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ABSTRACT. We prove symmetry, and in some cases symmetry and unimodality, of
polynomials related to the g, x, y-hit numbers introduced by Haglund. These results
generalize theorems proven by Haglund for the g-hit numbers. We also apply one of
these results to obtain a corollary concerning a generalization of the Eulerian numbers.

RESUME. Nous prouvons la symétrie et dans certains cas la symétrie et 'unimoda-
lité des polynomes relatifs aux ¢,z,y nombres de contacts introduits par Haglund,
généralisant ainsi certains théoremes. Un de ces résultats nous permet d’obtenir un
corollaire a propos d’une généralisation des nombres Eulériens.

1. INTRODUCTION

1.1. Preliminaries. We will use the notation S@Q, to denote the n x n square chess
board. We will number the columns of S@),, with 1 through n going from left to right
across the bottom, and the rows of S@Q, with 1 through n going from bottom to top.
We will label a square on S@,, in column ¢ row j with (i, j).

More generally, a board will be any subset of SQ,, for some n € N. A Ferrers board is a
board with non-decreasing column heights from left to right, or more precisely a board of

h,

FIGURE 1. The Ferrers board B(hy,ds;. . .;hy, dy).
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the form {(7,7) € SQ,| 1 < j <b;, 1 <i<n}whereb; < by <---<b,. Wewill denote
the Ferrers board with column heights by, bs, . .., b, by B(by, ..., b,). We will also specify
a Ferrers board by its step heights and depths. The Ferrers board B(hy,ds;. .. ; hy, d;)
is shown in Figure 1. We will call B = B(by,...,b,) = B(hy,dy;...;hy,dy) a regular
Ferrers board if b; > i for 1 < i < n, or equivalently if Ay +---+ h; > dy + --- + d; for
1 <1 <t as was defined in [9]. In this paper we will focus on regular Ferrers boards.
A rook placement on a board B C S(@Q),, is a subset of squares of B such that no two
of these squares lie in the same row or the same column. As the name suggests, these
squares represent positions on an n X n chess board where non-attacking rooks can be
placed. Let r;(B) denote the number of k rook placements on B, and let h,, ;(B) denote
the number of n rook placements on S(@),, such that exactly k rooks lie on B. These are
known as the kth rook number and the kth hit number, respectively, of the board B.

1.2. Cycle-counting ¢-rook theory. The cycle-counting ¢-rook numbers were first
introduced in the unpublished work of Ehrenborg, Haglund, and Readdy [4], defined
only for Ferrers boards. These rook numbers generalize both the g-rook numbers
Ri(q, B) of Garsia and Remmel [5], and the cycle-counting rook numbers ry(y, B) of
Chung and Graham [2]. In order to describe them, we need to define the following three
statistics.

The first statistic is denoted invp, a generalization of the number of inversions of a
permutation. Given a placement P of rooks on a Ferrers board B C 5@, let each rook
cancel all squares to the right in its row and below in its column. We can then define
invg(P) to be the number of squares of B which neither contain a rook from P nor are
cancelled.

The second statistic is denoted cyc, and is a generalization of the number of cycles
of a permutation. Given a rook placement P on a board B C S@),, it is possible to
associate to P a simple directed graph G p on n vertices. This fact was first noted in [6]
(see also [2] and [3]). There is an edge from ¢ to j in Gp if and only if there is a rook
from P on the square (i,7). We can then define cyc(P) to be the number of cycles in
Gp.

The third statistic, denoted E, depends on the following fact. Given any placement
P of j non-attacking rooks in columns 1 through i — 1 of a Ferrers board B (where
Jj <i—1), it is an easy exercise to see that if b; > i then there is exactly one square
in column 7 where placement of a rook will complete a new cycle in the digraph Gp.
If b; < i then there is no square where placing a rook will complete a new cycle. Note
that a regular Ferrers board will have such a square in each of its columns (since b; > i
for all 1 <i <n). Now for ¢ with b; > i we can define s;(P) to be the unique square
which, considering only rooks from P in columns 1 through ¢ — 1 of P, completes a new
cycle. Then let E(P) be the number of ¢ such that b; > i and there is no rook from P in
column ¢ on or above square s;(P). For the rook placement P pictured in Figure 2, we
see that invg(P) =4, cyc(P) = 2, and E(P) = 2 (corresponding to i = 4 and i = 5).

We will use the common notation [z] = (1 — ¢*)/(1 — q) to denote the g-analog of
the real number z, and [n]! to denote the product [n][n —1]---[2][1], the g-analog of n!.
For n, k € N we denote by m the g-analog of the binomial coefficient (Z), equal to

[n]! _Injln—1]---[n—k+1]

][ — &]! [&]!
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FIGURE 2. The placement P on B and the associated digraph Gp.

for £ < n and equal to 0 for k > n. It is a well known fact that [’,ﬂ is a polynomial in
q. More generally for z € C we will write m for

[2][z —1]-- [z — k + 1]
(k]!

As in [4], we now define the kth cycle-counting q-rook number of a Ferrers board B
by the equation

Ry, (y’ 4, B) = Z [y]CyC(P)qinVB(P)-i-(y—l)E(P)’ (1)
P k rooks on B

where the sum is taken over all placements P of k non-attacking rooks on B. Letting
y = 1in (1) yields the g-rook numbers of [5], and letting ¢ — 1 gives the cycle-counting
rook numbers of [2]. The Ry (y, q, B) satisfy the useful equation

Y Ry, ¢, Bz — 1] [z =k +1]

= [ E+bi—i+y [[ E+b-i+1], 2

1 with b; >4 1 with b; <4

a version of the well-known factorization theorems proven for the r(B) [7], Ri(q, B) [5],
and 7 (y, B) [2].

Haglund [9, p. 449] further extended this model by defining the g, z, y-hit numbers
algebraically by the equation

Z An,k(m7 Y, q, B)Zk
k=0

n n

=Y Ruwlya. Blallz +1] - [e+ k=125 [T 1 —2¢""""). 3)

k=0 i=k+1
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The A, x(z,vy, q, B) generalize the a, x(z,y, B) also discussed in [9] (obtained by letting
q — 1in (3)), along with the g-hit numbers of Garsia and Remmel [5] (letting x = y = 1)
and the cycle-counting hit numbers in the model of Chung and Graham [2] (when z =1
and ¢ — 1).

The case x = y is studied in [1], where for a regular Ferrers board B the combinatorial
interpretation

An,k<y7 Y, q, B) = Z [y]CYC(P)q("*CyC(P))(yfl)ern,B(P)+E(P)
P n rooks on SQn,

n — k rooks on B
is given. Here the sum is taken over all placements of n non-attacking rooks on 5@,
such that exactly n — k of the rooks lie on B. The statistic E is as defined above, and
b, 5(P) is the number of squares on S, which neither contain a rook from P nor are
cancelled, after applying the following cancellation scheme:

(1) each rook cancels all squares to the right in its row;

(2) each rook on B cancels all squares above it in its column (squares both on B
and strictly above B);

(3) each rook on B which is also on a square which completes a cycle cancels all
squares below it in its column as well;

(4) each rook off B cancels all squares below it but above B.

While no combinatorial interpretation is known for the A, x(z,y, ¢, B) when x # y, the
author suspects that one exists similar to that given for the a, x(z,y, B) in [9, p. 418].
Such an interpretation would enhance the results that follow.

In Section 2 we sketch an easy proof of the symmetry and unimodality of
A, k(a,b,q,B) for a,b € N. Our proof for regular Ferrers boards is a simplified version
of that given in [10], for an analogous result concerning the ¢-hit numbers. We also
deduce two corollaries in this section. In Section 3, we prove symmetry of the polyno-
mial A, x(a,b,q, B)/[._,[d:]! for any regular Ferrers board B = B(hy,dy;...;hs,dy).
Finally in Section 4, we prove unimodality of A, (a,b,q, B)/[['_,[di]! for a certain
class of regular Ferrers boards.

2. SYMMETRY AND UNIMODALITY OF A, x(a,b,q, B)

If B= B(hy,dy;...;h,d;) C SQ, is a Ferrers board, let us denote by B — h, — d,
the Ferrers board B(hy,dy;...;hy, — 1,d, — 1;... hy,dy) € SQp—1, obtained from B by
decreasing the pth step by 1. We will write Area(B) for the number of squares in the
board B.

Suppose
N

f(Q) - Z @iqi7
i=M

is a polynomial in ¢ with as, ay # 0. We call M + N the virtual degree of f. We will
say the polynomial f(q) is zsu(d) if either

(1) f(q) is identically zero, or

(2) f(q) is in N[g], symmetric, and unimodal with virtual degree d.

Note that for s € N, ¢® is zsu(2s) and [s] is zsu(s — 1). It is also easy to see that if f

and g are polynomials which are both zsu(d), then f + g is also zsu(d). We will use the
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following lemmas to prove the main proposition of this section. A proof of Lemma 2.1
can be found in [11].

Lemma 2.1. If f is zsu(d) and g is zsu(e), then fg is zsu(d + e).

Lemma 2.2. Let B = B(hy,dy;...;h,dy) € SQ, be a reqular Ferrers board, B — hy —
dy € SQ,,—1 as described earlier. Then

Ank(z,y,¢,. B) =k +y+di — 1| A1 (2, y,q¢, B— hy — dy)
+ ¢V 2y —y —dy — K+ 1A, (2, y, ¢, B — by — dy)
forany 1 <k <n.
Proof. Let p =t in Lemma 5.7 of [9]. O

The following is now a simple corollary of the above lemmas. We offer a brief sketch
of the proof.

Proposition 2.3. Let B = B(hy,dy;...;h,dy) € SQ, be a regular Ferrers board,
a,beN. Ifn+a+1>b+d+k, then A, x(a,b,q,B) is zsu(Area(B) + n(b+k —1) +
k(a—1)— ("1") for 0 <k < n.

2

Proof. The proof is by induction on Area(B). When k = 0, we use Lemma 2.1 with (2)
and (3) to prove that

An,O(aa ba q, B) = H[bl —1 + b]a
i=1
which is zsu(Area(B) +n(b—1) — ("1')). We then use Lemma 2.2, Lemma 2.1, and the
fact that two polynomials which are zsu(d) sum to another polynomial which is zsu(d)
for the case when k£ > 0. Note the assumption n +a + 1 > b+ d; + k is necessary to
ensure that the factor [n +a — b — d; — k + 1] in the recurrence is a polynomial in g.
O]

An immediate corollary is the following.

Corollary 2.4. For any regular Ferrers board B C SQ,, and m € N, the polynomial
Z [m]cyc(P)q(mfcyc(P))(ylebn,B(P)+E(P)

P n rooks on SQn,
n — k rooks on B

is zsu(Area(B) + n(m +k — 1) + k(m — 1) — (";1)).

Proof. Let x = y = m in Proposition 2.3, and use the combinatorial interpretation for
A, k(y,y,q, B) given in Section 1.2. Note that assuming B is a regular Ferrers board,
we always have n +m + 1 > m + d; + k. This is because the last d; columns of B have
height n, so in a placement of n non-attacking rooks on S@, with k rooks off B, we
must have n — d; > k. O

A cycle-counting version of the Eulerian numbers is given in [1], defined by the
equation

En,k(y, q) = Z [y]rlmin(")q(”—rlmin(a))(y—1)+maj(a)' (4)
0€Sy, des(o)=k—1
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Here des(o) denotes the number of descents, and rlmin(c) the number of right-to-left
minima, in the permutation o. A right-to-left minimum of o105 ---0, is an entry o;
which is smaller than o; for all j > i (so for example rlmin(51243) = 3, corresponding
to the right-to-left minima 3, 2, and 1). Note that right-to-left minima have the same
overall distribution as cycles in .S,,, justifying the term “cycle-counting.” It was proven
in [1] that

En,k(y, Q) = An,k—l(ya Y, 4, Tn)a (5)
where T,, = B(1,2,...,n) denotes the triangular Ferrers board. In light of (5) and

Proposition 2.3, the following can be easily proven.
Corollary 2.5. For m € N, the polynomial
Z [p]rimin(o) g (n—rimin(o)) (m—1)+maj(7)
0ESn, des(o)=k—1
is zsu(n(m +k —2) + (k—1)(m — 1)).

3. SYMMETRY OF A, 4(a,b,q, B)/T]i_,[d:]!

In this section we prove a more general symmetry result for all regular Ferrers boards,
namely the symmetry of the polynomial

An,k(a> b7 q, B)
H§:1[di]! 7
where B = B(hy,dy;...;hy,d;). Throughout the rest of the paper we will use the

notation H; for the partial sum h; 4+ --- + h;, and D; for dy + --- + d;. We have the
following lemmas.

Lemma 3.1. Let B = B(by,...,b,) = B(hy,dy;...;hy,dy) be a regular Ferrers board,
J € N. Then

t

[+ 0 —i+y :H J+H —Di 1 +y—1
[Tie ]! p d; '

1

Proof. We see that

n t

[T+ —i+ol =] (U+H—Dis+y= UG+ Hi= D +y =1~ 1

"‘[(J+H¢—Di,1+y—1)—di+1]).
Thus
[[ [ +bi —i+yl
[Tz ]!

J+H —Div+y—1]---[(j+H —Di.y+y—1)—d; +1]
(]! ’

t
1=

1
which is

f[|:j+Hi_Di1+y_1
d;

=1



SYMMETRY AND UNIMODALITY IN THE g, z,y-HIT NUMBERS 7

by definition. O
Lemma 3.2. Let B = B(by,...,b,) = B(hy,dy;...;h,dy) € SQ, be a regular Ferrers

board. Then
n+az||lr+j—1 ki (*37) Jj+H;— D1 +y—1
—1)* .
oD 01 | A () 1 |

Ank I’ y7Q7

[T, 1di] =

Mw

Proof. By Lemma 5.1 of [9], we have

{n%—x} [x—l—j—l
k—j J

k
An,k(xuy)Q7 B) - Z

j=0

0 T+ i+l

The lemma now follows trivially from Lemma 3.1. 0
We can now prove the following.

Theorem 3.3. Let B = B(hy,dy;...; hy, d;) be a reqular Ferrers board (so H; > D; for
1<i<t) Leta,be N witha>b>1, and set

L{Y(B) = Area(B) +n(b—1) + k(n +a — 1) ZdD

Then Anx(a,b,q, B)/[1._,[di]! is either zero or symmetric with virtual degree Li"(B).
Proof. By Lemma 3.2, A, x(a,b,q, B)/[[._,[d]' =

k , t .
Z [th] [a —l—j 1] (—l)k_]q(k2j) H [] + H; ld?ll +5b 1] |
§=0 i=1 ¢

which is a polynomial in ¢ (the first two ¢g-binomial coefficients in each summand are
clearly polynomials, and the third is since H; > D; > D; 4 and b > 1). Using the fact
that [ﬂ is symmetric with virtual degree s(r — s) and Lemma 2.1, we see that each
term on the right side above has virtual degree (k — j)(n +a —k +j) + jla — 1) +
(k=) (k—j—1) 4+ di(j + Hi — D; +b— 1) (which is exactly L{*(B)). We then
conclude that if A, x(a,b,q,B)/ Hz 1[d;]! is non-zero, then it is symmetric with virtual
degree L{"(B). O

4. UNIMODALITY OF A, x(a,b,q, B)/[_,[d]!

In this section we give some sufficient conditions on the regular Ferrers board B for
the polynomial of the previous section to also be unimodal. Let us first define some
more notation.

Suppose we have integers hq,...,hs, di,...,d;, and eq,...,e; with d; € P, h; € N,
and 0 < e; < d;. We will denote the vector (eq,es,...,¢e;) by € We will continue to
denote the partial sum hy + --- 4+ h; by H;, di + --- + d; by D;, and we will also let
E;, = e +---+e¢;. We make the convention that Hy = Dy = Ey = 0. For fixed hq, ..., h;
and dy,...,d; we can define

¢
H,— D,;_ FE;_ —1||D;+D;_1 — H;, — E;_ —
P(é’,x,y)zH{ 1+ 1ty }{ + 1 1+ —y

i1 dz — €; €;
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and prove the following lemmas.

Lemma 4.1. Let B = B(hy,dy;. .. h—1,di—1; e, dy) € SQ, be a reqular Ferrers board,
B = B(hl, dl; cey htfl, dt,1> - SQHtfl' Then

k
An,k‘(xayaQ>B) = [dt}' Z AHt_1,s(J:ay>Q7 B,)|:

Y+ dy + s — 1:|
s=k—d¢

dt—k+3

y [n —y—di+a— 5} g k=9 w+h=1).
k—s

Proof. Let p =t in Corollary 5.10 of [9] and note that because B is a regular Ferrers
board, H; = D; = n. O

Lemma 4.2. Let B = B(hy,dy;...;h,d;) be a reqular Ferrers board. Then

t t

Auglra By =[Jlar 32 P@Ewy L PeE ()

=1 e1+-~ter=k, 0<e;<d; =1
Proof. By induction on t. When ¢ = 1 we have that d; = n, and Lemma 4.1 gives us

k
An,k(x7yJQ7B) = [d1]| Z AO,S(x7y7Q7®)

s=k—n

y+n+s—1
dl—k+8

% [” -y ; ntT- S} x gk ()
— S

In this case we have that H; = D; = dy = n and Dy = Hy = 0, so we get that the
s =0 term in (7) is equal to

Hy—Dy+y— 1} lD1 +Dy—Hi +x— y] » qk(Hl—Dl—o—k—l-y—l)' (8)

[dl]!{ dy — k k

Note that by definition
AO,S($7 Y,4q, (Z)) = 58,07

so the only nonzero summand in (7) occurs when s = 0 and hence (8) is actually equal
to (7). Finally if we recall that £y = e; and Ey = 0, we can rewrite (8) as

Hl—D0+E0+y—1
@)y [
er=k, 0<e1<d; dy — e

Y

y {Dl +Dy—Hi—Ey+z—y x g M= Di+Er+y=1)
€1

which is exactly of the form of (6).



SYMMETRY AND UNIMODALITY IN THE g, z,y-HIT NUMBERS 9

For t > 1, Lemma 4.1 gives that

Et
An,k}(‘r7 ’y’ q, B) = [dt}' Z AHt,l,Etfl (ZE, y7 Q7 B,) |: dt _ €t

y+dt+Et_1 —1:|
By 1=Ei—d;
{”—y—dt+$—Et—1
X
Ct

<t

Here we are letting F;,_; = s and defining ¢, = k — s and E; = F;,_1 + ¢, = k. Since B
is regular H; = Dy =n, so Hy — Dy_y = Dy — D;_1 = d; and (9) can be rewritten as

dy
H-—-D, +F_,+vy—1
An,k(l’,y, q’B) = [dt}!ZAHt—1,Et—1(x7y7Q7BI>|: t t ld ; Y ‘|
e+=0 t — Gt

o [Dt +Dyy—H —Ey 1 +2— y:| « qet(Ht_Dt+Et+y_1)'

€t

By the inductive hypothesis, the above is equal to

[dy]! i { ﬁ[di]! 3 ﬁ [Hz' - Di—lc;_E;_I +y— 1}

et=0 ~ i=1 e1+-+er—1=E;_1, 0<e;<d; i=1
% Di+ Dy — Hi = Eii+ o —y qei(Hi_Di"FEi"Fy_l)
€;
% Ht — Dt—l + Et—l + Yy — 1 Dt + Dt—l — Ht — Et—l +x — Yy qet(Ht*Dt‘i’Et‘i’y*l)
dt — € (&3 ’
which is
t t
[ [ > P(& x,y) [ [ ¢ PertFitey),
=1 e1+-ter=k, 0<e;<d: i+1
as desired. 0

Lemma 4.3. Let B = B(hy,dy;...;h,dy) be a regular Ferrers board, a,b € N with
a>b>1. Let e;, d;, hy, E;, D;, and H; be as in the definition of P(€,x,y). Assume
that B is such that d;_1+d; > h; for 1 <i <t (wheredy :=0). If any of the numerators
of the q-binomial coefficients in

t
H-D++E,_,1+0-1||D;+D;_1 —H;,— E;_ —b
Pt =11 | PR | I e

e.
i=1 '

are negative, then P(€,a,b) = 0.

Proof. First note that H; — D; 1+ FE;_1+b—1>0for 1 <i<t,since H; > D; > D;_;
and b > 1, so none of the numerators in the first g-binomial coefficient of the product
are ever negative.

Now suppose that Dy + Dy_1 — H, — Er_1 +a — b < 0 for some k£ with 0 < k < t.
Note D1+ Dy — Hy — Eg+a—b = d; — hy +a— b, and since we assumed d;_1 + d; > h;
(and in particular d; > hy) and a > b, we have that d; — hy +a — b > 0. Thus we see
that such a k£ must be greater than 2.
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Now choose j such that D;, + D; 1 — H; — E; 1 +a—b > 0for 1 <1 < 7, but
D;+D; 1—H;—E;_1+a—0b <0 (such a j exists because of the remarks in the previous
paragraph). Then D;+D; 1 —H;—FE;_1+a—b < 0implies D;4+D; 1—H;—E;_s+a—b <
€51, which is equivalent to dj + dj,1 — hj + Dj71 + Dj,Q — ijl — E];Q +a—0b< €1,
which implies D; 1+ D;_o — Hj_1 — E;_o+a—b < ej_; (since d; +dj_1 > h;). Hence

Dj,1 + Dj,Q — Hj,1 — Ej,2 4+a—>5b

€i—1

= ()7
since the numerator is non-negative by definition of j but less than the denominator,
so the product P(€,a,b) is 0 as well. O

We are now ready to prove the main theorem of this section, the unimodality of the
An,k<a7 b7 q, B)/ H:’:l [dl]'

Theorem 4.4. Let B = B(hy,dy;...;hy,dy) be a reqular Ferrers board such that d;—y +
d; > h; for1 <i<t. Let a,b € N witha >b>1, and set

t
Ly*(B) = Area(B) + n(b— 1) + k(n+a—1) = > d;D;
=1

as before. Then A, x(a,b,q, B)/ TT'_,[di]! is zsu(LL"(B)).

Proof. We apply Lemma 4.2, which says that
t
An,k(tav b> Q7|B) _ Z P(é: a, b) H qei(Hi—Di+Er‘rb—1)7
lel[dl} e1+-+er=k, 0<e;<d; i=1

and all of the terms on the right hand side above are in N[¢q] by Lemma 4.3. Using
the fact that [7] is zsu(s(r — s)) (for a proof of the unimodality see [8]) along with
Lemma 2.1, each term above is zsu(zzzl{(di —e)H; —D;+ E;+b—1) 4 ei(D; +
Diy—H;—E;+a—0b)+2e;(H;—D;+ E; +b—1)}). A simple calculation shows this
is the same zsu(L"(B)). Thus A, x(a,b,q, B)/ [i_y[di]! is zsu(LE*(B)) as well. O
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