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Abstract. We prove symmetry, and in some cases symmetry and unimodality, of
polynomials related to the q, x, y-hit numbers introduced by Haglund. These results
generalize theorems proven by Haglund for the q-hit numbers. We also apply one of
these results to obtain a corollary concerning a generalization of the Eulerian numbers.

Résumé. Nous prouvons la symétrie et dans certains cas la symétrie et l’unimoda-
lité des polynômes relatifs aux q, x, y nombres de contacts introduits par Haglund,
généralisant ainsi certains théorèmes. Un de ces résultats nous permet d’obtenir un
corollaire à propos d’une généralisation des nombres Eulériens.

1. Introduction

1.1. Preliminaries. We will use the notation SQn to denote the n × n square chess
board. We will number the columns of SQn with 1 through n going from left to right
across the bottom, and the rows of SQn with 1 through n going from bottom to top.
We will label a square on SQn in column i row j with (i, j).

More generally, a board will be any subset of SQn for some n ∈ N. A Ferrers board is a
board with non-decreasing column heights from left to right, or more precisely a board of
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Figure 1. The Ferrers board B(h1, d1; . . . ; ht, dt).
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the form {(i, j) ∈ SQn| 1 ≤ j ≤ bi, 1 ≤ i ≤ n} where b1 ≤ b2 ≤ · · · ≤ bn. We will denote
the Ferrers board with column heights b1, b2, . . . , bn by B(b1, . . . , bn). We will also specify
a Ferrers board by its step heights and depths. The Ferrers board B(h1, d1; . . . ; ht, dt)
is shown in Figure 1. We will call B = B(b1, . . . , bn) = B(h1, d1; . . . ; ht, dt) a regular
Ferrers board if bi ≥ i for 1 ≤ i ≤ n, or equivalently if h1 + · · ·+ hi ≥ d1 + · · ·+ di for
1 ≤ i ≤ t as was defined in [9]. In this paper we will focus on regular Ferrers boards.

A rook placement on a board B ⊆ SQn is a subset of squares of B such that no two
of these squares lie in the same row or the same column. As the name suggests, these
squares represent positions on an n× n chess board where non-attacking rooks can be
placed. Let rk(B) denote the number of k rook placements on B, and let hn,k(B) denote
the number of n rook placements on SQn such that exactly k rooks lie on B. These are
known as the kth rook number and the kth hit number, respectively, of the board B.

1.2. Cycle-counting q-rook theory. The cycle-counting q-rook numbers were first
introduced in the unpublished work of Ehrenborg, Haglund, and Readdy [4], defined
only for Ferrers boards. These rook numbers generalize both the q-rook numbers
Rk(q, B) of Garsia and Remmel [5], and the cycle-counting rook numbers rk(y, B) of
Chung and Graham [2]. In order to describe them, we need to define the following three
statistics.

The first statistic is denoted invB, a generalization of the number of inversions of a
permutation. Given a placement P of rooks on a Ferrers board B ⊆ SQn, let each rook
cancel all squares to the right in its row and below in its column. We can then define
invB(P ) to be the number of squares of B which neither contain a rook from P nor are
cancelled.

The second statistic is denoted cyc, and is a generalization of the number of cycles
of a permutation. Given a rook placement P on a board B ⊆ SQn, it is possible to
associate to P a simple directed graph GP on n vertices. This fact was first noted in [6]
(see also [2] and [3]). There is an edge from i to j in GP if and only if there is a rook
from P on the square (i, j). We can then define cyc(P ) to be the number of cycles in
GP .

The third statistic, denoted E, depends on the following fact. Given any placement
P of j non-attacking rooks in columns 1 through i − 1 of a Ferrers board B (where
j ≤ i − 1), it is an easy exercise to see that if bi ≥ i then there is exactly one square
in column i where placement of a rook will complete a new cycle in the digraph GP .
If bi < i then there is no square where placing a rook will complete a new cycle. Note
that a regular Ferrers board will have such a square in each of its columns (since bi ≥ i
for all 1 ≤ i ≤ n). Now for i with bi ≥ i we can define si(P ) to be the unique square
which, considering only rooks from P in columns 1 through i−1 of P , completes a new
cycle. Then let E(P ) be the number of i such that bi ≥ i and there is no rook from P in
column i on or above square si(P ). For the rook placement P pictured in Figure 2, we
see that invB(P ) = 4, cyc(P ) = 2, and E(P ) = 2 (corresponding to i = 4 and i = 5).

We will use the common notation [x] = (1 − qx)/(1 − q) to denote the q-analog of
the real number x, and [n]! to denote the product [n][n− 1] · · · [2][1], the q-analog of n!.
For n, k ∈ N we denote by

[
n
k

]
the q-analog of the binomial coefficient

(
n
k

)
, equal to

[n]!

[k]![n− k]!
=

[n][n− 1] · · · [n− k + 1]

[k]!



SYMMETRY AND UNIMODALITY IN THE q, x, y-HIT NUMBERS 3

1

2

3

4

5

6

1 2 3 4 5 6

1 2 3 4 5 6

Figure 2. The placement P on B and the associated digraph GP .

for k ≤ n and equal to 0 for k > n. It is a well known fact that
[
n
k

]
is a polynomial in

q. More generally for z ∈ C we will write
[
z
k

]
for

[z][z − 1] · · · [z − k + 1]

[k]!
.

As in [4], we now define the kth cycle-counting q-rook number of a Ferrers board B
by the equation

Rk(y, q, B) =
∑

P k rooks on B

[y]cyc(P )qinvB(P )+(y−1)E(P ), (1)

where the sum is taken over all placements P of k non-attacking rooks on B. Letting
y = 1 in (1) yields the q-rook numbers of [5], and letting q → 1 gives the cycle-counting
rook numbers of [2]. The Rk(y, q, B) satisfy the useful equation

n∑
k=0

Rn−k(y, q, B)[z][z − 1] · · · [z − k + 1]

=
∏

i with bi≥i

[z + bi − i + y]
∏

i with bi<i

[z + bi − i + 1], (2)

a version of the well-known factorization theorems proven for the rk(B) [7], Rk(q, B) [5],
and rk(y, B) [2].

Haglund [9, p. 449] further extended this model by defining the q, x, y-hit numbers
algebraically by the equation

n∑
k=0

An,k(x, y, q, B)zk

=
n∑

k=0

Rn−k(y, q, B)[x][x + 1] · · · [x + k − 1]zk

n∏
i=k+1

(1− zqx+i−1). (3)
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The An,k(x, y, q, B) generalize the an,k(x, y, B) also discussed in [9] (obtained by letting
q → 1 in (3)), along with the q-hit numbers of Garsia and Remmel [5] (letting x = y = 1)
and the cycle-counting hit numbers in the model of Chung and Graham [2] (when x = 1
and q → 1).

The case x = y is studied in [1], where for a regular Ferrers board B the combinatorial
interpretation

An,k(y, y, q, B) =
∑

P n rooks on SQn,
n− k rooks on B

[y]cyc(P )q(n−cyc(P ))(y−1)+bn,B(P )+E(P )

is given. Here the sum is taken over all placements of n non-attacking rooks on SQn

such that exactly n− k of the rooks lie on B. The statistic E is as defined above, and
bn,B(P ) is the number of squares on SQn which neither contain a rook from P nor are
cancelled, after applying the following cancellation scheme:

(1) each rook cancels all squares to the right in its row;
(2) each rook on B cancels all squares above it in its column (squares both on B

and strictly above B);
(3) each rook on B which is also on a square which completes a cycle cancels all

squares below it in its column as well;
(4) each rook off B cancels all squares below it but above B.

While no combinatorial interpretation is known for the An,k(x, y, q, B) when x 6= y, the
author suspects that one exists similar to that given for the an,k(x, y, B) in [9, p. 418].
Such an interpretation would enhance the results that follow.

In Section 2 we sketch an easy proof of the symmetry and unimodality of
An,k(a, b, q, B) for a, b ∈ N. Our proof for regular Ferrers boards is a simplified version
of that given in [10], for an analogous result concerning the q-hit numbers. We also
deduce two corollaries in this section. In Section 3, we prove symmetry of the polyno-
mial An,k(a, b, q, B)/

∏t
i=1[di]! for any regular Ferrers board B = B(h1, d1; . . . ; ht, dt).

Finally in Section 4, we prove unimodality of An,k(a, b, q, B)/
∏t

i=1[di]! for a certain
class of regular Ferrers boards.

2. Symmetry and Unimodality of An,k(a, b, q, B)

If B = B(h1, d1; . . . ; ht, dt) ⊆ SQn is a Ferrers board, let us denote by B − hp − dp

the Ferrers board B(h1, d1; . . . ; hp − 1, dp − 1; . . . ht, dt) ⊆ SQn−1, obtained from B by
decreasing the pth step by 1. We will write Area(B) for the number of squares in the
board B.

Suppose

f(q) =
N∑

i=M

aiq
i,

is a polynomial in q with aM , aN 6= 0. We call M + N the virtual degree of f . We will
say the polynomial f(q) is zsu(d) if either

(1) f(q) is identically zero, or
(2) f(q) is in N[q], symmetric, and unimodal with virtual degree d.

Note that for s ∈ N, qs is zsu(2s) and [s] is zsu(s− 1). It is also easy to see that if f
and g are polynomials which are both zsu(d), then f + g is also zsu(d). We will use the
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following lemmas to prove the main proposition of this section. A proof of Lemma 2.1
can be found in [11].

Lemma 2.1. If f is zsu(d) and g is zsu(e), then fg is zsu(d + e).

Lemma 2.2. Let B = B(h1, d1; . . . ; ht, dt) ⊆ SQn be a regular Ferrers board, B − ht −
dt ⊆ SQn−1 as described earlier. Then

An,k(x, y, q, B) = [k + y + dt − 1]An−1,k(x, y, q, B − ht − dt)

+ qk+y+dt−2[n + x− y − dt − k + 1]An−1,k−1(x, y, q, B − ht − dt)

for any 1 ≤ k ≤ n.

Proof. Let p = t in Lemma 5.7 of [9]. �

The following is now a simple corollary of the above lemmas. We offer a brief sketch
of the proof.

Proposition 2.3. Let B = B(h1, d1; . . . ; ht, dt) ⊆ SQn be a regular Ferrers board,
a, b ∈ N. If n + a + 1 ≥ b + dt + k, then An,k(a, b, q, B) is zsu(Area(B) + n(b + k− 1) +
k(a− 1)−

(
n+1

2

)
) for 0 ≤ k ≤ n.

Proof. The proof is by induction on Area(B). When k = 0, we use Lemma 2.1 with (2)
and (3) to prove that

An,0(a, b, q, B) =
n∏

i=1

[bi − i + b],

which is zsu(Area(B)+n(b−1)−
(

n+1
2

)
). We then use Lemma 2.2, Lemma 2.1, and the

fact that two polynomials which are zsu(d) sum to another polynomial which is zsu(d)
for the case when k > 0. Note the assumption n + a + 1 ≥ b + dt + k is necessary to
ensure that the factor [n + a− b− dt − k + 1] in the recurrence is a polynomial in q.

�

An immediate corollary is the following.

Corollary 2.4. For any regular Ferrers board B ⊆ SQn and m ∈ N, the polynomial∑
P n rooks on SQn,

n− k rooks on B

[m]cyc(P )q(m−cyc(P ))(y−1)+bn,B(P )+E(P )

is zsu(Area(B) + n(m + k − 1) + k(m− 1)−
(

n+1
2

)
).

Proof. Let x = y = m in Proposition 2.3, and use the combinatorial interpretation for
An,k(y, y, q, B) given in Section 1.2. Note that assuming B is a regular Ferrers board,
we always have n + m + 1 ≥ m + dt + k. This is because the last dt columns of B have
height n, so in a placement of n non-attacking rooks on SQn with k rooks off B, we
must have n− dt ≥ k. �

A cycle-counting version of the Eulerian numbers is given in [1], defined by the
equation

Ẽn,k(y, q) =
∑

σ∈Sn, des(σ)=k−1

[y]rlmin(σ)q(n−rlmin(σ))(y−1)+maj(σ). (4)
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Here des(σ) denotes the number of descents, and rlmin(σ) the number of right-to-left
minima, in the permutation σ. A right-to-left minimum of σ1σ2 · · ·σn is an entry σi

which is smaller than σj for all j > i (so for example rlmin(51243) = 3, corresponding
to the right-to-left minima 3, 2, and 1). Note that right-to-left minima have the same
overall distribution as cycles in Sn, justifying the term “cycle-counting.” It was proven
in [1] that

Ẽn,k(y, q) = An,k−1(y, y, q, Tn), (5)

where Tn = B(1, 2, . . . , n) denotes the triangular Ferrers board. In light of (5) and
Proposition 2.3, the following can be easily proven.

Corollary 2.5. For m ∈ N, the polynomial∑
σ∈Sn, des(σ)=k−1

[m]rlmin(σ)q(n−rlmin(σ))(m−1)+maj(σ)

is zsu(n(m + k − 2) + (k − 1)(m− 1)).

3. Symmetry of An,k(a, b, q, B)/
∏t

i=1[di]!

In this section we prove a more general symmetry result for all regular Ferrers boards,
namely the symmetry of the polynomial

An,k(a, b, q, B)∏t
i=1[di]!

,

where B = B(h1, d1; . . . ; ht, dt). Throughout the rest of the paper we will use the
notation Hi for the partial sum h1 + · · · + hi, and Di for d1 + · · · + di. We have the
following lemmas.

Lemma 3.1. Let B = B(b1, . . . , bn) = B(h1, d1; . . . ; ht, dt) be a regular Ferrers board,
j ∈ N. Then ∏n

i=1[j + bi − i + y]∏t
i=1[di]!

=
t∏

i=1

[
j + Hi −Di−1 + y − 1

di

]
.

Proof. We see that

n∏
i=1

[j + bi − i + y] =
t∏

i=1

(
[j + Hi −Di−1 + y − 1][(j + Hi −Di−1 + y − 1)− 1]

· · · [(j + Hi −Di−1 + y − 1)− di + 1]
)
.

Thus∏n
i=1[j + bi − i + y]∏t

i=1[di]!

=
t∏

i=1

[j + Hi −Di−1 + y − 1] · · · [(j + Hi −Di−1 + y − 1)− di + 1]

[di]!
,

which is
t∏

i=1

[
j + Hi −Di−1 + y − 1

di

]
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by definition. �

Lemma 3.2. Let B = B(b1, . . . , bn) = B(h1, d1; . . . ; ht, dt) ⊆ SQn be a regular Ferrers
board. Then

An,k(x, y, q, B)∏t
i=1[di]!

=
k∑

j=0

[
n + x

k − j

][
x + j − 1

j

]
(−1)k−jq(

k−j
2 )

t∏
i=1

[
j + Hi −Di−1 + y − 1

di

]
.

Proof. By Lemma 5.1 of [9], we have

An,k(x, y, q, B) =
k∑

j=0

[
n + x

k − j

][
x + j − 1

j

]
(−1)k−jq(

k−j
2 )

n∏
i=1

[j + bi − i + y].

The lemma now follows trivially from Lemma 3.1. �

We can now prove the following.

Theorem 3.3. Let B = B(h1, d1; . . . ; ht, dt) be a regular Ferrers board (so Hi ≥ Di for
1 ≤ i ≤ t). Let a, b ∈ N with a ≥ b ≥ 1, and set

La,b
k (B) = Area(B) + n(b− 1) + k(n + a− 1)−

t∑
i=1

diDi.

Then An,k(a, b, q, B)/
∏t

i=1[di]! is either zero or symmetric with virtual degree La,b
k (B).

Proof. By Lemma 3.2, An,k(a, b, q, B)/
∏t

i=1[di]! =

k∑
j=0

[
n + a

k − j

][
a + j − 1

j

]
(−1)k−jq(

k−j
2 )

t∏
i=1

[
j + Hi −Di−1 + b− 1

di

]
,

which is a polynomial in q (the first two q-binomial coefficients in each summand are
clearly polynomials, and the third is since Hi ≥ Di ≥ Di−1 and b ≥ 1). Using the fact
that

[
r
s

]
is symmetric with virtual degree s(r − s) and Lemma 2.1, we see that each

term on the right side above has virtual degree (k − j)(n + a − k + j) + j(a − 1) +

(k − j)(k − j − 1) +
∑t

i=1 di(j + Hi −Di + b− 1) (which is exactly La,b
k (B)). We then

conclude that if An,k(a, b, q, B)/
∏t

i=1[di]! is non-zero, then it is symmetric with virtual

degree La,b
k (B). �

4. Unimodality of An,k(a, b, q, B)/
∏t

i=1[di]!

In this section we give some sufficient conditions on the regular Ferrers board B for
the polynomial of the previous section to also be unimodal. Let us first define some
more notation.

Suppose we have integers h1, . . . , ht, d1, . . . , dt, and e1, . . . , et with di ∈ P, hi ∈ N,
and 0 ≤ ei ≤ di. We will denote the vector (e1, e2, . . . , et) by ~e. We will continue to
denote the partial sum h1 + · · · + hi by Hi, d1 + · · · + di by Di, and we will also let
Ei = e1+ · · ·+ei. We make the convention that H0 = D0 = E0 = 0. For fixed h1, . . . , ht

and d1, . . . , dt we can define

P (~e, x, y) =
t∏

i=1

[
Hi −Di−1 + Ei−1 + y − 1

di − ei

][
Di + Di−1 −Hi − Ei−1 + x− y

ei

]
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and prove the following lemmas.

Lemma 4.1. Let B = B(h1, d1; . . . ht−1, dt−1; ht, dt) ⊆ SQn be a regular Ferrers board,
B′ = B(h1, d1; . . . ; ht−1, dt−1) ⊆ SQHt−1. Then

An,k(x, y, q, B) = [dt]!
k∑

s=k−dt

AHt−1,s(x, y, q, B′)

[
y + dt + s− 1

dt − k + s

]
×

[
n− y − dt + x− s

k − s

]
q(k−s)(y+k−1).

Proof. Let p = t in Corollary 5.10 of [9] and note that because B is a regular Ferrers
board, Ht = Dt = n. �

Lemma 4.2. Let B = B(h1, d1; . . . ; ht, dt) be a regular Ferrers board. Then

An,k(x, y, q, B) =
t∏

i=1

[di]!
∑

e1+···+et=k, 0≤ei≤di

P (~e, x, y)
t∏

i=1

qei(Hi−Di+Ei+y−1). (6)

Proof. By induction on t. When t = 1 we have that d1 = n, and Lemma 4.1 gives us

An,k(x, y, q, B) = [d1]!
k∑

s=k−n

A0,s(x, y, q, ∅)
[
y + n + s− 1

d1 − k + s

]
×

[
n− y − n + x− s

k − s

]
× q(k−s)(y+k−1). (7)

In this case we have that H1 = D1 = d1 = n and D0 = H0 = 0, so we get that the
s = 0 term in (7) is equal to

[d1]!

[
H1 −D0 + y − 1

d1 − k

][
D1 + D0 −H1 + x− y

k

]
× qk(H1−D1+k+y−1). (8)

Note that by definition

A0,s(x, y, q, ∅) = δs,0,

so the only nonzero summand in (7) occurs when s = 0 and hence (8) is actually equal
to (7). Finally if we recall that E1 = e1 and E0 = 0, we can rewrite (8) as

[d1]!
∑

e1=k, 0≤e1≤d1

[
H1 −D0 + E0 + y − 1

d1 − e1

]
×

[
D1 + D0 −H1 − E0 + x− y

e1

]
× qe1(H1−D1+E1+y−1),

which is exactly of the form of (6).
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For t > 1, Lemma 4.1 gives that

An,k(x, y, q, B) = [dt]!
Et∑

Et−1=Et−dt

AHt−1,Et−1(x, y, q, B′)

[
y + dt + Et−1 − 1

dt − et

]

×
[
n− y − dt + x− Et−1

et

]
× qet(y+Et−1). (9)

Here we are letting Et−1 = s and defining et = k − s and Et = Et−1 + et = k. Since B
is regular Ht = Dt = n, so Ht −Dt−1 = Dt −Dt−1 = dt and (9) can be rewritten as

An,k(x, y, q, B) = [dt]!
dt∑

et=0

AHt−1,Et−1(x, y, q, B′)

[
Ht −Dt−1 + Et−1 + y − 1

dt − et

]
×

[
Dt + Dt−1 −Ht − Et−1 + x− y

et

]
× qet(Ht−Dt+Et+y−1).

By the inductive hypothesis, the above is equal to

[dt]!
dt∑

et=0

{ t−1∏
i=1

[di]!
∑

e1+···+et−1=Et−1, 0≤ei≤di

t−1∏
i=1

[
Hi −Di−1 + Ei−1 + y − 1

di − ei

]

×
[
Di + Di−1 −Hi − Ei−1 + x− y

ei

]
qei(Hi−Di+Ei+y−1)

}
×

[
Ht −Dt−1 + Et−1 + y − 1

dt − et

][
Dt + Dt−1 −Ht − Et−1 + x− y

et

]
qet(Ht−Dt+Et+y−1),

which is
t∏

i=1

[di]!
∑

e1+···+et=k, 0≤ei≤dt

P (~e, x, y)
t∏

i+1

qei(Hi−Di+Ei+y−1),

as desired. �

Lemma 4.3. Let B = B(h1, d1; . . . ; ht, dt) be a regular Ferrers board, a, b ∈ N with
a ≥ b ≥ 1. Let ei, di, hi, Ei, Di, and Hi be as in the definition of P (~e, x, y). Assume
that B is such that di−1+di ≥ hi for 1 ≤ i ≤ t (where d0 := 0). If any of the numerators
of the q-binomial coefficients in

P (~e, a, b) =
t∏

i=1

[
Hi −Di−1 + Ei−1 + b− 1

di − ei

][
Di + Di−1 −Hi − Ei−1 + a− b

ei

]
are negative, then P (~e, a, b) = 0.

Proof. First note that Hi−Di−1 +Ei−1 + b− 1 ≥ 0 for 1 ≤ i ≤ t, since Hi ≥ Di ≥ Di−1

and b ≥ 1, so none of the numerators in the first q-binomial coefficient of the product
are ever negative.

Now suppose that Dk + Dk−1 − Hk − Ek−1 + a − b < 0 for some k with 0 ≤ k ≤ t.
Note D1 + D0−H1−E0 + a− b = d1− h1 + a− b, and since we assumed di−1 + di ≥ hi

(and in particular d1 ≥ h1) and a ≥ b, we have that d1 − h1 + a− b ≥ 0. Thus we see
that such a k must be greater than 2.
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Now choose j such that Di + Di−1 − Hi − Ei−1 + a − b ≥ 0 for 1 ≤ i < j, but
Dj +Dj−1−Hj−Ej−1+a−b < 0 (such a j exists because of the remarks in the previous
paragraph). Then Dj+Dj−1−Hj−Ej−1+a−b < 0 implies Dj+Dj−1−Hj−Ej−2+a−b <
ej−1, which is equivalent to dj + dj−1 − hj + Dj−1 + Dj−2 −Hj−1 −Ej−2 + a− b < ej−1,
which implies Dj−1 + Dj−2 −Hj−1 −Ej−2 + a− b < ej−1 (since dj + dj−1 ≥ hj). Hence[

Dj−1 + Dj−2 −Hj−1 − Ej−2 + a− b

ej−1

]
= 0,

since the numerator is non-negative by definition of j but less than the denominator,
so the product P (~e, a, b) is 0 as well. �

We are now ready to prove the main theorem of this section, the unimodality of the
An,k(a, b, q, B)/

∏t
i=1[di]!.

Theorem 4.4. Let B = B(h1, d1; . . . ; ht, dt) be a regular Ferrers board such that di−1 +
di ≥ hi for 1 ≤ i ≤ t. Let a, b ∈ N with a ≥ b ≥ 1, and set

La,b
k (B) = Area(B) + n(b− 1) + k(n + a− 1)−

t∑
i=1

diDi

as before. Then An,k(a, b, q, B)/
∏t

i=1[di]! is zsu(La,b
k (B)).

Proof. We apply Lemma 4.2, which says that

An,k(a, b, q, B)∏t
i=1[di]!

=
∑

e1+···+et=k, 0≤ei≤di

P (~e, a, b)
t∏

i=1

qei(Hi−Di+Ei+b−1),

and all of the terms on the right hand side above are in N[q] by Lemma 4.3. Using
the fact that

[
r
s

]
is zsu(s(r − s)) (for a proof of the unimodality see [8]) along with

Lemma 2.1, each term above is zsu(
∑t

i=1{(di − ei)(Hi − Di + Ei + b − 1) + ei(Di +
Di−1 −Hi −Ei + a− b) + 2ei(Hi −Di + Ei + b− 1)}). A simple calculation shows this

is the same zsu(La,b
k (B)). Thus An,k(a, b, q, B)/

∏t
i=1[di]! is zsu(La,b

k (B)) as well. �
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