting with ε(i) as
the decoration of the new node. If it happens that the labelled tree
xi−1 ∨ε(i) xi contains a pattern in Z, then we put di(z; x0, . . . , xn) := 0.

3.2. Lemma. d2 = 0.

Proof. Let ω = (z; x0, . . . , xn). It is sufficient to prove that didj =
dj−1di for i < j (presimplicial relation). If i < j − 1, then the actions
of di and dj on ω are sufficiently far apart so that they commute (the
indexing j − 1 comes from the renumbering). In the case j = i + 1 we
will prove that didi+1(ω) = 0 = didi(ω). We are, locally in z, in one of
the following two situations:

DDDD
ε(i + 1)

ttttttttttt

<<<<<<<<

ε(i)

ε(i)
pppppp

yyyyyyyyy

JJJJJJJJJJJ

ε(i + 1)

In the first situation didi(ω) = 0 because the ith vertex is not a cup.
If i + 1 is not a cup, then didi+1(ω) = 0 because di+1(ω) = 0. If i + 1
is a cup, then didi+1(ω) = 0 because one of the entries of didi+1(ω) is
a ∨ε(i) (b ∨ε(i+1) c) which has a local pattern in Z and so is 0 in Xl.

The proof is similar in the second situation. �

The chain complex K∗ is called the Koszul complex of X (see Sec-
tion 4 for an explanation of this terminology).

3.3. Extremal elements. By definition a basis vector ω = (z; x0, . . . ,
xn) of Kn is an extremal element if there does not exist a basis vector
ω′ such that di(ω

′) = ω for some i.

3.4. Proposition. For each extremal element ω with k cups, the basis
vectors di1 · · · dirω span a subcomplex Kω of K which is isomorphic to
the augmented chain complex of the standard simplex ∆k−1.

Proof. Let ω = (z; x0, . . . , xn) be an extremal element. The graded
subvector space of K∗ spanned by the elements di1 · · · dirω is stable by
d and so forms a subcomplex.

Let us now prove the isomorphism. We claim that di1 · · · dirω is
non-zero if and only if the indices ij are such that the vertices ij are
cups. Indeed the “only if” case is immediate. In the other direction:
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if di1 · · · dirω 6= 0, then this would say that there is an l, such that the
vertex l is a cup and dl(ω) = (dl(z); . . . , (a∨u b)∨v c, . . .) with (R; u, v)
in Z, or dl(ω) = (dl(z); . . . , a ∨u (b ∨v c, . . .) with (L; u, v) in Z. So we
could construct ω̂ = (ẑ; . . . , a, b, c, . . .) so that dl(ω̂) = ω, and ω would
not be extremal.

We construct a bijection between the cells of ∆k−1 and the set of non-
zero vectors {di1 · · · dirω} by sending the jth vertex (number j − 1) of

∆k−1 to di1 . . . d̂ij . . . dikω where ij is the jth cup of x. It is immediate
to verify that the boundary map in the chain complex of the standard
simplex corresponds to the boundary map d by this bijection. Observe
that, under this bijection, the big cell of the simplex is mapped to ω and
the generator of the augmentation space is mapped to di1 . . . dikω. �

3.5. Proposition. The chain complex K∗ is isomorphic to
⊕

ω Kω

where the sum is taken over all the extremal elements ω.

Proof. Let us show that any basis vector belongs to Kω for some ex-
tremal element ω. If ω is extremal, then the Proposition holds. If not,
then there exists an element ω1 such that di(ω1) = ω for some i, and so
on. The process stops after a finite number of steps because (z; |, . . . , |)
is extremal.

Now it is sufficient to prove that, if a basis vector belongs to Kω and
to Kω′ , then ω = ω′.

Let ω = (z; x0, . . . , xn) and ω′ = (z′; x′0, . . . , x
′
n). If di(ω) = dj(ω

′) 6=
0, then i is a cup of z, j is a cup of z′ and di(z) = dj(z

′). If i < j, then
there exists ω̄ such that dj(ω̄) = ω, di(ω̄) = ω′, and therefore ω is not
extremal. So we have i = j.

If di(ω) = di(ω
′) 6= 0, then it is of the form (z̄; . . . , a∨ε(i) b, . . .). But

the element (z; . . . , a, b, . . .), where z is the labelled tree obtained from
z̄ by replacing the ith leaf by a cup and putting ε(i) as a decoration, is
the only element such that di(ω) = (z̄; . . . , a∨ε(i) b, . . .). Hence ω = ω′.

So we have proved that any basis vector belongs to one and only one
subcomplex of the form Kω. �

3.6. Remark. In order to visualize these two proofs it is helpful to think
of the element ω = (z; x0, . . . , xn) as a single graph (with a “horizon”)
obtained by gluing the xj’s to the leaves of z. The horizon indicates
where to cut to get the xj’s back. The operator dj, where j is the
number of a cup, consists in lowering the horizon under the relevant
node.
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Example with n = 3 and two cups in z:

??? ���
??? ���

??? ���

xi

7777 ���
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����
777

����
777 ���

horizonEEEEEEEE

������

9999999

�������

z

DDDDDDDD

ssssssssss

3.7. Corollary. For any choice of X the Koszul complex K∗ is acyclic.

Proof. By Propositions 3.5 and 3.4 the homology of the Koszul complex
is trivial since the standard simplex is contractible. There is only one
exception in dimension 1 since the subcomplex corresponding to the
extremal element ω = (|; |) is K in dimension 1. So we have Hn(K∗) = 0
for n > 1 and H1(K∗) = K. �

3.8. Proposition. The Poincaré series of the Koszul complex K∗ is
equal to f(Z, f(X, t)).

Proof. Let us call w = n + i0 + · · · + in the weight of an element
ω ∈ Zn × Xi0 × · · · × Xin . From the definition of di(ω) we see that
the weight of di(ω) is also w. Therefore the Koszul complex is the

direct sum of subcomplexes K(w)
∗ made of all the elements of weight

w. For a fixed weight w the complex K(w)
∗ is finite, beginning with

K[Zw × (X0)
w+1], ending with K[Z0 × Xw]. More generally one has

K(w)
n =

⊕
K[Zn×Xi0×· · ·×Xin ] where the sum is over all the (n+1)-

tuples (i0, . . . , in) such that n + i0 + · · ·+ in = w.
Let an := #Xn and bn := #Zn so that f(X, t) =

∑
n≥1(−1)n+1ant

n+1

and f(Z, t) =
∑

n≥1(−1)n+1bnt
n+1. From the explicit description of

K(w)
n we check that the Euler-Poincaré characteristic of K(w)

∗ is precisely
the coefficient of (−1)wtw+1 in the expansion of∑

n≥1

(−1)n+1bn

( ∑
m≥1

(−1)m+1amtm+1
)n

.

Therefore the Poincaré series
∑

w≥0(−1)wχ(K(w)
∗ )tw+1 is equal to

f(Z, f(X, t)). �

3.9. End of the proof of Theorem 2.2. By Proposition 3.8 it suf-
fices to show that the Poincaré series of K∗ is t. The Poincaré series of
a complex is the same as the Poincaré series of its homology. Since the
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homology of K∗ is 0, except in weight 0 where it is K by Corollary 3.7,
the Poincaré series is t. �

4. Operadic interpretation.

4.1. Algebraic operad. The free associative algebra over the vector
space V is the tensor algebra T (V ) equipped with the concatenation
product. If V is generated by the elements x1, . . . , xk, then T (V ) is
nothing but the algebra of noncommutative polynomials over the xi’s.
Let us consider T as a functor T : Vect → Vect. The inclusion V →
T (V ) is given by a transformation of functors ι : Id → T and the
classical composition of polynomials gives a transformation of functors
γ : T ◦ T → T . Observe that the triple (T, γ, ι) is a monoid in the
category of endofunctors of Vect.

By definition an algebraic operad is a monoid (P , γ, ι) where P is an
endofunctor of Vect, and γ : P◦P → P, ι : Id→ P are transformations
of functors. Any algebraic operad P defines a notion of algebra as
follows. A P-algebra is a vector space A equipped with a map γA :
P(A)→ A compatible with γ and ι. For instance, P(V ) is a P-algebra.
It has the property of being free over V .

In this paper we consider only operads of the form

P(V ) :=
⊕

n

Pn ⊗ V ⊗n.

They are called regular operads. For instance, in the associative exam-
ple described above we have Asn = K. For more details on operads
and on the Koszul duality theory for operads the reader can consult
[G-K], [L1], [F].

4.2. Algebraic operads based on labelled trees. Let I be a finite
set of indices, X be a subset of Y2 × I2 and Z its complement. Over
the field K we define a type of algebras, denoted P , as follows. There
is one binary operation ◦i for any i ∈ I and the relations are

(x ◦i y) ◦j z = 0 if (L; i, j) ∈ Z and x ◦i (y ◦j z) = 0 if (R; i, j) ∈ Z.

It is immediate to check that the free algebra of type P on one generator
admits Xn−1 as a basis of the homogeneous part of degree n, n ≥ 1.
The generator is the unique element of X0, that is, | . So the operad
P determined by this type of algebras is a regular operad such that
Pn = K[Xn−1].

Reversing the roles of X and Z, that is, taking the elements of X as
relations, gives rise to a new regular operad Q such that Qn = K[Zn−1].

4.3. Lemma. The Koszul dual operad of P is Q, that is, P ! = Q.
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Proof. Recall from [G-K], (see [L1] or [L2] for a short survey and [F] for
details) that the dual operad P ! of the regular operad P is constructed
as follows. The generating operations are the same. The space of
relations is made of the elements

∑
αij(x ◦i y) ◦j z +

∑
βijx ◦i (y ◦j z)

(for some scalars αij and βij) which are orthogonal to the relations of
P for the inner product 〈−,−〉 defined on the linear generators by

〈(x ◦i y) ◦j z , (x ◦i y) ◦j z〉 = 1,(1)

〈x ◦i (y ◦j z) , x ◦i (y ◦j z)〉 = −1(2)

〈−,−〉 = 0 otherwise.(3)

One immediately checks that the vector space generated by X is
orthogonal to the vector space generated by Z, and therefore the Koszul
dual of P is Q. �

4.4. Theorem. The operads P and Q are Koszul operads.

Proof. The Koszul duality of P is equivalent to the acyclicity of the
Koszul complex of P , which is (P !∗(P(V )), δ). Since P is regular, it is
sufficient to check the acyclicity for V = K. Since P ! = Q the chains
of the Koszul complex of P are the same as the chains of the Koszul
complex of X constructed in the first section. A careful checking of the
construction of δ shows that δ = d.

So we can apply Corollary 3.7 and the proof is completed. �

4.5. Poincaré series. The Poincaré series of a binary regular operad
P is defined as

fP(t) :=
∑
n≥1

(−1)n dimPn tn .

Hence, for the operad P defined by X, one has fP(t) = f(X, t) and
the functional equation of Theorem 2.2 is the functional equation

fP
!

(fP(t)) = t

proved in [G-K] for Koszul binary quadratic operads. A similar formula
holds for any Koszul quadratic operad (not necessarily binary), cf. [F],
[V2].

In this paper we exploit only the Poincaré series property of Koszul
operads. There are many other applications like constructing homotopy
algebras (cf. [G-K]) and computing the homology of the associated
partition complex (cf. [V3]).
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5. Generalization

There is no reason to restrict oneself to binary trees, that is, to binary
operads. One can start with planar rooted trees. In this framework we
choose a set of indices for each integer k ≥ 2. The functional equation
is now in two variables because any operation determines two integers:
the number of variables on which it acts and the number of generating
operations used to form it (in the binary case the number of variables
is equal to the number of generating operations plus one). See [V3,
Section 9] for the operadic interpretation. In this section we give some
examples of a particular case: the vertices of the trees have valency
k + 1 ≥ 2 + 1 for a fixed integer k.

5.1. k-ary planar trees. Let Y
(k)
n be the set of planar rooted trees

with n nodes, each vertex being of valency k+1. The number of leaves
of such a tree is (k − 1)n + 1. The case k = 2 is the one treated in the

first part. Let I be a set of indices and let Y
(k)
n ×In be the set of labelled

trees. Choose a subset X of Y
(k)
2 × I2 and let Z be its complement.

As before we define Xn ⊂ Y
(k)
n × In to be the subset made of labelled

trees whose local patterns belong to X.
In order to state the Theorem we need to introduce the following

series. Let a = (a0, . . . , an, . . .) be a sequence of numbers (we will
always have a0 = 1). Define the (lacunary) series f (k) and g(k) as
follows:

f (k)(a, t) :=
∑
n≥0

(−1)n+1ant
(k−1)n+1 = −t + a1t

k − a2t
2k−1 + · · ·

g(k)(a, t) := −
∑
n≥0

(−1)(k+1)nant
(k−1)n+1 = −t+(−1)ka1t

k−a2t
2k−1+· · ·

Observe that when k is even f (k) = g(k) and when k is odd all the signs
in g(k) are − . When k = 2, one has f (2) = g(2) = f as defined in
Section 2. The series f (k)(X, t) and g(k)(X, t) are obtained by taking
an = #Xn.

5.2. Theorem. Let X be a subset of Y
(k)
2 × I2 and let Z be its comple-

ment, i.e., X t Z = Y
(k)
2 × I2. Then the following functional equation

holds:

g(k)(Z, f (k)(X, t)) = t.

The proof is along the same lines as the proof of Theorem 2.2 and
we leave it to the diligent reader to work it out.



INVERSION OF INTEGRAL SERIES ENUMERATING PLANAR TREES 13

There is an operadic interpretation of this result, which involves the
notion of k-ary algebras. The relevant generalization of Koszul duality
theory for quadratic algebras (not just binary) can be found in [F].

It would be interesting to study the analogous question with operads
replaced by props as in [V1], [V2].

5.3. Examples. The integer sequences involved in this case are of the
form

(1, 0, . . . , 0︸ ︷︷ ︸
k−2

, a1, 0, . . . , 0︸ ︷︷ ︸
k−2

, a2, 0, . . . , 0︸ ︷︷ ︸
k−2

, a3, 0, . . . , )

with a1 = #I, a2 = #X, so 0 ≤ a2 ≤ k(a1)
2. We denote such a

lacunary sequence by (1; a1; a2; · · · ; an; · · · )k .

(a) (1; 1; k; k(3k−1)
2

; k(8k2−6k+1)
3

; · · · )k versus (1; 1; 0; · · · ; 0; · · · )k .

Let c
(k)
n be the number of k-ary trees with n nodes. Taking I = {1},

X = Y
(k)
2 and Z = ∅ we get g(k)(∅, t) = −t+(−1)ktk and f (k)(Y

(k)
2 , t) =∑

n≥0(−1)n+1c
(k)
n t(k−1)n+1. So this last series, denote it y, satisfies the

functional equation −y + (−1)kyk = t.

(b) (1; 1; 2; 5; · · · ; cn; · · · )3 versus (1; 1; 1; · · · ; 1; · · · )3 .
Take I = 1, X has two elements and Z has one element. The set Xn

has cn+1 elements and Zn has one element. This case is related to the
notion of totally associative ternary algebras and partially associative
ternary algebras studied in [Gn].

(c) (1; 1; 2; 5; · · · ; cn; · · · )4 versus itself.

Let k = 4, I = {1}. The set X is made of two elements of Y
(4)
2 and

Z is made of the other two. It is clear that the sets Xn and Zn are in
bijection with the planar binary trees of degree n. As a consequence of
Theorem 5.2 the series h(t) =

∑
n≥0(−1)n+1cnt

3n+1 satisfies

h(h(t)) = t.

Of course this result can also be proved by direct computation from

the expression c(t) :=
∑

n≥0 cnt
n = 1−

√
1−4t

2t
.

6. Inversion of the generic formal power series

Let f(t) = t + a1t
2 + · · ·+ ant

n+1 + · · · be the generic formal power
series and let g(t) = t+b1t

2+· · ·+bnt
n+1+· · · be its inverse with respect

to composition. The coefficient bn is a polynomial in the coefficients
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a1, . . . , an. Explicitly we get

b1 = −a1,
b2 = 2a1

2 − a2,
b3 = −5a1

3 + 5a1a2 − a3,
b4 = 14a1

4 − 21a1
2a2 + 6a1a3 + 3a2

2 − a4,

and more generally

bn =
∑

i1+2i2+···+nin

(−1)i1+i2+···+inci1···ina1
i1a2

i2 . . . an
in ,

where the coefficient ci1···in is the number of planar rooted trees having
ik vertices with valency (k + 1) + 1 (cf. [St]). Observe that it is also
the number of cells of the (n − 1)-dimensional associahedron Kn−1 of
the form (K0)i1 × · · · × (Kn−1)in .

This result can be proved purely combinatorially, however it has a
simple proof in the spirit of this paper, i.e., via Koszul operads. It gives
a conceptual explanation for the appearance of the numbers of planar
rooted trees of a certain form.

First, we oberve that it is sufficient to prove this result when the
coefficients an are integers, since we know a priori that bn is a polyno-
mial in the ai’s. Second, consider the algebras defined by an (n+1)-ary
operations (with no symmetry) and with relations: any nontrivial com-
posite is 0. It is clear that the (regular) operad P associated to these
algebras is such that Pn = anK since there are no operations but the
generating ones. Since the operad P is nilpotent by construction, its
dual P ! is the free operad over the same generators. Therefore a linear
generator of P !

n is determined by a planar rooted tree whose vertices
are labelled by the generators of the Pk’s :

CCC {{ CCC {{

ssssssssssssss
µ1

CCC
CC

µ3

{{{{

µ2

where µ1 ∈ P2, µ2 ∈ P4, µ3 ∈ P3.
It follows from this description that

dimP !
n =

∑
i1+2i2+···+nin

ci1···ina1
i1 . . . an

in .

Since the operad P ! is quadratic and free, it is a Koszul operad, that is,
the Koszul complex is acyclic (cf. Fresse [F]). Computing the Euler-
Poincaré characteristic of this complex gives a formula entertwining the
generating series of P and of P !. For a general Koszul quadratic operad
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this has been unraveled explicitly by B. Vallette in [V2, Section 9]. In
the particular case at hand it takes precisely the form g(f(t)) = t.

Special thanks to Mamuka Jibladze for discussions on the topic of
this section.
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