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BERGMAN COMPLEXES, COXETER ARRANGEMENTS, AND
GRAPH ASSOCIAHEDRA

FEDERICO ARDILA, VICTOR REINER, AND LAUREN WILLIAMS*

Abstract. Tropical varieties play an important role in algebraic geometry. The
Bergman complex B(M) and the positive Bergman complex B+(M) of an oriented
matroid M generalize to matroids the notions of the tropical variety and positive
tropical variety associated to a linear ideal. Our main result is that if A is a Coxeter
arrangement of type Φ with corresponding oriented matroid MΦ, then B+(MΦ)
is dual to the graph associahedron of type Φ, and B(MΦ) equals the nested set
complex of A. In addition, we prove that for any orientable matroid M , one can find
|µ(M)| different reorientations of M such that the corresponding positive Bergman
complexes cover B(M), where µ(M) denotes the Möbius function of the lattice of
flats of M .

1. Introduction

In this paper we study the Bergman complex and the positive Bergman complex
of a Coxeter arrangement. We relate them to the nested set complexes that arise in
De Concini and Procesi’s wonderful arrangement models [11, 12], and to the graph
associahedra introduced by Carr and Devadoss [8], by Davis, Januszkiewicz, and Scott
[10], and by Postnikov [19].

The Bergman complex of a matroid is a pure polyhedral complex which can be
associated to any matroid. It was first defined by Sturmfels [23] in order to gener-
alize to matroids the notion of a tropical variety associated to a linear ideal. The
Bergman complex can be described in terms of the lattice of flats of the matroid, and
is homotopy equivalent to a wedge of spheres, as shown by Ardila and Klivans [1].

The positive Bergman complex B+(M) of an oriented matroid M is a subcomplex
of the Bergman complex of the underlying unoriented matroid M . It generalizes to
oriented matroids the notion of the positive tropical variety associated to a linear
ideal. B+(M) depends on a choice of acyclic orientation of M , and as one varies this
acyclic orientation, one gets a covering of the Bergman complex of M ; we will prove
this in Section 3. The positive Bergman complex can be described in terms of the Las
Vergnas face lattice of M and it is homeomorphic to a sphere, as shown by Ardila,
Klivans, and Williams [2].

Graph associahedra are polytopes which generalize the associahedron, which were
discovered independently by Carr and Devadoss [8], by Davis, Januszkiewicz, and
Scott [10], and by Postnikov [19]. There is an intrinsic tiling by associahedra of
the Deligne–Knudsen–Mumford compactification of the real moduli space of curves

* Supported in part by the by the National Science Foundation under Grant No. DMS-0502858.



2 FEDERICO ARDILA, VICTOR REINER, AND LAUREN WILLIAMS*

Mn
0 (R), a space which is related to the Coxeter complex of type A. The motivation

for Carr and Devadoss’ work was the desire to generalize this phenomenon to all
simplicial Coxeter systems.

Let AΦ be the Coxeter arrangement corresponding to the (possibly infinite, possi-
bly non-crystallographic) root system Φ associated to a Coxeter system (W, S) with
diagram Γ; see Section 6 below. Choose a region R of the arrangement, and let MΦ

be the oriented matroid associated to AΦ and R. In this paper we prove:

Theorem 1.1. The positive Bergman complex B+(MΦ) of the arrangement AΦ is
dual to the graph associahedron P (Γ).

In particular, the cellular sphere B+(MΦ) is actually a simplicial sphere, and a flag
(or clique) complex.

This result is also related to the wonderful model of a hyperplane arrangement
and to nested set complexes. The wonderful model of a hyperplane arrangement is
obtained by blowing up the non-normal crossings of the arrangement, leaving its
complement unchanged. De Concini and Procesi [11] introduced this model in order
to study the topology of this complement. They showed that the nested sets of the
arrangement encode the underlying combinatorics. Feichtner and Kozlov [12] gave an
abstract notion of the nested set complex for any meet-semilattice, and Feichtner and
Müller [13] studied its topology. Recently, Feichtner and Sturmfels [14] studied the
relation between the Bergman complex and the nested set complexes (see Section 7
below).

In this paper we also prove for finite root systems Φ:

Theorem 1.2. The Bergman complex B(MΦ) of AΦ equals its nested set complex.

In particular, the cell complex B(MΦ) is actually a simplicial complex.

2. The Bergman complex and the positive Bergman complex

Our goal in this section is to explain the notions of the Bergman complex of a
matroid and the positive Bergman complex of an oriented matroid which were studied
in [1] and [2]. In order to do so we must review a certain operation on matroids and
oriented matroids.

Definition 2.1. Let M be a matroid or oriented matroid of rank r on the ground
set [n], and let ω ∈ Rn. Regard ω as a weight function on M , so that the weight of
a basis B = {b1, . . . , br} of M is given by ωB = ωb1 + ωb2 + · · · + ωbr . Let Bω be the
collection of bases of M having minimum ω-weight. (If M is oriented, then bases in
Bω inherit orientations from bases of M .) This collection is itself the set of bases of
a matroid (or oriented matroid) which we call Mω.

It is not obvious that Mω is well-defined. However, when M is an unoriented
matroid, we can see this by considering the matroid polytope of M : the face that
minimizes the linear functional ω is precisely the matroid polytope of Mω. For a proof
that Mω is well-defined when M is oriented, see [2].
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Notice that Mω will not change if we translate ω or scale it by a positive constant.
We can therefore restrict our attention to the sphere

Sn−2 := {ω ∈ Rn : ω1 + · · ·+ ωn = 0 , ω2
1 + · · ·+ ω2

n = 1}.
The Bergman complex of M will be a certain subset of this sphere.

The matroid Mω depends only on a certain flag associated to ω.

Definition 2.2. Given ω ∈ Rn, let F(ω) denote the unique flag of subsets

(1) ∅ = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ Fk+1 = [n]

such that ω is constant on each set Fi \ Fi−1 and satisfies ω|Fi\Fi−1
< ω|Fi+1\Fi

. We
call F(ω) the flag of ω, and we say that the weight class of ω or of the flag F is the
set of vectors ν such that F(ν) = F .

It is shown in [1] that Mω depends only on the flag F := F(ω); specifically

(2) Mω =
k+1⊕
i=1

Fi/Fi−1,

where Fi/Fi−1 is obtained from the matroid restriction of M to Fi by quotienting out
the flat Fi−1. Hence we also refer to this oriented matroid Mω as MF .

Definition/Theorem 2.3. [1] The Bergman complex of a matroid M on the ground
set [n] is the set

B(M) = {ω ∈ Sn−2 : MF(ω) has no loops}
= {ω ∈ Sn−2 : F(ω) is a flag of flats of M}.

Since the matroid Mω depends only on the weight class that ω is in, the Bergman
complex of M is the disjoint union of the weight classes of flags F such that MF has
no loops. We say that the weight class of a flag F is valid for M if MF has no loops.

There are two polyhedral subdivisions of B(M), one of which is clearly finer than
the other.

Definition 2.4. The fine subdivision of B(M) is the subdivision of B(M) into valid
weight classes: two vectors ω and ν of B(M) are in the same class if and only if
F(ω) = F(ν). The coarse subdivision of B(M) is the subdivision of B(M) into Mω-
equivalence classes: two vectors ω and ν of B(M) are in the same class if and only if
Mω = Mν . We call these equivalence classes fine cells and coarse cells; however, by
default, any reference to a cell of B(M) will refer to a coarse cell.

The fine subdivision gives the following corollary of Theorem 2.3.

Corollary 2.5. [1] Let M be a matroid of rank r. The fine subdivision of the Bergman
complex B(M) is a geometric realization of ∆(LM−{ 0̂ , 1̂ } ), the order complex of the
proper part of the lattice of flats of M . It follows that B(M) is homotopy equivalent
to a wedge of |µ(M)| spheres of dimension r − 2, where µ(M) denotes the Möbius
function from the bottom to the top element in LM .
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There are positive analogues of all of the above definitions and theorems. First we
must give the definition of positive covectors and positive flats.

Definition 2.6. Let M be an acyclic oriented matroid on the ground set [n]. We say
that a covector v ∈ {+,−, 0}n of M is positive if each of its entries is + or 0. We say
that a flat of M is positive if it is the 0-set of a positive covector.

Observation 2.7. If M is the acyclic oriented matroid corresponding to a hyperplane
arrangement A whose orientation is determined by a choice of region R, then the
positive flats are in correspondence with the faces of R. In this case we will also say
that the flats which are positive are “positive with respect to R.”

For example, consider the braid arrangement A3, consisting of the six hyperplanes
xi = xj, 1 ≤ i < j ≤ 4 in R4. Figure 1 illustrates this arrangement, when intersected
with the hyperplane x4 = 0 and the sphere x2

1 + x2
2 + x2

3 = 1. Let R be the region
specified by the inequalities x1 ≥ x2 ≥ x3 ≥ x4, and let MA3 be the oriented matroid
corresponding to the arrangement A3 and the region R. Then the positive flats are
∅, 1, 4, 6, 124, 16, 456 and 123456.

456

R

3

16

1
2

5 124

6

4

Figure 1. The braid arrangement A3.

The positive Bergman complex counterpart to Definition/Theorem 2.3 is the fol-
lowing.

Definition/Theorem 2.8. [2] The positive Bergman complex of M is

B+(M) = {ω ∈ Sn−2 : MF(ω) is acyclic}
= {ω ∈ Sn−2 : F(ω) is a flag of positive flats of M}.

Within each equivalence class of the coarse subdivision of B(M), the vectors ω give
rise to the same unoriented Mω. Since the orientation of Mω is inherited from that of
M , they also give rise to the same oriented matroid Mω. Therefore each coarse cell of
B(M) is either completely contained in or disjoint from B+(M). Thus B+(M) inherits
the coarse and the fine subdivisions from B(M), and each subdivision of B+(M) is a
subcomplex of the corresponding subdivision of B(M).
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Recall that the Las Vergnas face lattice F`v(M) is the lattice of positive flats of M ,
ordered by containment. Note that the lattice of positive flats of the oriented matroid
M sits inside LM , the lattice of flats of M . By Observation 2.7, if M is the oriented
matroid of the arrangement A and the region R, then F`v(M) is the face poset of R.

Corollary 2.9. [2] Let M be an oriented matroid of rank r. Then the fine subdivision
of B+(M) is a geometric realization of ∆(F`v(M)−{ 0̂ , 1̂ } ), the order complex of the
proper part of the Las Vergnas face lattice of M . It follows that the positive Bergman
complex of an oriented matroid is homeomorphic to an (r − 2)-sphere.

Example 2.10. Let M be the oriented matroid from Figure 1. The positive flats of
M are {∅, 1, 4, 6, 16, 124, 456, 123456}. The lattice of positive flats of M is shown in
bold in Figure 2, within the lattice of flats of M .
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Figure 2. The lattice of positive flats within the lattice of flats.

3. Further theory of Bergman and positive Bergman complexes

This section develops some further theory of Bergman complexes in the setting of
both unoriented and oriented matroids. These results will be used later, in the proofs
of Theorems 1.1 and 1.2, but are also of independent interest.

3.1. Covering the Bergman complex with positive Bergman complexes. We
know that, for any acyclic orientation of a matroid M of rank r, the corresponding
positive Bergman complex is homeomorphic to an (r− 2)-sphere, while the Bergman
complex B(M) of the (unoriented) matroid M is homotopy equivalent to |µ(M)| such
(r − 2)-spheres. In fact, as we vary the acyclic reorientations (that is, the topes or
maximal covectors) of M , the corresponding positive Bergman complexes cover B(M).
The first goal of this section is to give a polyhedral realization of this statement: for
any orientable matroid M , we exhibit |µ(M)| reorientations of M whose positive
Bergman complexes cover B(M).

The motivating example is the matroid M of a real central hyperplane arrangement
A. Let H be an affine hyperplane which is generic with respect to A. Consider the
regions of A which have a non-empty and bounded intersection with H; we will
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see that there are |µ(M)| of them. We claim that the positive Bergman complexes
corresponding to these regions cover the Bergman complex of M .

For general oriented matroids, one can mimic the previous construction. Let M =
(E,L) be an oriented matroid of rank r with ground set E and collection of covectors
L ⊆ {+,−, 0}E. Let Lg ⊆ {+,−, 0}E∪{g} be an extension of L by a generic element
g /∈ E; this means that g is not in the closure of any set A ⊂ E with r(A) < r. Let
N be the affine oriented matroid N = (E ∪ {g},Lg, g) with distinguished element g
(which is not a loop).

Let L+
g = {X ∈ Lg |Xg = +} and let L̂+

g = L+
g ∪ {0̂, 1̂} be the affine face lattice of

N . Let L++
g = {X ∈ L+

g | (Lg)≤X ⊆ L̂+
g } be the bounded complex of N . The maximal

elements of L+
g are the topes, and the maximal elements of L++

g are the bounded
topes with respect to g. Each bounded tope of Lg with respect to g determines a
tope of L by deletion of g; we call these the bounded topes of L with respect to g, and
write B++ for the set of such topes.

In the realizable case, M is the oriented matroid of A with respect to a chosen
region. Instead of the generic affine hyperplane H, we consider the translate g of H
through the origin, declaring H to be on the positive side of g. The arrangement
A ∪ {g} determines the generic extension N of M . The faces in L+

g correspond to
the faces of A that intersect H, and the faces in L++

g correspond to the faces of A
that have a non-empty and bounded intersection with H. The topes in B++ are in
one-to-one correspondence with the bounded regions of the arrangement A ∪H.

The beta invariant β(N) of a matroid N is given by

β(N) = (−1)r(N)
∑

µN(X)r(X),

summing over all flats X of N . Here µN denotes the Möbius function of the lattice
LN .

Proposition 3.1. [15, 18] An affine oriented matroid N with distinguished element
g has exactly β(N) topes that are bounded with respect to g.

Lemma 3.2. (cf. [15, Theorem 3.2]) If N is a generic extension of M by g, then

β(N) = (−1)r(N)µ(M).

Proof. For any nonloop, noncoloop element g in a matroid N , one has [26, Theo-
rem 7.3.2(c)]

(3) β(N) = β(N − g) + β(N/g).

Since g is generic, the lattice LN/g is simply the truncation of LN−g in which one

removes the entire rank r − 1 (but keeps the element 1̂), where r = r(N). Hence
starting with equation (3), one has on the right-hand side two sums of the quantities
µ(X)r(X) with X ranging over the two lattices LN−g and LN/g, with opposite signs
in front of the two sums because the ranks of N − g and N/g differ by one. Thus the
terms with X of rank at most r − 2 all cancel, and one is left with the terms of rank
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at least r − 1 in the two sums:

(−1)rβ(N) = r · µ(N − g) + (r − 1)

 ∑
X of rank r−1 in LN−g

µ(X)

− (r − 1)µ(N/g)

= r · µ(N − g) + (r − 1) (µ(N/g)− µ(N − g))− (r − 1)µ(N/g)

= µ(N − g),

as we wished to show. �

Theorem 3.3. Let M be an oriented matroid, and N an extension by a generic
element g. Let T1, . . . , T|µ(M)| be the bounded topes in M with respect to g. Then
the |µ(M)| positive Bergman complexes corresponding to the Tis cover the Bergman
complex of the unoriented matroid M .

Proof. There is no harm in assuming that M is simple and loop and coloop-free. In
view of Definition/Theorem 2.8, it suffices to show that, for any flag of flats F =
{∅ ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ E}, we can find a tope Ti with 1 ≤ i ≤ |µ(M)| such that
all the Fjs are positive with respect to Ti. This means that Ti has a flag of subfaces
(covectors with some entries of Ti replaced by zeroes) X1 > . . . > Xr−1 such that Xi

spans Fi.
We proceed by induction, where the base case is trivial. Now consider the rank r−1

oriented matroid M/F1 (which, in the realizable case, corresponds to the arrangement
that A determines on the hyperplane F1). The set F1 is also a flat in N , and N/F1

is also a generic extension of M/F1 by g. Consider the flag of flats

F ′ = {∅ ⊂ F2 − F1 ⊂ · · · ⊂ Fr−1 − F1 ⊂ E − F1}

of M/F1. By the induction hypothesis, we can find a tope T ′, bounded in M/F1 with
respect to g, which has a flag of faces T ′ = Y1 > Y2 > . . . > Yr−1 such that Yi spans
Fi − F1 in M/F1.

Since M is simple, the flat F1 consists of a single element; call it e. Then the
covector Yi of M/F1 comes from the covector Xi of M which is identical to Yi, except
for the extra entry (Xi)e = 0. Clearly X1 > · · · > Xr−1 and Xi spans Fi.

Since e is not a loop of M , some covectors Z+ and Z− of M have Z+
e = + and

Z−
e = −. The topes T+ = X1 ◦Z+ and T− = X1 ◦Z− are identical to Y1 = T ′, except

for the extra entries (T+)e = + and (T−)e = −. The Xis are faces of both T+ and
T−, so it remains to show that at least one of T+ and T− is bounded with respect to
g in M .

Suppose this is not the case. Then we can find non-zero covectors A ≤ T+ ∪ {g}
and B ≤ T− ∪ {g} of N such that Ag = Bg = 0. If Ae = 0, then A − e would be a
non-zero covector in N/F1, smaller than T ′ ∪ {g} and satisfying (A − e)g = 0; this
would contradict the boundedness of T ′ in M/F1 with respect to g. Therefore we
have Ae = + and, similarly, Be = −.
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Consider now the covectors A and B of N and their separator e. In fact, e is the
only separator of A and B, because

A ≤ T+ ∪ {g} = T ′ ∪ {e} ∪ {g}
B ≤ T− ∪ {g} = T ′ ∪ {e} ∪ {g}.

Using the covector axiom (L3) [4, Theorem 4.1.1], we will find a covector C of N such
that Ce = 0 and Cf = (A ◦B)f = (B ◦A)f for all f 6= e. Thus C − e is a covector of
N/F1 which is smaller than T ′ ∪ {g} and satisfies (C − e)g = 0. This contradicts the
boundedness of T ′ in M/F1 with respect to g, unless C − e = 0. But if this were the
case, then e would be a coloop of N . In the presence of the generic element g, this
is impossible: E − e has corank at most 1 in M , so (E − e) ∪ {g} is spanning in N ,
without containing e. This completes the proof. �

Theorem 3.3 is closely related to recent work of Björner and Wachs. In [5], they
construct a basis for the homology of the geometric lattice of an orientable matroid
M , which is indexed by the bounded topes of M with respect to an extension by a
generic element g.

3.2. The forest of a flag, and coarse cells in the Bergman complex. Recall
from Definition 2.4 that the Bergman complex B(M) has two subdivisions into cells.
Its fine subdivision has cells indexed by all flags F of flats of M . These fine cells then
group themselves into the cells of the coarse subdivision, according to their associated
matroids MF . It turns out that one can always determine MF , and hence the coarse
cell to which a flag F corresponds, based on a certain labelled forest TF associated
to F . These forests also turn out (see Section 7) to be closely related to the complex
of nested sets1.

Recall that the connected components of a matroid M are the equivalence classes
for the following equivalence relation on the ground set E of M : say e ∼ e′ for two
elements e, e′ in E whenever they lie in a common circuit of M , and then take the
transitive closure of ∼. Recall also that every connected component is a flat of M ,
and M decomposes (uniquely) as the direct sum of its connected components.

Definition 3.4. To each flag F of flats of a matroid M indexed as in (1), associate a
forest TF of rooted trees, in which each vertex v is labelled by a flat F (v), as follows:

• For each connected component F of the matroid M , create a rooted tree (as
specified below) and label its root vertex with F .

• For each vertex v already created, and already labelled by some flat F (v)
which is a connected component of some flat Fj in the flag F , create children
of v labelled by each of the connected components of Fj−1 which are contained
properly in F (v).

1The material in this subsection is closely related to results of Feichtner and Sturmfels [14, Section
4 and end of Section 3]; in particular, see our Remark 3.10. However, the crucial notion of a circuitous
base (Definition 3.6, Proposition 3.9) does not appear in their work, and we have chosen to explain
this subsection in our language so as to keep the paper more self-contained.
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Alternatively, one can construct the forest TF by listing all the connected compo-
nents of all the flats in F , and partially ordering them by inclusion.

Proposition 3.5. For any flag F of flats in a matroid M , the labelled forest TF
determines the matroid MF .

Proof. Recall the expression (2) for MF . By construction of TF , every component of
Fi is F (v) for some unique vertex v, and every component of Fi−1 lying in F (v) is
F (v′) for some child v′ of v. Since quotients commute with direct sums, this gives

(4) MF =
⊕

vertices v of TF

(
F (v)/

⊕
children v′ of v

F (v′)

)
.

�

In general, the converse of this proposition does not hold; one can have MF = MF ′

without TF = TF ′ . For example (cf. [14, Example 1.2]), in the matroid M on ground
set E = {1, 2, 3, 4, 5} having rank 3 and circuits {123, 145, 2345}, the two flags

F := (∅ ⊂ 1 ⊂ 123 ⊂ 12345)

F ′ := (∅ ⊂ 1 ⊂ 145 ⊂ 12345)

exhibit this possibility.
However, there is at least one nice hypothesis that allows one to reconstruct TF

from MF . Given a base B of a matroid M on ground set E, and any element e ∈ E\B,
there is a unique circuit of M contained in B ∪{e}, called the basic circuit circ(B, e).
Note that the flat spanned by circ(B, e) will always be a connected flat.

Definition 3.6. Say that a base B of a matroid M is circuitous if every connected flat
spanned by a subset of B is spanned by the basic circuit circ(B, e) for some e ∈ E\B.

Note that the basic circuit circ(B, e) spanning the connected flat F must be (F ∩
B) ∪ {e}. Before we state our proposition, we prove two useful lemmas.

Lemma 3.7. Let F be a flat in a matroid M , spanned by some independent set I.
Then every connected component of F is spanned by some subset of I, namely, by the
intersection of that component with I.

Proof. Let r denote the rank function for M , and let F have components F1, . . . , Ft.
Then ∑

i

r(Fi) = r(F ) = |I| =
∑

i

|Fi ∩ I| =
∑

i

r(Fi ∩ I) ≤
∑

i

r(Fi),

which means we must have an equality for each i: r(Fi ∩ I) = r(Fi). In other words,
Fi ∩ I spans Fi. �

Given a subset A ⊂ E of the ground set of a matroid, let cl(A) denote its closure,
that is, the flat spanned by A.

Lemma 3.8. Let F ⊂ G be flats of a matroid that are spanned by subsets of a
circuitous base B. If G is connected, then G/F is also connected.
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Proof. Let IF = F ∩ B and IG = G ∩ B; these are bases for F and G, respectively.
Also, IF ⊂ IG, and IG − IF is a base for the quotient G/F . Since G is a connected
flat spanned by a subset of the circuitous base B, there exists e in G − B such that
cl(circ(B, e)) = G, and circ(B, e) = IG ∪ {e}.

We now claim that

circG/F (IG − IF , e) = IG − IF ∪ {e}.

We need to check that IG − IF ∪ {e} − {g} is independent in G/F for any g ∈
IG − IF ∪ {e}. Since IF is a basis of F , this follows from the fact that IG ∪ {e}− {g}
is independent in G. We conclude by observing that G/F is the flat spanned by
circ(IG − IF , e), so it is connected. �

Proposition 3.9. Let B be a circuitous base of a matroid M . Then for any two flags
F ,F ′ of flats spanned by subsets of B, one has MF = MF ′ if and only if TF = TF ′.

Proof. We start by making two observations about the matroid MF and the tree TF .
First we observe that, under these hypotheses, the expression (4) is actually the

decomposition of MF into its irreducible components. By Lemma 3.7, the F (v)s are
connected flats spanned by subsets of B. The direct sums ⊕v′F (v′) are also spanned
by subsets of B. Lemma 3.8 then guarantees that F (v)/ ⊕v′ F (v′) is connected for
each vertex v of the tree.

Secondly we show that, among the sets cl(circ(B, e)) with e in F (v)\ ∪ F (v′) and
not in B, there is a maximum one under containment, which is precisely F (v).

Take any e in F (v)\ ∪ F (v′) and not in B. The flat F (v) is spanned by a subset I
of B, and I ∪ {e} is dependent. Therefore circ(B, e) ⊆ I ∪ {e} ⊆ F (v), which implies
cl(circ(B, e)) ⊆ F (v).

Now, since F (v) is a connected flat spanned by a subset of B, F (v) = cl(circ(B, e))
for some e ∈ E\B. Clearly e ∈ F (v). If e was in F (v′) for some child v′ of v,
the argument of the previous paragraph would imply that cl(circ(B, e)) ⊆ F (v′).
Therefore e ∈ F (v)\ ∪ F (v′).

The two previous observations give us a procedure to recover the tree TF from
the matroid MF . The first step is to decompose MF into its connected compo-
nents M1, . . . ,Mt, having accompanying ground set decomposition E = E1t · · ·tEt.
The second step is to recover the flat corresponding to each Mi, as the maximum
cl(circ(B, e)) with e ∈ Ei\B. The labelled forest TF is simply the poset of inclusions
among these flats. �

It will turn out that the simple roots ∆ of a root system Φ always form a circuitous
base for the associated matroid MΦ; see Proposition 6.1(iii) below.

Remark 3.10. When the matroid M is connected, the forest TF constructed above is
a rooted tree. It coincides with the tree constructed by Feichtner and Sturmfels in
[14, Proposition 3.1] when they choose the minimal building set for their lattice. In
this way, Proposition 3.5 follows from [14, Theorem 4.4].
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4. Graph associahedra

To any graph one can associate a polytope called a graph associahedron; the graph
associahedron associated to a chain is the usual associahedron. These polytopes were
discovered independently by Carr and Devadoss [8], Davis, Januszkiewicz, and Scott
[10], and Postnikov [19]. There is an intrinsic tiling by associahedra of the Deligne–

Knudsen–Mumford compactification of the real moduli space of curves Mn
0 (R), a

space which is related to the Coxeter complex of type A. The motivation for the
work of Carr and Devadoss was the desire to generalize this phenomenon to other
Coxeter systems.

In order to define graph associahedra, we must introduce the notions of tubes and
tubings. We follow the presentation of [8].

Definition 4.1. Let Γ be a graph. A tube is a nonempty set of nodes of Γ whose
induced graph is a proper, connected subgraph of Γ. There are three ways that two
tubes can interact on the graph:

• Tubes are nested if t1 ⊂ t2.
• Tubes intersect if t1 ∩ t2 6= ∅ and t1 6⊂ t2 and t2 6⊂ t1.
• Tubes are adjacent if t1 ∩ t2 = ∅ and t1 ∪ t2 is a tube in Γ.

Tubes are compatible if they do not intersect and they are not adjacent. A tubing T
of Γ is a set of tubes of Γ such that every pair of tubes in T is compatible. A k-tubing
is a tubing with k tubes.

Graph-associahedra are defined via a construction which we will now describe.

Definition 4.2. Let Γ be a graph on n nodes. Let ∆Γ be the n − 1 simplex in
which each facet corresponds to a particular node. Note that each proper subset of
nodes of Γ corresponds to a unique face of ∆Γ, defined by the intersection of the
faces associated to those nodes. The empty set corresponds to the face which is the
entire polytope ∆Γ. For a given graph Γ, truncate faces of ∆Γ which correspond to
1-tubings in increasing order of dimension (i.e. first truncate vertices, then edges,
then 2-faces, . . . ). The resulting polytope P (Γ) is the graph associahedron of Carr
and Devadoss.

Figure 3 illustrates the construction of the graph associahedron of a Coxeter di-
agram of type D4. We start with a simplex, whose four facets correspond to the
nodes of the diagram. In the first step, we truncate three of the vertices, to obtain
the second polytope shown. We then truncate three of the edges, to obtain the third
polytope shown. In the final step, we truncate the four facets which all correspond to
tubes. This step is not shown in Figure 3, since it does not affect the combinatorial
type of the polytope.

When the graph Γ is the n-element chain, the polytope P (Γ) is the associahedron
An−1. One can see this by considering an easy bijection between valid tubings and
parenthesizations of a word of length n− 1, as illustrated in Figure 4.

Carr and Devadoss proved that the face poset of P (Γ) can be described in terms
of valid tubings.
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Figure 3. P (D4) c©Satyan Devadoss

( a ) ( b )

Figure 4. The associahedron A2 is the graph associahedron of a 3-
element chain. c©Satyan Devadoss

Theorem 4.3. [8] The face poset of P (Γ) is isomorphic to the set of valid tubings of
Γ, ordered by reverse containment: T < T ′ if T is obtained from T ′ by adding tubes.

Corollary 4.4. [8] When Γ is a path with n− 1 nodes, P (Γ) is the associahedron An

of dimension n. When Γ is a cycle with n− 1 nodes, P (Γ) is the cyclohedron Wn.

5. Coxeter systems, the Tits cone, and parabolic flats

In this section we review the notion of a Coxeter system (W, S), and explain two
ways of thinking about the associated matroid. The first way is to consider the
vector configuration of positive roots Φ+ of the corresponding root system Φ in V :=
R|S|. The second way is to consider a certain arrangement AΦ of hyperplanes in V ∗

intersecting a W -invariant convex cone known as the Tits cone. We attempt to give
a careful discussion of the issues that arise when W is infinite, for example, how to
define the Bergman complex, and what kinds of flats of the associated matroid are
relevant for Bergman complexes and wonderful compactifications.

A Coxeter system is a pair (W, S) consisting of a group W and a set of generators
S ⊂ W , subject only to relations of the form

(ss′)m(s,s′) = 1,

where m(s, s) = 1, m(s, s′) = m(s′, s) ≥ 2 for s 6= s′ in S. In case no relation occurs
for a pair (s, s′), we make the convention that m(s, s′) = ∞. We will always assume
that S is finite.
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Note that to specify a Coxeter system (W, S), it is enough to draw the corresponding
Coxeter diagram Γ: this is a graph on vertices indexed by elements of S, with vertices
s and s′ joined by an edge labelled m(s, s′) whenever this number (∞ allowed) is at
least 3.

Remark 5.1. In what follows, the reader should note that the positive Bergman com-
plex and the graph associahedron associated with Γ will turn out not to depend on
the edge labels m(s, s′) of Γ, and only depend upon the undirected graph underlying
Γ. However, the Bergman complex will turn out to depend upon the edge labels
m(s, s′).

Although an arbitrary Coxeter system (W, S) need not have a faithful representa-
tion of W as a group generated by orthogonal reflections (for a positive definite inner
product), there exists a reasonable substitute, called its geometric representation [6,
Sec. V.4], [16, Sec. 5.3, 5.13], which we recall here. Let V := R|S| with a basis of
simple roots ∆ := {αs : s ∈ S}. Define an R-valued bilinear form (·, ·) on V by

(αs, αs′) := − cos

(
π

m(s, s′)

)
,

and let s act on V by the “reflection” that fixes α⊥
s and negates αs:

s(v) := v − 2(v, αs)αs.

This turns out to extend to a faithful representation of W on V , and one defines the
root system Φ and positive roots Φ+ by

Φ := {w(αs) : w ∈ W, s ∈ S},

Φ+ := {α ∈ Φ : α =
∑
s∈S

csαs with cs ≥ 0}.

It turns out that Φ = Φ+ tΦ− where Φ− := −Φ+, and that W will be infinite if and
only if Φ is infinite.

Definition 5.2. Given a root β ∈ Φ, expressed uniquely in terms of the simple roots
∆ as β =

∑
s∈S csαs, define the support of β (written supp β) to be the vertex-induced

subgraph of the Coxeter diagram Γ on the set of vertices s ∈ S for which cs 6= 0.

We will need the following lemma about supports of roots. It is well-known when W
is finite and crystallographic [6, No. VI.1.6, Cor. 3], and a proof of its first assertion
for the Coxeter systems associated to Kac–Moody Lie algebras can be found in [17,
Lemma 1.6]; we will need the assertion in general.

Lemma 5.3. Let (W, S) be an arbitrary Coxeter system with Coxeter graph Γ. Then
for any root β ∈ Φ the graph supp β is connected, and conversely, every connected
subgraph Γ′ of Γ occurs as supp β for some positive root β.

Proof. For the first assertion, let β be a root, which we may assume is positive without
loss of generality. It is known [3, Sec. 4.6] that there exists a chain of (distinct)
positive roots

α = β1 l β2 l · · ·l βk = β
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in which α is a simple root, and where each relation l is a covering relation in what
Björner and Brenti call the root poset. This is the poset on positive roots defined as
follows: β ≤ γ if there exists s1, s2, . . . , sk ∈ S such that

(1) γ = sksk−1 . . . s1β, and
(2) dp(sisi−1 . . . s1β) = dp(β) + i, for all 1 ≤ i ≤ k.

Here, the depth dp of a positive root is defined to be

dp(β) = min{k : w(β) ∈ Φ− for some w ∈ W with `(w) = k}.
In particular, when two positive roots

γ =
∑
t∈S

ctαt

γ′ =
∑
t∈S

c′tαt

satisfy γ l γ′, then

(5) γ′ = s(γ) = γ − 2(γ, αs)αs

for some s ∈ S, and the nonnegative coefficients ct, c
′
t satisfy ct ≤ c′t for all t ∈ S, so

that supp γ ⊆ supp γ′; see [3, Corollary 4.6.5]. By induction on k, it suffices to show
that if supp(γ) is connected and γ l γ′, then supp(γ′) is connected. From expression
(5) we conclude that supp γ ⊆ supp γ′ ⊆ supp γ ∪ {s}. Hence either

• supp γ′ = supp γ, which is connected, so we are done, or
• s 6∈ supp γ and supp γ′ = supp γ t {s}. If supp γ t {s} is connected, we are

done. If not, then (γ, αs) = 0, so the expression (5) forces the contradiction
γ′ = γ.

For the second assertion, let Γ′ be a connected subgraph of Γ, and we will exhibit
a positive root γ′ with supp γ′ = Γ′ using induction on the number of vertices of
Γ′. Let s ∈ S be a vertex lying in Γ′ whose removal leaves a connected subgraph
Γ′′ = Γ−{s}. By induction there exists a positive root γ having supp γ = Γ′′, and we
claim that γ′ := s(γ) has supp(γ′) = Γ′. To see this, note that γ =

∑
t∈Γ′′ ctαt with

each ct > 0. Hence

(αs, γ) =
∑
t∈Γ′′

ct(αs, αt) < 0,

since each (αs, αt) is nonpositive, and at least one is negative due to Γ′′ ∪ {s} = Γ′

being connected. Therefore the expression (5) for γ′ shows that supp(γ′) = Γ′. �

We use MΦ to denote the matroid represented by the vector configuration of positive
roots Φ+ in V . Thus MΦ is a matroid of finite rank r = |S|, but has ground set E = Φ+

of possibly (countably) infinite cardinality.

Remark 5.4. When the ground set E is infinite, we need to be careful about how
we define the objects that we are studying: it is no longer clear what is meant by
a weight vector ω or the bases of minimum ω-weight. Therefore we will not refer
to Mω in this case; only to the matroid MF associated to a flag of flats F . We
will not think of the positive Bergman complex as a subset of weight vectors (as in
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Definition/Theorem 2.8), but as a coarsening of the order complex of the lattice of
positive flats (which we can do by Corollary 2.9). Although we can similarly consider
the Bergman complex as a coarsening of the order complex of the lattice of flats, for
technical reasons we will not deal with the Bergman complex of a matroid with an
infinite ground set in this paper.

For an arbitrary Coxeter system (W, S), when one wants to think of the oriented
matroid MΦ as the oriented matroid of a hyperplane arrangement AΦ (as opposed
to the oriented matroid of the configuration of vectors Φ+), one must work with the
contragredient representation V ∗. Then MΦ is simply the matroid of the reflecting
hyperplanes in V ∗ for the positive roots Φ+.

We now review the Tits cone. See [6, Sec. V.4], [16, Sections 1.15, 5.13], [7, Chapter
I], and particularly [25] for a very detailed discussion. Let {δs : s ∈ S} denote the
basis for V ∗ dual to the basis of simple roots ∆ for V . Then the (closed) fundamental
chamber R is the nonnegative cone spanned by {δs : s ∈ S} inside V ∗. The Tits
cone is the union T :=

⋃
w∈W w(R), a (possibly proper, not necessarily closed nor

polyhedral) convex cone inside V ∗. Every positive root α ∈ Φ+ has associated a
hyperplane and two half-spaces, Hα, H+

α , H−
α in V ∗, consisting of those functionals

f ∈ V ∗ for which f(α) is zero, positive, or negative, respectively. These hyperplanes
and half-spaces decompose the Tits cone2 into cells σ that turn out to be simplicial
cones σ, each of them relatively open within the linear subspace that they span. The
top-dimensional (open) cones are exactly the images w(int(R)) as w runs through W ,
where int(R) denotes the interior of the fundamental chamber R. The tope (maximal
covector) in the oriented matroid MΦ associated to w(int(R)) will have the sign + on
the roots Φ+ ∩ w−1(Φ+) and the sign − on the roots Φ+ ∩ w−1(Φ−). More generally
one has the following proposition (see [25, Section 3.2]) relating an arbitrary cone σ
to a coset wWJ of a standard parabolic subgroup WJ (= the subgroup of W generated
by J) for some subset J ⊆ S

Proposition 5.5. The cones σ in the decomposition of T are naturally in bijection
with the cosets wWJ of standard parabolic subgroups, with wWJ determined by the
following equality:

wWJ = {u ∈ W : u−1(σ) ⊆ R}.
The cone σ will then have the following description as an intersection: for any u

in the coset wWJ , one has

σ =
⋂
s∈J

u(Hαs) ∩
⋂

s∈S\J

u(H+
αs

).

As a consequence of this proposition (see [25, Prop. 3.4]), the linear span of the cone

σ in V ∗ is the hyperplane intersection
⋂

s∈J Hw(αs), which is the subspace (V ∗)wWJw−1

fixed by the parabolic subgroup wWJw−1.

2When W is infinite, note that only part of the hyperplane or its half-spaces lies inside the Tits
cone T .
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As pointed out in Remark 5.4, when W (equivalently Φ, or E = Φ+) is infinite,
we want to consider the positive Bergman complex to be a coarsening of the order
complex of the lattice of positive flats. However, in this situation we have a choice
to make, because there are three different kinds of flats F of the (oriented) matroid
MΦ, not all of which are relevant to the De Concini–Procesi wonderful compactifica-
tions. These three kinds of flats are distinguished by how the associated intersection
subspace

XF :=
⋂
α∈F

Hα

intersects the Tits cone T :

(1) An arbitrary flat F will have at least the zero subspace {0} in the intersection
XF ∩ T .

(2) A parabolic flat F is one for which XF ∩T is of maximum possible dimension,
that is, dim(XF ). In this case, it must contain a cone σ of this same dimension,
say indexed by the coset wWJ , whose linear span has pointwise stabilizer
wWJw−1. Hence F = wΦ+

J is a W -conjugate3 of a standard parabolic flat Φ+
J ,

where Φ+
J is the subset of positive roots lying in the span of the simple roots

{αs}s∈J .
(3) A finite parabolic flat F is one for which XF ∩ int(T ) has maximum possible

dimension dim(XF ). This turns out [25, Cor. 3.8] to be equivalent to F being
the parabolic flat wΦ+

J where the parabolic subgroup WJ is finite. In other
words, int(T ) is the union of the cones σ in T whose associated parabolic
subgroup is finite.

It turns out that W (or equivalently, Φ) is finite if and only if the Tits cone T
coincides with the whole space V ∗ (and hence also coincides with the interior int(T )).
In this case, there is no distinction between the three kinds of flats: all flats are finite
parabolic. The reader interested solely in the case of finite Coxeter groups W can
therefore safely ignore the remainder of this section.

Example 5.6. The distinctions between the three kinds of flats are well-illustrated
by the case where (W, S) is an irreducible affine Coxeter system, that is, when the
bilinear form (·, ·) is positive semidefinite, but degenerate. In this case, the kernel
of the bilinear form is a 1-dimensional subspace `, and one can faithfully realize the
group W as one generated by Euclidean affine reflections in an affine hyperplane of
V ∗: simply intersect the Tits cone with a (strictly) affine hyperplane normal to `. See
[6, Ch. V, Sec. 4.9].

As an example of a non-parabolic flat in this situation, pick any two roots α, β in
Φ+ whose corresponding affine reflections sα, sβ have parallel reflecting hyperplanes.
Then sα, sβ generate an infinite subgroup W ′ ( W , whose fixed subspace in V ∗

corresponds to a flat F = cl({α, β}) that is not parabolic. To see this, note that in
the affine case, all proper parabolic subgroups WJ with J ( S are finite, and hence
all proper parabolic subgroups wWJw−1 are also finite. But W ′ is infinite.

3Strictly speaking, in order to insure that wΦ+
J ⊆ Φ+, we should insist here that the coset

representative w for wWJ is chosen to be of minimum length.
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There is also a unique parabolic flat which is not finite parabolic in this situation,
namely the improper flat F = Φ+. Its corresponding intersection subspace XF = {0}
lies in the Tits cone T , but not in its interior int(T ).

Remark 5.7. The geometry of the Tits cone when W is infinite, and in particular, its
interior int(T ), turn out to be important in the geometric group theory surrounding
the generalized (Artin) braid group B(W, S) associated to (W, S). Inside the complex
vector space V ∗⊗C, one has the open subset V ∗+i·int(T ), from which one can remove
the intersection with the complexified hyperplanes

⋃
α∈Φ+ Hα. This hyperplane com-

plement carries a free action of W with interesting topology: it is conjectured (and
proven in many cases) that it is an Eilenberg–MacLane K(PB(W, S), 1)-space for the
(pure) braid group PB(W, S), and hence that its quotient by W is a K(B(W, S), 1)
for the braid group B(W, S); see Charney and Davis [9].

In principle one might therefore consider (at least) three different versions of the
poset of flats of the oriented matroid MΦ: the posets of arbitrary, parabolic, or finite
parabolic flats

Larb(MΦ) ⊃ Lpar(MΦ) ⊃ Lfinpar(MΦ).

By the previous discussion, these posets of flats are isomorphic to the following posets
of subgroups.

Proposition 5.8. The map

W ′ 7→ {α ∈ Φ+ : sα ∈ W ′}
induces isomorphisms between the following posets of subgroups and posets of flats,
all ordered by inclusion:

{ reflection subgroups } ∼= Larb(MΦ)

{ parabolic subgroups } ∼= Lpar(MΦ)

{ finite parabolic subgroups } ∼= Lfinpar(MΦ).

When W is finite, of course, all three notions of flats coincide and all reflection
subgroups are finite parabolic. When W is infinite we must make a choice of which
flats to consider.

Remark 5.9. When discussing the De Concini–Procesi wonderful compactifications
of Coxeter arrangements, Carr and Devadoss [8] chose to consider only Coxeter sys-
tems (W, S) which they call simplicial, namely those in which every proper parabolic
subgroup WJ with J ( S is finite, or equivalently, the simplicial decomposition of
the Tits cone T intersected with the unit sphere in V ∗ is a locally finite simplicial
complex. Such Coxeter systems include those which are finite, affine and compact hy-
perbolic. When doing the wonderful compactification, they made the natural choice
of compactifying the complement of the arrangement within the interior int(T ) of
the Tits cone, after intersecting with the sphere. This means that they only blew up
along the finite parabolic flats, those in Lfinpar(MΦ), and avoided the problem of how
to define blow-ups along non-parabolic flats, where the normal structure is not that
of a finite hyperplane arrangement.
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We make a slightly different choice. If one is not so concerned with the blow-ups
themselves, but rather with the truncations of the fundamental simplex R which
would tile the hypothetical blow-up, then these truncated polytopes (the graph as-
sociahedra) are well-defined whether or not the arrangement is locally finite. In
particular, we would like to consider graph-associahedra associated to graphs Γ for
which (W, S) is not simplicial, such as the complete graphs Γ = Kn for n ≥ 4. For this
reason we do not restrict ourselves to the finite parabolic flats; instead we consider
all parabolic flats.

On the other hand, the relevant flats of the matroid which are relevant for these
truncations and blow-ups in the wonderful compactification are those which intersect
the Tits cone T in full dimension. For this reason, when discussing the positive
Bergman complex B+(M) in the next section, we will consider only the poset of
parabolic flats Lpar(MΦ).

Remark 5.10. It is not clear that we should expect good behavior from the Bergman
complex B(MΦ) or positive Bergman complex B+(MΦ) defined with respect to the
lattice Larb(MΦ) of arbitrary flats, when MΦ is infinite.

6. The positive Bergman complex of a Coxeter arrangement

In this section we prove that the positive Bergman complex of a Coxeter arrange-
ment of type Φ is dual to the graph associahedron of type Φ. More precisely, both
of these objects are homeomorphic to spheres of the same dimension, and their face
posets are dual.

Caution. Throughout this section, whenever the Coxeter system (W, S) with root
system Φ has W (or equivalently, Φ) infinite, the word flat used in the connection
with the oriented matroid MΦ will mean a parabolic flat, as discussed in the end of
Section 5.

Proposition 6.1. Let (W, S) be an arbitrary Coxeter system, with root system Φ and
Coxeter diagram Γ.

(i) Positive flats in the oriented matroid MΦ correspond to subsets J ⊂ S, that
is, they are the standard parabolic flats Φ+

J .
(ii) Connected positive flats in the oriented matroid MΦ correspond to subsets

J ⊂ S such that the vertex-induced subgraph ΓJ is connected, that is, to tubes
in Γ.

(iii) The simple roots ∆ form a circuitous base for the matroid MΦ.
(iv) If F ⊂ G are flats in MΦ with G connected, then the matroid quotient G/F

is connected.

Proof. (i): The hyperplanes bounding the base region/tope R are {Hαs : s ∈ S}, so
positive flats are those spanned by sets of the form {αs : s ∈ J} for subsets J ⊂ S.
As in the previous section, we denote such a positive flat by Φ+

J .
(ii): Let J ⊂ S with subgraph ΓJ , and consider its associated positive flat Φ+

J . The
first assertion of Lemma 5.3 shows that Φ+

J will not be connected if ΓJ is disconnected.
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To see this, represent the flat Φ+
J by a matrix in which the rows correspond to simple

roots of Φ+
J , i.e. vertices of ΓJ , and the columns express each positive root in Φ+

J as a
combination of simple roots. By permuting columns, one can obtain a matrix which
is a block-direct sum of two smaller matrices, and hence Φ+

J will not be connected.
On the other hand, if ΓJ is connected, then the second assertion of Lemma 5.3 shows

that there is a positive root α with supp α = ΓJ , and consequently {αs : s ∈ J}∪{α}
gives a circuit in MΦ spanning this flat, so it is connected.
(iii): This follows from the argument in (ii); given J ⊂ S with ΓJ connected, the basic
circuit circ(∆, α) where supp α = ΓJ spans the connected flat corresponding to J .
(iv): Let the flats F, G correspond (since they are assumed to be parabolic flats) to
the parabolic subgroups uWJu−1, vWKv−1. Equivalently, assume they are equal to
uΦ+

J , vΦ+
K . One can make the following reductions:

• Translating by v−1, one can assume that v is the identity.
• Since (WK , K) itself forms a Coxeter system with root system ΦK , one can

assume MΦ = G and K = S. In particular, MΦ is connected.
• Replacing the Coxeter system (W, S) by the system (W, uSu−1), one can as-

sume that u is the identity.

In other words, F is the positive flat corresponding to some subgraph ΓJ of Γ, and
we must show MΦ/F is a connected matroid. This is a consequence of (iii) and
Lemma 3.8. �

We now give our main result.

Theorem 1.1. Let (W, S) be an arbitrary Coxeter system, with root system Φ, Cox-
eter diagram Γ, and associated oriented matroid MΦ. Then the face poset of the coarse
subdivision of B+(MΦ) is dual to the face poset of the graph associahedron P (Γ).

Proof. By Theorem 4.3, we need to show that the face poset of (the coarse subdivision
of) B+(MΦ) is equal to the poset of tubings of Γ, ordered by containment. We begin
by describing a map Ψ from flags of positive flats to tubings of Γ.

By Proposition 6.1, positive flats of MΦ correspond to subsets J ⊂ S or subgraphs
ΓJ of the Coxeter graph Γ. Furthermore, a positive flat is connected if and only if
ΓJ is a tube, and hence an arbitrary positive flat corresponds to a disjoint union of
compatible tubes, no two of which are nested. Since an inclusion of flats corresponds
to an inclusion of the subsets J , a flag F of positive flats corresponds to a nested
chain of such unions of non-nested compatible tubes, that is, to a tubing Ψ(F).
Furthermore, in this correspondence, inclusion of flags corresponds to containment of
tubings.

We claim that the map from flags to tubings is surjective. Given some tubing of
Γ, linearly order its tubes J1, . . . , Jk by any linear extension of the inclusion partial
ordering, and then the flag F of positive flats having Fi spanned by {αs : s ∈ J1 ∪
J2 ∪ · · · ∪ Ji} will map to this tubing.

Lastly, we show that Ψ is actually a well-defined injective map when regarded as
a map on cells of the coarse subdivision of B+(MΦ). To do so, it is enough to show
that two flags F ,F ′ of positive flats give the same tubing if and only if MF and
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MF ′ coincide. By Lemma 6.1(iv) and Proposition 3.9, we need to show that Ψ(F)
and Ψ(F ′) coincide if and only if TF and TF ′ coincide. But this is clear, because
by construction, the rooted forest TF ignores the ordering within the flag, and only
records the data of the tubes which appear, that is, the tubing. �

Corollary 6.2. The positive Bergman complex of a Coxeter arrangement is simpli-
cial, and is in fact, a flag simplicial sphere.

Another corollary of our proof is a new realization for the positive Bergman complex
of a Coxeter arrangement: we can obtain it from a simplex by a sequence of stellar
subdivisions (since stellar subdivisions are dual to the truncations defining the graph-
associahedra; see [27, Exercise 3.0]).

7. The Bergman complex of a Coxeter arrangement

In this section we will give a concrete description of the Bergman complex of a
Coxeter arrangement, in terms of the nested set complex. We will also address a
question of Eugene Tevelev [24] concerning the relationship of the positive Bergman
complex to the Bergman complex in this setup.

Nested set complexes are simplicial complexes at the combinatorial heart of De Con-
cini and Procesi’s subspace arrangement models [11], and of the resolution of singu-
larities in toric varieties [12]. We now recall the definition of the minimal nested
set complex of a meet-semilattice L, which we will simply refer to as the nested set
complex of L, and denote N (L). For the sake of avoiding the technicalities of infinite
semilattices, matroids, and Coxeter groups, we will assume that everything is finite
in this section.

Say an element y of L is irreducible if the lower interval [0̂, y] cannot be decomposed
as the product of smaller intervals of the form [0̂, x]. The nested set complex N (L)
of L is a simplicial complex whose vertices are the irreducible elements of L. A set X
of irreducibles is nested if for any nonempty antichain {x1, . . . , xk} in X, x1∨ · · ·∨xk

is not irreducible. These nested sets are the simplices of N (L).
If M is a matroid and LM is its lattice of flats, we will also call N (LM) the nested

set complex of M , and denote it N (M). It is easy to see that the irreducible elements
of LM are the connected flats of M .

Theorem 1.2. For any finite Coxeter system (W, S) and associated finite root system
Φ, the coarse subdivision of the Bergman complex B(MΦ) of the Coxeter arrangement
of type Φ is equal to the nested set complex N (MΦ). In particular, the Bergman
complex B(MΦ) is a simplicial complex.

We offer two proofs of this result. The first is short, but not very self-contained
in that it invokes a result of Feichtner and Sturmfels. They showed that, for any
matroid M , the simplicial complex N (M) has a geometric realization which is in-
termediate in coarseness between the fine and coarse subdivisions of the Bergman
complex B(M). Furthermore, they gave the following criterion for when N (M) and
the coarse subdivision of B(M) coincide.
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Theorem 7.1. [14, Theorem 5.3] The nested set complex N (M) and the Bergman
complex B(M) together with its coarse subdivision coincide if and only if the matroid
G/F is connected for every pair of flats F ⊂ G in which G is connected.

Theorem 1.2 then follows immediately from this result together with our Proposi-
tion 6.1(iv).

On the other hand, one might suspect that in the case of a Coxeter arrangement,
Theorem 1.1 describing the positive Bergman complex B+(M), and Theorem 1.2
about the entire Bergman complex B(M), should be related by Theorem 3.3 showing
that B(M) is covered by several copies of B+(M). The goal of the remainder of this
section is to develop this connection, in the context of arbitrary oriented matroids,
partly in order to answer the question of Tevelev mentioned earlier, and partly for its
own interest.

We begin in the setting of an (unoriented) matroid M , giving the relationship
between nested sets and the labelled forest TF associated to a flag of flats of M in
Proposition 3.5. This next proposition can be gleaned implicitly from the material in
[14, Sections 3 and 4], but we state it explicitly here, and include our own proof, for
the sake of self-containment.

Proposition 7.2. Let M be an (unoriented) matroid. Given a flag F of flats in M ,
consider the set of connected flats {Gi} which label the vertices of the forest TF . Then
the collection of all such sets {Gi} of flats, as F ranges over all flags of flats in M ,
are precisely the nested sets of M .

Proof. For any F , the labels of TF are connected flats of M by definition. Now
let us show that they form a nested set. We need to show that for any antichain
{G1, . . . , Gk} of flats among the vertex labels TF , their LM -join is not connected, so
assume that it is. Let Fi be the smallest flat of F containing H = G1∨· · ·∨Gk. Since
H is connected, it is a subset of a connected component G of Fi. But G lies above
G1, . . . , Gk in the tree; this means that the Gis are connected components of flats Fj

with j < i, and are therefore contained in Fi−1. But then H, being their LM -join,
must also be contained in Fi−1, contradicting the minimality of i.

Now we show that every nested set N of M , when its elements are ordered by
inclusion, can be obtained as the vertex labels of the forest TF for some flag F of
flats of M . The connected flats in N can be labelled G1, G2, . . . , Gk in such a way
that i < j implies Gi 6⊇ Gj. Let the flag F consist of the flats Fi = G1 ∨ · · · ∨Gi for
1 ≤ i ≤ k.

First we show that Fi is just the union of the maximal Gjs with j ≤ i. Suppose
there was an element e in Fi which is not in one of these Gjs. Then there must
be a circuit containing e and elements of, say, Ga, . . . , Gz. Then e,Ga, . . . , Gz are
contained in the same connected component of M . Any other f in Ga ∨ · · · ∨Gz is in
this same component, so Ga ∨ · · · ∨Gz is connected. This contradicts the assumption
that N is nested.

By the same reasoning, we cannot have a circuit in Fi consisting of elements of
more than one of the Gjs. Therefore the maximal Gjs with j ≤ i are actually the
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connected components of Fi. In particular, Gi is one of them. This shows that the
flag F gives rise to the nested set N , as we wished to prove. �

We next wish to understand, in the setting of an (acyclically) oriented matroid
M , how nested sets interact with the notion of positive flats. First, we need a small
technical lemma.

Lemma 7.3. If a flat of an oriented matroid M is positive, so are its connected
components.

Proof. Let G be a connected component of a positive flat F and assume for the sake
of contradiction that G is not positive. By [4, Proposition 9.1.2], we can find a signed
circuit X of M such that X+ ⊆ G and X− 6⊆ G. We then have that X+ ⊆ F , which
implies that X− ⊆ F since F is positive. Therefore X is a circuit in F , containing
elements of more than one of its connected components. This is a contradiction. �

Proposition 7.4. Let M be an acyclically oriented matroid whose positive tope is
simplicial. As F ranges over all flags of positive flats in M , the sets of flats labelling
vertices of the forests TF are precisely those nested sets of M which consist of positive
(connected) flats.

Proof. By Proposition 7.2, if F is a flag of positive flats, then TF is a nested set of
M . The labels of TF are positive by Lemma 7.3.

Now start with a nested set N of M consisting of positive connected flats, labelled
G1, G2, . . . , Gk in such a way that i < j implies Gi 6⊇ Gj. As in the proof of Propo-
sition 7.2, the flag F consisting of the flats Fi = G1 ∨ · · · ∨Gi for 1 ≤ i ≤ k satisfies
TF = N . Finally, each Fi is a disjoint union of Gjs, which are positive. Since the
positive tope is simplicial, the Fis are also positive. �

Remark 7.5. Proposition 7.4 is closely related to Feichtner and Sturmfels’ notion [14,
Section 4] of the localization of the nested set complex N (M) to a basis B of the
matroid M , if one chooses B to be the elements of the ground set which bound the
simplicial positive tope of M .

Observation 7.6. Proposition 7.4 can fail if the positive tope is not simplicial. For
example, consider the oriented matroid M of affine dependencies of the vertices of
a square which are cyclically labelled {1, 2, 3, 4}. Now, {1, 3} is a nested set of LM

consisting of positive flats. However, it does not arise as the forest of a flag of positive
flats.

Observation 7.7. The nested sets of M which consist of positive (connected) flats
are not the same as the nested sets of the lattice of positive flats Flv(M). In the
previous example, {1, 3} is nested in LM but not in Flv(M). Even in Example 2.10,
the (simplicial) oriented matroid of the braid arrangement A3, {1, 4} is not nested in
LM but it is nested in Flv(M).

We now give the second proof of Theorem 1.2. In view of Proposition 7.2, Proposi-
tion 3.5 tells us that, for any matroid M , the nested set complexN (M) is a refinement
of the coarse subdivision of the Bergman complex B(M) and a coarsening of the order
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complex ∆(LM) (i.e. the fine subdivision of B(M)). Therefore, it suffices to show that,
in the case of a (finite) Coxeter arrangement, every cell in the nested set complex is
equal to the cell of the Bergman complex which contains it.

So consider an arbitrary cell CN corresponding to a nested set N in the nested set
complex N (MΦ), and the cell D of the Bergman complex B(MΦ) containing it. By
Theorem 2.8, we can find a tope T of M such that the positive Bergman complex
B+(MΦ) corresponding to T contains the cell D, and therefore the cell CN . Since MΦ

is simplicial, Proposition 7.4 implies that the flats in N are positive with respect to
T .

Proposition 6.1 tells us that connected positive flats correspond to tubes in Γ.
It is easy to see that a set of connected positive flats is nested if and only if the
corresponding set of tubes is a tubing of Γ. Therefore CN is precisely the cell of
B+(MΦ) labelled by the tubing corresponding to N , by (the proof of) Theorem 1.1.
It follows that CN = D, as we wished to show. �

Recently Tevelev [24] asked whether every (coarse) cell in the Bergman complex
B(MΦ) of a Coxeter arrangement of type Φ is Coxeter-group equivalent to a cell
in B+(MΦ), i.e. a cell obtained from a tubing of the corresponding Dynkin diagram.
Using Theorem 3.3, we can give an affirmative answer to this question. We begin with
the following observation about the group Aut(M) of all automorphisms φ : E → E
for a finite matroid M on ground set E = [n].

Proposition 7.8. The group Aut(M), acting on Rn by permuting coordinates, pre-
serves the Bergman fan B(M), and acts by cellular automorphisms on its coarse
subdivision.

Proof. Recall that a weight vector ω in Rn has a uniquely associated flag F(ω)
of subsets as in (1), and any permutation φ : E → E respects this association:
F(φ(ω)) = φ(F(ω)). Since ω lies in B(M) if and only if this flag of subsets is a flag
of flats, a matroid automorphism φ will preserve this property, and hence preserves
B(M).

Recall also from (2) that the matroid Mω induced by ω is exactly
⊕k+1

i=1 Fi/Fi−1.
Since two weight vectors ω, ν lie in the same coarse cell if and only if Mω = Mν , the
second assertion of the proposition follows. �

Proposition 7.9. Let MΦ be the oriented matroid of a (finite) Coxeter arrangement
of type Φ with Coxeter group W . Then any coarse cell in B(MΦ) is W -equivalent to
a coarse cell in B+(MΦ).

Proof. Since W acts by matroid automorphisms on the ground set E of MΦ, Propo-
sition 7.8 implies that W permutes the coarse cells of B(M).

Now let C be any coarse cell of B(M), and choose a fine cell c ⊂ C defined by a
flag of flats F . By Theorem 3.3 and the fact that W acts transitively on the regions
of the arrangement, there exists some w ∈ W such that w(c) is a fine cell defined
by a flag of positive flats, i.e. w(c) lies inside a coarse cell D of B+(M). But now it
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follows that w(C) = D: w(C) must be a cell of B(M), and it contains w(c), which
lies in D. �
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