NON-SYMMETRIC HALL-LITTLEWOOD POLYNOMIALS

FRANÇOIS DESCOUENS AND ALAIN LASCOUX

À Adriano Garsia, en toute amitié

Abstract

Using the action of the Yang-Baxter elements of the Hecke algebra on polynomials, we define two bases of polynomials in n variables. The Hall-Littlewood polynomials are a subfamily of one of them. For $q=0$, these bases specialize to the two families of classical Key polynomials (i.e., Demazure characters for type A). We give a scalar product for which the two bases are adjoint to each other.

1. Introduction

We define two linear bases of the ring of polynomials in x_{1}, \ldots, x_{n}, with coefficients in q. These polynomials, which we call q-Key polynomials, and denote by $U_{v}, \widehat{U}_{v}, v \in \mathbb{N}^{n}$, specialize at $q=0$ into key polynomials K_{v}, \widehat{K}_{v}. The polynomials U_{v} are symmetric polynomials for v such that $v_{1} \leq \cdots \leq v_{n}$. In that case, U_{v} is equal to the Hall-Littlewood polynomial P_{λ}, λ being the partition $\left[v_{n}, \ldots, v_{1}\right]$.

Our main tool is the Hecke algebra $\mathcal{H}_{n}(q)$ of the symmetric group, acting on polynomials by deformation of divided differences. This algebra contains two adjoint bases of Yang-Baxter elements (Theorem 2.1). The q-Key polynomials are the images of dominant monomials under these Yang-Baxter elements (Def. 3.1). These polynomials are clearly two linear bases of polynomials, since the transition matrix to monomials is uni-triangular. We show in the last section that $\left\{U_{v}\right\}$ and $\left\{\widehat{U}_{v}\right\}$ are two adjoint bases with respect to a certain scalar product reminiscent of Weyl's scalar product on symmetric functions. We have intensively used MuPAD (package MuPAD-Combinat [13]) and Maple (package ACE [12]).

When this article was written, the authors were not aware of the work of Bogdan Ion $[3,4]$, who shows how to obtain, from nonsymmetric Macdonald polynomials, Demazure characters and their adjoint basis for an affine Kac-Moody algebra. Hence our own work should be considered as the part of the theory of nonsymmetric Macdonald polynomials for type A which is accessible using only divided differences, and not requiring double affine Hecke algebras.

2. The Hecke algebra $\mathcal{H}_{n}(q)$

Let $\mathcal{H}_{n}(q)$ be the Hecke algebra of the symmetric group \mathfrak{S}_{n}, with coefficients the rational functions in a parameter q. It has generators T_{1}, \ldots, T_{n-1} satisfying the braid relations

$$
\left\{\begin{array}{l}
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \tag{1}\\
T_{i} T_{j}=T_{j} T_{i}(|j-i|>1),
\end{array}\right.
$$

and the Hecke relations

$$
\begin{equation*}
\left(T_{i}+1\right)\left(T_{i}-q\right)=0,1 \leq i \leq n-1 \tag{2}
\end{equation*}
$$

For a permutation σ in \mathfrak{S}_{n}, we denote by T_{σ} the element $T_{\sigma}=T_{i_{1}} \ldots T_{i_{p}}$ where $\left(i_{1}, \ldots, i_{p}\right)$ is any reduced decomposition of σ. The set $\left\{T_{\sigma}: \sigma \in \mathfrak{S}_{n}\right\}$ is a linear basis of $\mathcal{H}_{n}(q)$.
2.1. Yang-Baxter bases. Let s_{1}, \ldots, s_{n-1} denote the simple transpositions, $\ell(\sigma)$ denote the length of $\sigma \in \mathfrak{S}_{n}$, and let ω be the permutation of maximal length.

Given any set of indeterminates $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$, let

$$
\mathcal{H}_{n}(q)\left[u_{1}, \ldots, u_{n}\right]=\mathcal{H}_{n}(q) \otimes \mathbb{C}\left[u_{1}, \ldots, u_{n}\right]
$$

One defines recursively a Yang-Baxter basis $\left(Y_{\sigma}^{\mathbf{u}}\right)_{\sigma \in \mathfrak{S}_{n}}$, depending on \mathbf{u}, by

$$
\begin{equation*}
Y_{\sigma s_{i}}^{\mathbf{u}}=Y_{\sigma}^{\mathbf{u}}\left(T_{i}+\frac{1-q}{1-u_{\sigma_{i+1}} / u_{\sigma_{i}}}\right), \quad \text { when } \ell\left(\sigma s_{i}\right)>l(\sigma) \tag{3}
\end{equation*}
$$

starting with $Y_{i d}^{\mathbf{u}}=1$.
Let φ be the anti-automorphism of $\mathcal{H}_{n}(q)\left[u_{1}, \ldots, u_{n}\right]$ such that

$$
\left\{\begin{array}{l}
\varphi\left(T_{\sigma}\right)=T_{\sigma^{-1}} \\
\varphi\left(u_{i}\right)=u_{n-i+1}
\end{array}\right.
$$

We define a bilinear form $<,>$ on $\mathcal{H}_{n}(q)\left[u_{1}, \ldots, u_{n}\right]$ by

$$
\begin{equation*}
<h_{1}, h_{2}>:=\text { coefficient of } T_{\omega} \text { in } h_{1} \cdot \varphi\left(h_{2}\right) \tag{4}
\end{equation*}
$$

The main result of [8, Th. 5.1] is the following duality property of Yang-Baxter bases.
Theorem 2.1. For any set of parameters $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$, the basis adjoint to $\left(Y_{\sigma}^{\mathbf{u}}\right)_{\sigma \in \mathfrak{S}_{n}}$ with respect to $<,>$ is the basis $\left(\widehat{Y}_{\sigma}^{\mathbf{u}}\right)_{\sigma \in \mathfrak{S}_{n}}=\left(Y_{\sigma}^{\varphi(\mathbf{u})}\right)_{\sigma \in \mathfrak{S}_{n}}$. More precisely, one has

$$
<Y_{\sigma}^{\mathbf{u}}, \widehat{Y}_{\nu}^{\mathbf{u}}>=\delta_{\lambda, \nu \omega} \quad \text { for all } \sigma, \nu \in \mathfrak{S}_{n}
$$

Let us fix from now on the parameters u to be $\mathbf{u}=\left(1, q, q^{2}, \ldots, q^{n-1}\right)$. Write \mathcal{H}_{n} for $\mathcal{H}_{n}(q)\left[1, q, \ldots, q^{n-1}\right]$.

In that case, the Yang-Baxter basis $\left(Y_{\sigma}\right)_{\sigma \in \mathfrak{S}_{n}}$ and its adjoint basis $\left(\widehat{Y}_{\sigma}\right)_{\sigma \in \mathfrak{S}_{n}}$ are defined recursively, starting with $Y_{i d}=1=\widehat{Y}_{i d}$, by

$$
\begin{equation*}
\left.Y_{\sigma s_{i}}=Y_{\sigma}\left(T_{i}+1 /[k]_{q}\right) \quad \text { and } \widehat{Y}_{\sigma s_{i}}=\widehat{Y}_{\sigma}\left(T_{i}+q^{k-1} /[k]_{q}\right)\right), \ell\left(\sigma s_{i}\right)>\ell(\sigma), \tag{5}
\end{equation*}
$$

with $k=\sigma_{i+1}-\sigma_{i}$ and $[k]_{q}=\left(1-q^{k}\right) /(1-q)$.
Notice that the maximal Yang-Baxter elements have another expression [2]:

$$
Y_{\omega}=\sum_{\sigma \in \mathfrak{S}_{n}} T_{\sigma} \text { and } \widehat{Y}_{\omega}=\sum_{\sigma \in \mathfrak{S}_{n}}(-q)^{\ell(\sigma \omega)} T_{\sigma}
$$

Example 2.2. For \mathcal{H}_{3}, the transition matrix between $\left\{Y_{\sigma}\right\}_{\sigma \in \mathfrak{G}_{3}}$ and $\left\{T_{\sigma}\right\}_{\sigma \in \mathfrak{G}_{3}}$ is

123	1	1	1	$\frac{1}{q+1}$	$\frac{1}{q+1}$	1
132	\cdot	1	\cdot	1	$\frac{1}{q+1}$	1
213	\cdot	\cdot	1	$\frac{1}{q+1}$	1	1
231	\cdot	\cdot	\cdot	1	\cdot	1
312	\cdot	\cdot	\cdot	\cdot	1	1
321	\cdot	\cdot	\cdot	\cdot	\cdot	1

writing '.' for 0. Each column represents the expansion of some element Y_{σ}.
2.2. Action of \mathcal{H}_{n} on polynomials. Let $\mathfrak{P o l}$ be the ring of polynomials in the variables x_{1}, \ldots, x_{n} with coefficients the rational functions in q. We write monomials exponentially: $x^{v}=x_{1}^{v_{1}} \ldots x_{n}^{v_{n}}, v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}$. A monomial x^{v} is dominant if $v_{1} \geq \ldots \geq v_{n}$.

We extend the natural order on partitions to elements of \mathbb{Z}^{n} by

$$
u \leq v \quad \text { if and only if } \quad \sum_{i=k}^{n}\left(v_{i}-u_{i}\right) \geq 0 \quad \text { for all } k>0
$$

For any polynomial P in $\mathfrak{P o l}$, we call leading term of P all the monomials (multiplied by their coefficients) which are maximal with respect to this partial order. This order is compatible with the right-to-left lexicographic order, that we shall also use. We also use the classiccal notation $\mathfrak{n}(v)=0 v_{1}+1 v_{2}+2 v_{3}+\cdots+(n-1) v_{n}$.

Let i be an integer such that $1 \leq i \leq n-1$. As an operator on $\mathfrak{P o l}$, the simple transposition s_{i} acts by switching x_{i} and x_{i+1}, and we denote this action by $f \rightarrow f^{s_{i}}$. The i-th divided difference ∂_{i} and the i-th isobaric divided difference π_{i}, written on the right of the operand, are the following operators:

$$
\partial_{i}: f \longmapsto f \partial_{i}:=\frac{f-f^{s_{i}}}{x_{i}-x_{i+1}} \quad, \quad \pi_{i}: f \longmapsto f \pi_{i}:=\frac{x_{i} f-x_{i+1} f^{s_{i}}}{x_{i}-x_{i+1}}
$$

The Hecke algebra \mathcal{H}_{n} has a faithful representation as an algebra of operators on $\mathfrak{P o l}$ given by the following equivalent formulas [2, 10]:

$$
\left\{\begin{array}{lll}
T_{i}=\square_{i}-1 & =\left(x_{i}-q x_{i+1}\right) \partial_{i}-1 & =\left(1-q x_{i+1} / x_{i}\right) \pi_{i}-1 \\
Y_{s_{i}}=\square_{i} & =\left(x_{i}-q x_{i+1}\right) \partial_{i} & =\left(1-q x_{i+1} / x_{i}\right) \pi_{i} \\
\hat{Y}_{s_{i}}=\nabla_{i} & =\square_{i}-(1+q) & =\partial_{i}\left(x_{i+1}-q x_{i}\right)
\end{array}\right.
$$

The Hecke relations imply that

$$
\square_{i}^{2}=(1+q) \square_{i}, \quad \nabla_{i}^{2}=-(1+q) \nabla_{i} \text { and } \square_{i} \nabla_{i}=\nabla_{i} \square_{i}=0
$$

One easily checks that the operators $R_{i}(a, b)$ and $S_{i}(a, b)$ defined by

$$
R_{i}(a, b)=\square_{i}-q \frac{[b-a-1]_{q}}{[b-a]_{q}} \quad \text { and } \quad S_{i}(a, b)=\nabla_{i}+q \frac{[b-a-1]_{q}}{[b-a]_{q}}
$$

satisfy the Yang-Baxter equation

$$
\begin{equation*}
R_{i}(a, b) R_{i+1}(a, c) R_{i}(b, c)=R_{i+1}(c, b) R_{i}(a, c) R_{i+1}(a, b) \tag{6}
\end{equation*}
$$

We have implicitly used these equations in the recursive definition of Yang-Baxter elements (5).

This realization comes from geometry [5], where the maximal Yang-Baxter elements are interpreted as Euler-Poincaré characteristic for the flag variety of $G L_{n}(\mathbb{C})$. This gives in particular another expression for the maximal Yang-Baxter elements:

$$
\begin{equation*}
Y_{\omega}=\prod_{1 \leq i<j \leq n}\left(x_{i}-q x_{j}\right) \partial_{\omega} \quad, \quad \widehat{Y}_{\omega}=\partial_{\omega} \prod_{1 \leq i<j \leq n}\left(x_{j}-q x_{i}\right) . \tag{7}
\end{equation*}
$$

Example 2.3. Let $\sigma=(3412)=s_{2} s_{3} s_{1} s_{2}$. The elements Y_{3412} and \widehat{Y}_{3412} can be written as

$$
\begin{aligned}
& Y_{3412}=\square_{2}\left(\square_{3}-\frac{q}{1+q}\right)\left(\square_{1}-\frac{q}{1+q}\right)\left(\square_{2}-\frac{q+q^{2}}{1+q+q^{2}}\right), \\
& \widehat{Y}_{3412}=\nabla_{2}\left(\nabla_{3}+\frac{q}{1+q}\right)\left(\nabla_{1}+\frac{q}{1+q}\right)\left(\nabla_{2}+\frac{q+q^{2}}{1+q+q^{2}}\right) .
\end{aligned}
$$

We shall now identify the images of dominant monomials under the maximal Yang-Baxter operators with Hall-Littlewood polynomials. Recall that there are two proportional families $\left\{P_{\lambda}\right\}$ and $\left\{Q_{\lambda}\right\}$ of Hall-Littlewood polynomials. Given a partition $\lambda=\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right]=$ $\left(0^{m_{0}}, 1^{m_{1}}, \ldots, n^{m_{n}}\right)$, with $m_{0}=n-r=n-m_{1}-\cdots-m_{n}$, then

$$
Q_{\lambda}=\prod_{1 \leq i \leq n} \prod_{j=1}^{m_{i}}\left(1-q^{j}\right) P_{\lambda}
$$

Let moreover $d_{\lambda}(q)=\prod_{0 \leq i \leq n} \prod_{j=1}^{m_{i}}[j]_{q}$. The definition of Hall-Littlewood polynomials with raising operators [9], [11, III.2] can be rewritten, thanks to (7), as follows.
Proposition 2.4. Let λ be a partition of n. Then one has

$$
\begin{equation*}
x^{\lambda} Y_{\omega} d_{\lambda}(q)^{-1}=P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q\right) . \tag{8}
\end{equation*}
$$

The family of the Hall-Littlewood functions $\left\{Q_{\lambda}\right\}$ indexed by partitions can be extended to a family $\left\{Q_{v}: v \in \mathbb{Z}^{n}\right\}$, using the following relations due to Littlewood ([9], [11, III.2.Ex. 2]):

$$
\begin{gather*}
Q_{\left(\ldots, u_{i}, u_{i+1}, \ldots\right)}=-Q_{\left(\ldots, u_{i+1}-1, u_{i}+1, \ldots\right)}+q Q_{\left(\ldots, u_{i+1}, u_{i}, \ldots\right)}+q Q_{\left(\ldots, u_{i}+1, u_{i+1}-1, \ldots\right)} \text { if } u_{i}<u_{i+1}, \tag{9}\\
Q_{\left(u_{1}, \ldots, u_{n}\right)}=0 \quad \text { if } \quad u_{n}<0 . \tag{10}
\end{gather*}
$$

By iteration of the first relation, one can write any Q_{u} in terms of Hall-Littlewood functions indexed by decreasing vectors v such that $|v|=|u|$. Consequently, for any u with $|u|=0$, Q_{u} must be proportional to $Q_{0 \ldots 0}=1$, i.e., Q_{u} is a constant that one can obtain as the specialization $Q_{u}(0)$ (i.e., the specialization of Q_{u} at $x_{1}=\cdots=x_{n}=0$).

The final expansion of Q_{u}, after iterating (9) many times, is not easy to predict. In particular, one needs to know whether $Q_{u} \neq 0$. For that purpose, we shall isolate a distinguished term in the expansion of Q_{u}. Given a sum $\sum_{\lambda \in \mathfrak{F a r t}} c_{\lambda}(t) Q_{\lambda}$, call top term the image of the leading term $\sum c_{\mu}(t) Q_{\mu}$ after restricting each coefficient $c_{\mu}(t)$ to its term in highest degree in t.

Given $u \in \mathbb{Z}^{n}$, define recursively $\mathfrak{p}(u) \in \mathfrak{P a r t} \cup\{-\infty\}$ by

- if $u \nsupseteq[0, \ldots, 0]$ then $\mathfrak{p}(u)=-\infty$;
- if $u_{2} \geq u_{3} \geq \cdots \geq u_{n}>0$ then $\mathfrak{p}(u)$ is the maximal partition of length $\leq n$, of weight $|u|$ (eventual zero terminal parts are suppressed);
- $\mathfrak{p}(u)=\mathfrak{p}\left(u \mathfrak{p}\left(\left[u_{2}, \ldots, u_{n}\right]\right)\right)$.

Lemma 2.5. Let $u \in \mathbb{Z}^{n}$. Then

- if $u \nsupseteq[0, \ldots, 0]$ then $Q_{u}=0$,
- if $u \geq[0, \ldots, 0]$, let $v=\mathfrak{p}(u)$. Then $Q_{u} \neq 0$ and its leading term is $q^{\mathfrak{n}(u)-\mathfrak{n}(v)} Q_{v}$.

Proof. Given any decomposition $u=u^{\prime} \cdot u^{\prime \prime}$, one can apply (9) to $u^{\prime \prime}$ and write Q_{u} as a linear combination of terms $Q_{u^{\prime} v}$ with v decreasing, with $|v|=\left|u^{\prime \prime}\right|$. Therefore, if $\left|u^{\prime \prime}\right|=0$, the last components of such v are negative, all $Q_{u^{\prime} v}$ are 0 , and $Q_{u}=0$.

If $u \geq[0, \ldots, 0]$ and u is not a partition, write $u=[\ldots, a, b, \ldots]$, with a, b the rightmost increase in u. We apply relation (9), assuming the validity of the lemma for the three terms on the right-hand side:

$$
Q_{\ldots, a, b, \ldots}=-Q_{\ldots, b-1, a+1, \ldots}+q Q_{\ldots, b, a, \ldots}+q Q_{\ldots, a+1, b-1, \ldots}
$$

Notice that the first two terms have not necessarily an index $\geq[0, \ldots, 0]$, but that $[\ldots, a+$ $1, b-1, \ldots] \geq[0, \ldots, 0]$.

In any case, it is clear that $\mathfrak{p}([\ldots, b-1, a+1, \ldots])=p_{1} \leq v, \mathfrak{p}([\ldots, b, a, \ldots])=p_{2} \leq v$, and $\mathfrak{p}([\ldots, a+1, b-1, \ldots])=v$.

Restricted to top terms, the expansion of the right-hand side in the basis Q_{λ} becomes

$$
-\left(\left(q^{\mathfrak{n}(u)+a+1-b-\mathfrak{n}(v)}+\cdots\right) Q_{v}\right)+q\left(\left(q^{\mathfrak{n}(u)+a-b-\mathfrak{n}(v)}+\cdots\right) Q_{v}\right)+q\left(\left(q^{\mathfrak{n}(u)-1-\mathfrak{n}(v)}+\cdots\right) Q_{v}\right)
$$

where one or two of the first two terms may be replaced by 0 , depending on the value of p_{1}, or p_{2}. Finally, the top term of the right-hand side is $q^{\mathfrak{n}(u)-\mathfrak{n}(v)} Q_{v}$, as desired.

Example 2.6. For $v=[-2,3,2]$, we have

$$
Q_{-2,3,2}=\left(q^{3}-q^{2}\right) Q_{3}+\left(q^{5}+q^{4}-q^{3}-2 q^{2}+1\right) Q_{21}+\left(q^{4}-q^{3}-q^{2}+q\right) Q_{111}
$$

and the top term is $q^{4} Q_{111}$, since $4=(0(-2)+1(3)+2(2))-(0(1)+1(1)+2(1))$ and $[1,1,1]>[2,1],[1,1,1]>[3]$. Notice that the coefficient of Q_{21} is of higher degree.

3. q-Key Polynomials

In this section, we show that the images of dominant monomials under the Yang-Baxter elements Y_{σ} (respectively \widehat{Y}_{σ}), $\sigma \in \mathfrak{S}_{n}$ constitute two bases of $\mathfrak{P o l}$, which specialize to the two families of Demazure characters.

We have already identified in the preceding section the images of dominant monomials under Y_{ω} as Hall-Littlewood polynomial, using the relation between Y_{ω} and ∂_{ω}. The other polynomials are new.
3.1. Two bases. The dimension of the linear span of the image of a monomial x^{v} under all permutations depends upon the stabilizer of v. We meet the same phenomenon when taking the images of a monomial under Yang-Baxter elements.

Let $\lambda=\left[\lambda_{1}, \ldots, \lambda_{n}\right], \lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0$, be a partition (adding eventual parts equal to 0). Denote its orbit under permutations of components by $\mathcal{O}(\lambda)$. Given any v in $\mathcal{O}(\lambda)$, let $\zeta(v)$ be the permutation of maximal length such that $\lambda \zeta(v)=v$, and let $\eta(v)$ be the permutation of minimal length such that $\lambda \eta(v)=v$. These two permutations are representatives of the same coset of \mathfrak{S}_{n} modulo the stabilizer of λ.

Figure 1. q-Key polynomials generated from x^{210}.
Definition 3.1. For all v in \mathbb{N}^{n}, the q-Key polynomials U_{v} and \widehat{U}_{v} are the following polynomials:

$$
U_{v}(x ; q)=\left(\frac{1}{d_{\lambda}(q)} x^{\lambda}\right) Y_{\zeta(v)} \quad, \quad \widehat{U}_{v}(x ; q)=x^{\lambda} \widehat{Y}_{\eta(v)}
$$

where λ is the dominant reordering of v.
In particular, if v is (weakly) increasing, then $\zeta(v)=\omega$ and U_{v} is a Hall-Littlewood polynomial.
Lemma 3.2. The leading term of U_{v} and \widehat{U}_{v} is x^{v}. Consequently, the transition matrix between the U_{v} (respectively the \widehat{U}_{v}) and the monomials is upper unitriangular with respect to the right-to-left lexicographic order.
Proof. Let k be an integer and u be a weight such that $u_{k}>u_{k+1}$. Suppose by induction that x^{u} is the leading term of U_{u}. Recall the the explicit action of \square_{k} is (concentrating only on the two variables x_{k}, x_{k+1})

$$
\begin{aligned}
x^{\beta \alpha} \square_{k} & =x^{\beta \alpha}+(1-t)\left(x^{\beta-1, \alpha+1}+\cdots+x^{\alpha+1, \beta-1}\right)+x^{\alpha \beta}, \beta>\alpha \\
x^{\beta \beta} \square_{k} & =(1+t) x^{\beta \beta} \\
x^{\alpha \beta} \square_{k} & =t x^{\beta \alpha}+(t-1)\left(x^{\beta-1, \alpha+1}+\cdots+x^{\alpha+1, \beta-1}\right)+t x^{\alpha \beta}, \alpha<\beta
\end{aligned}
$$

From these formulas, it is clear that for any constant c, the leading term of $x^{u}\left(\square_{k}+c\right)$ is $\left(x^{u}\right)^{s_{k}}$, and, for any v such that $v<u$, all the monomials in $x^{v}\left(\square_{k}+c\right)$ are strictly less (with respect to the partial order) than $\left(x^{u}\right)^{s_{k}}$.

Example 3.3. For $n=3$, Figures 1 and 2 show the case of a regular dominant weight x^{210}, and Figures 3 and 4 correspond to a case, x^{200}, where the stabilizer is not trivial. In this

Figure 2. Dual q-Key polynomials generated from x^{210}.

Figure 3. q-Key polynomials generated from $x^{200} /(1+q)$.

Figure 4. Dual q-Key polynomials generated from x^{200}.
last case, the polynomials belonging to the family are framed, the extra polynomials denoted A, B do not belong to the basis.
3.2. Specialization at $q=0$. The specialization at $q=0$ of the Hecke algebra is called the 0 -Hecke algebra. The elementary Yang-Baxter elements specialize in that case to

$$
\begin{align*}
Y_{s_{i}}=T_{i}+1=\square_{i} & \rightarrow x_{i} \partial_{i}=\pi_{i} \tag{11}\\
\hat{Y}_{s_{i}}=T_{i}=\nabla_{i} & \rightarrow \partial_{i} x_{i+1}=\widehat{\pi}_{i} . \tag{12}
\end{align*}
$$

Definition 3.4 (Key polynomials). Let $v \in \mathbb{N}^{n}$. The Key polynomials K_{v} and \widehat{K}_{v} are defined recursively, starting with $K_{v}=x^{v}=\widehat{K}_{v}$ if x^{v} dominant, by

$$
K_{v s_{i}}=K_{v} \pi_{i} \quad, \quad \widehat{K}_{v s_{i}}=\widehat{K}_{v} \widehat{\pi}_{i}, \quad \text { for } i \text { such that } v_{i}>v_{i+1}
$$

In particular, the subfamily $\left(K_{v}\right)$ for v increasing is the family of Schur functions in x_{1}, \ldots, x_{n}. Demazure [1] defined Key polynomials (using another terminology) for all the classical groups, and not only for the type A_{n-1} which is our case.

Lemma 3.2 specializes to the following lemma.
Lemma 3.5. The transition matrix between the U_{v} and the K_{v} (respectively from \widehat{U}_{v} to \widehat{K}_{v}) is upper unitriangular with respect to the lexicographic order.

Example 3.6. For $n=3$, the transition matrix between $\left\{U_{v}\right\}$ and $\left\{K_{v}\right\}$ in weight 3 is (reading a column as the expansion of some U_{v})

300	1	\cdot	\cdot	\cdot	\cdot	\cdot	$\frac{-q}{(q+1)}$	\cdot	\cdot
210	\cdot	1	\cdot						
201	\cdot	\cdot	1	\cdot	\cdot	\cdot	\cdot	\cdot	$\cdot-q$
120	\cdot	\cdot	\cdot	1	\cdot	$\frac{-q}{(q+1)}$	-	\cdot	\cdot
111	\cdot	\cdot	\cdot	\cdot	1	$-q$	\cdot	$-q$	\cdot
102	\cdot	-	$-q(q+1)$						
030	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot
021	\cdot								
012	\cdot								
003	\cdot								

and the transition matrix between $\left\{\widehat{U}_{v}\right\}$ and $\left\{\widehat{K}_{v}\right\}$ is

300	1	\cdot	\cdot	\cdot	\cdot	\cdot	$-q$	\cdot	\cdot	$\frac{-q^{2}}{(q+1)}$
210	\cdot	1	$-q$	$-q$	\cdot	$\frac{q^{3}}{(q+1)}$	$-q$	$\frac{q^{3}}{(q+1)}$	$-q^{3}$	$\frac{q^{3}}{(q+1)}$
201	\cdot	\cdot	1	\cdot	\cdot	$-q$	\cdot	$\frac{-q^{2}}{(q+1)}$	q^{2}	$-q$
120	\cdot	\cdot	\cdot	1	\cdot	$\frac{-q^{2}}{(q+1)}$	$-q$	$-q$	q^{2}	$\frac{q^{3}}{(q+1)}$
111	\cdot	\cdot	\cdot	\cdot	1	$-q$	\cdot	$-q$	$q(q+1)$	q^{2}
102	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot	$-q$	$-q$
030	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	1	\cdot	\cdot	$\frac{-q^{2}}{(q+1)}$
021	\cdot	1	$-q$	$-q$						
012	\cdot	1	$-q$							
003	\cdot	1								

4. Orthogonality properties for the q-Key polynomials

We show in this section that the q-Key polynomials U_{v} and \widehat{U}_{v} are two adjoint bases with respect to a certain scalar product.
4.1. A scalar product on $\mathfrak{P o l}$. For any Laurent series $f=\sum_{i=k}^{\infty} f_{i} x^{i}$, we denote by $C T_{x}(f)$ the coefficient f_{0}.

Let

$$
\Theta:=\prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{1-q x_{i} / x_{j}} .
$$

Therefore, for any Laurent polynomial $f\left(x_{1}, \ldots, x_{n}\right)$, the expression

$$
C T(f \Theta):=C T_{x_{n}}\left(C T_{x_{n-1}}\left(\ldots\left(C T_{x_{1}}(f \Theta)\right) \ldots\right)\right)
$$

is well defined. Let us use it to define a bilinear form $(,)_{q}$ on $\mathfrak{P o l}$ by

$$
\begin{equation*}
(f, g)_{q}=C T\left(f g^{\boldsymbol{\omega}} \prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{1-q x_{i} / x_{j}}\right), \tag{13}
\end{equation*}
$$

where $\boldsymbol{\&}$ is the automorphism defined by $x_{i} \longmapsto 1 / x_{n+1-i}$ for $1 \leq i \leq n$.

Since Θ is invariant under \& , the form $(,)_{q}$ is symmetric. Under the specialization $q=0$, the previous scalar product becomes

$$
\begin{equation*}
(f, g):=\left.(f, g)\right|_{q=0}=C T\left(f g^{\boldsymbol{*}} \prod_{1 \leq i<j \leq n}\left(1-x_{i} / x_{j}\right)\right) \tag{14}
\end{equation*}
$$

We can also write $(f, g)_{q}=(f, g \Omega)$ with $\Omega=\prod_{1 \leq i<j \leq n}\left(1-q x_{i} / x_{j}\right)^{-1}$.
Notice that, interpreting Schur functions as characters of unitary groups, Weyl defined the scalar product of two symmetric functions f, g in n variables as the constant term of

$$
\frac{1}{n!} f g^{\boldsymbol{*}} \prod_{i, j: i \neq j}\left(1-x_{i} / x_{j}\right) .
$$

Essentially, Weyl takes the square of the Vandermonde, while we are taking the quotient of the Vandermonde by the q-Vandermonde.

We now examine the compatibility of \square_{i} and ∇_{i} with the scalar product.
Lemma 4.1. For i such that $1 \leq i \leq n-1, \square_{i}\left(\right.$ respectively $\left.\nabla_{i}\right)$ is adjoint to \square_{n-i} (respectively ∇_{n-i}) with respect to $(,)_{q}$.
Proof. Since π_{i} (respectively $\widehat{\pi}_{i}$) is adjoint to π_{n-i} (respectively $\widehat{\pi}_{n-i}$) with respect to (,) (see [7] for more details), we have

$$
\begin{aligned}
\left(f \square_{i}, g\right)_{q} & =\left(f, g \Omega \pi_{n-i}\left(1-q x_{n-i+1} / x_{n-i}\right)\right) \\
& =\left(f, g \frac{\left(1-q x_{n-i+1} / x_{n-i}\right)}{\left(1-q x_{n-i+1} / x_{n-i}\right)} \Omega \pi_{n-i}\left(1-q x_{n-i+1} / x_{n-i}\right)\right) .
\end{aligned}
$$

Since the polynomial $\Omega /\left(1-q x_{n-i+1} / x_{n-i}\right)$ is symmetric in the indeterminates x_{n-i} and x_{n-i+1}, it commutes with the action of π_{n-i}. Therefore

$$
\left(f \square_{i}, g\right)_{q}=\left(f, g\left(1-q x_{n-i+1} / x_{n-i}\right) \pi_{n-i} \Omega\right)=\left(f, g \square_{n-i}\right)_{q} .
$$

This proves that \square_{i} is adjoint to \square_{n-i}, and, equivalently, that ∇_{i} is adjoint to ∇_{n-i}.
We shall need to characterize whether the scalar product of two monomials vanishes or not. Notice that, by definition,

$$
\left(x^{u}, x^{v}\right)=\left(x^{u-v \omega}, 1\right)
$$

so that one of the two monomials can be taken equal to 1 .
Lemma 4.2. For any $u \in \mathbb{Z}^{n}$, we have $\left(x^{u}, 1\right)_{q} \neq 0$ if and only if $|u|=0$ and $u \geq[0, \ldots 0]$. In that case, $\left(x^{u}, 1\right)_{q}=Q_{u}(0)$.
Proof. Let us first show that the scalar products $\left(x^{u}, 1\right)_{q}$ satisfy the same relations (9) as the Hall-Littlewood functions Q_{u}.

Let k be a positive integer less than n. Write $x_{k}=y, x_{k+1}=z$. Any monomial x^{v} can be written as $x^{t} y^{a} z^{b}$, with x^{t} of degree 0 in x_{k}, x_{k+1}. The product

$$
x^{t}\left(y^{a} z^{b}+y^{b} z^{a}\right)(z-q y) \prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{1-q x_{i} / x_{j}}
$$

is equal to

$$
\left(y^{a} z^{b}+y^{b} z^{a}\right)(z-q y) \frac{1-y / z}{1-q y / z} F_{1}=\left(y^{a} z^{b}+y^{b} z^{a}\right)(z-y) F_{1}
$$

with F_{1} symmetric in y, z. The constant term $C T_{x_{k-1}} \ldots C T_{x_{1}}\left(x^{t}\left(y^{a} z^{b}+y^{b} z^{a}\right) F_{1}\right)=F_{2}$ is still symmetric in x_{k}, x_{k+1}. Therefore

$$
C T_{y}\left(C T_{z}\left((z-y) F_{2}\right)\right)
$$

is null, and finally

$$
C T\left(x^{t}\left(y^{a} z^{b}+y^{b} z^{a}\right)(z-q y) \prod_{1 \leq i<j \leq n} \frac{1-x_{i} / x_{j}}{1-q x_{i} / x_{j}}\right)=0 .
$$

This relation can be rewritten as

$$
\left(y^{a} z^{b+1} x^{t}, 1\right)_{q}+\left(y^{b+1} z^{a+1} x^{t}, 1\right)_{q}-q\left(y^{b+1} z^{a} x^{t}, 1\right)_{q}-q\left(y^{a+1} z^{b} x^{t}, 1\right)_{q}=0,
$$

which is indeed relation (9).
On the other hand, if $u_{n}<0$, then there is no term of degree 0 in x_{n} in

$$
x^{u} \prod_{1 \leq i<j \leq n}\left(1-x_{i} / x_{j}\right)\left(1-q x_{i} / x_{j}\right)^{-1},
$$

and $\left(x^{u}, 1\right)=0$, so that rule (10) is also satisfied.
As a consequence, the function $u \in \mathbb{Z}^{n} \rightarrow\left(x^{u}, 1\right)$ is determined by the values $\left(x^{\lambda}, 1\right), \lambda$ a partition, as the function $u \in \mathbb{Z}^{n} \rightarrow Q_{u}$ is determined by its restriction to partitions. However, for degree reasons, $\left(x^{\lambda}, 1\right)=0$ if $\lambda \neq 0$. Since $\left(x^{0}, 1\right)=1$, one has finally that $\left(x^{u}, 1\right)=Q_{u}(0)$.
Example 4.3. For $u=[1,0,3]$ and $v=[0,1,3]$,

$$
\left(x^{103}, x^{013}\right)_{q}=\left(x^{-2,-1,3}, 1\right)_{q}=Q_{-2,-1,3}(0)=q^{2}(1-q)\left(1-q^{2}\right) .
$$

4.2. Duality between $\left(U_{v}\right)_{v \in \mathbb{N}^{n}}$ and $\left(\widehat{U}_{v}\right)_{v \in \mathbb{N}^{n}}$. Using that \square_{i} is adjoint to \square_{n-i}, we are going to prove in this section that U_{v} and \widehat{U}_{v} are two adjoint bases of $\mathfrak{P o l}$ with respect to the scalar product $(,)_{q}$.

We first need some technical lemmas, to allow an induction on the q-Key polynomials, starting with dominant weights.

Lemma 4.4. Let i be an integer such that $1 \leq i \leq n-1$, let f_{1}, f_{2}, g_{1} be three polynomials and b be a constant such that

$$
f_{2}=f_{1}\left(\square_{i}+b\right),\left(f_{1}, g_{1}\right)_{q}=0 \quad \text { and }\left(f_{2}, g_{1}\right)_{q}=1
$$

Then the polynomial $g_{2}=g_{1}\left(\nabla_{n-i}-b\right)$ is such that

$$
\left(f_{1}, g_{2}\right)_{q}=1,\left(f_{2}, g_{2}\right)_{q}=0 .
$$

Proof. Using that ∇_{n-i} is adjoint to \square_{i} and that $\square_{i} \nabla_{i}=0$, one has

$$
\begin{aligned}
&\left(f_{2}, g_{2}\right)_{q}=\left(f_{1}\left(\square_{i}+b\right), g_{1}\left(\nabla_{n-i}-b\right)\right)_{q}=\left(f_{1}\left(\square_{i}+b\right)\left(\nabla_{i}-b\right), g_{1}\right)_{q} \\
&=\left(f_{1}\left(-b(1+q)-b^{2}\right), g_{1}\right)_{q}=0 .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\left(f_{1}, g_{2}\right)_{q} & =\left(f_{1}, g_{1}\left(\nabla_{n-i}-b\right)\right)_{q} \\
& =\left(f_{1}, g_{1}\left(\square_{n-i}-1-q-b\right)\right)_{q} \\
& =\left(f_{1}\left(\square_{i}+b-1-q-2 b\right), g_{1}\right)_{q}=\left(f_{2}, g_{1}\right)_{q}=1 .
\end{aligned}
$$

Corollary 4.5. Let i be an integer such that $1 \leq i \leq n-1$, let V be a vector space such that $V=V^{\prime} \oplus<f_{1}, f_{2}>$ with $f_{2}=f_{1}\left(\square_{i}+b\right)$ and V^{\prime} stable under \square_{i}, and let g_{1} be an element with

$$
\left(f_{1}, g_{1}\right)_{q}=0 \quad \text { and }\left(f_{2}, g_{1}\right)_{q}=1 \quad \text { and } \quad\left(v, g_{1}\right)_{q}=0, \quad \text { for all } v \in V^{\prime} .
$$

Then the element $g_{2}=g_{1}\left(\nabla_{n-i}-b\right)$ satisfies

$$
\left(f_{2}, g_{2}\right)_{q}=0 \quad \text { and }\left(f_{1}, g_{2}\right)_{q}=1 \quad \text { and }\left(v, g_{2}\right)_{q}=0, \quad \text { for all } v \in V^{\prime}
$$

Lemma 4.6. Let u and λ be two dominant weights, and let v and μ be two permutations of u and λ, respectively. If $\left(x^{v}, x^{\lambda}\right) \neq 0$ and $\left(x^{u}, x^{\mu}\right) \neq 0$ then

$$
u=\lambda \quad, \quad v=\lambda \omega \quad \text { and } \quad \mu=u \omega .
$$

Proof. Using Lemma 4.2, the conditions $\left(x^{v}, x^{\lambda}\right)_{q} \neq 0$ and $\left(x^{u}, x^{\mu}\right)_{q} \neq 0$ imply two systems of inequalities:

$$
\left\{\begin{array} { c c c }
{ v _ { n } } & { \geq } & { \lambda _ { 1 } , } \\
{ v _ { n } + v _ { n - 1 } } & { \geq } & { \lambda _ { 1 } + \lambda _ { 2 } , } \\
{ \vdots } & { \vdots } & { \vdots } \\
{ v _ { n } + \ldots + v _ { 1 } } & { \geq } & { \lambda _ { 1 } + \ldots + \lambda _ { n } . }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ccc}
\mu_{n} & \geq & u_{1} \\
\mu_{n}+\mu_{n-1} & \geq & u_{1}+u_{2} \\
\vdots & \vdots & \vdots \\
\mu_{n}+\ldots+\mu_{1} & \geq & u_{1}+\ldots+u_{n}
\end{array}\right.\right.
$$

The first inequalities of the systems give $v_{n} \geq \lambda_{1} \geq \mu_{n} \geq u_{1} \geq v_{n}$. Consequently $u_{1}=\lambda_{1}=$ $v_{n}=u_{n}$. By induction, using the other inequalities, one gets the lemma.

Corollary 4.7. Let v be a weight and λ be a dominant weight. Then,

$$
\left(U_{v}, x^{\lambda}\right)_{q}=\delta_{v, \lambda \omega} .
$$

Proof. Let u be the decreasing reordering of v, and let σ be the permutation such that $U_{v}=x^{u} Y_{\sigma}$. By Lemma 4.6 and the fact that the leading term of U_{v} is x^{v}, the condition $\left(x^{u} Y_{\sigma}, x^{\lambda}\right)_{q} \neq 0$ implies $\left(x^{v}, x^{\lambda}\right)_{q} \neq 0$. By writing \triangle_{σ} for the adjoint of Y_{σ} with respect to $(,)_{q}$, we have $\left(x^{u} Y_{\sigma}, x^{\lambda}\right)_{q}=\left(x^{u}, x^{\lambda} \triangle_{\sigma}\right)_{q} \neq 0$. As the leading term of $x^{\lambda} \triangle_{\sigma}$ is $x^{\lambda \sigma^{\prime}}$, where $\lambda \sigma^{\prime}$ is a permutation of λ, we obtain that $\left(x^{u}, x^{\lambda \sigma^{\prime}}\right)_{q} \neq 0$. Using Lemma 4.6 we conclude that $v=\lambda \omega$.

Our main result is the following duality property between U_{v} and \widehat{U}_{v}.
Theorem 4.8. The two sets of polynomials $\left(U_{v}\right)_{v \in \mathbb{N}^{n}}$ and $\left(\widehat{U}_{v}\right)_{v \in \mathbb{N}^{n}}$ are two adjoint bases of $\mathfrak{P o l}$ with respect to the scalar product $(,)_{q}$. More precisely, they satisfy

$$
\left(U_{v}, \widehat{U}_{u \omega}\right)_{q}=\delta_{v, u}
$$

Proof. Let λ be a dominant weight, and let V be the vector space spanned by the U_{v} for v in $\mathcal{O}(\lambda)$. The idea of the proof is to build by iteration the elements $\left(\widehat{U}_{v}\right)_{v \in \mathcal{O}(\lambda)}$, starting with $x^{\lambda}=\widehat{U}_{\lambda}$. By definition of the q-Key polynomials, there exists a constant b such that $U_{\lambda \omega}=U_{\lambda \omega s_{1}}\left(\square_{1}+b\right)$. One can write the decomposition $V=V^{\prime} \oplus<U_{\lambda \omega}, U_{\lambda \omega s_{1}}>$, with V^{\prime} invariant under the action of \square_{1}. Using the previous lemma, we have that $\left(U_{\lambda \omega}, x^{\lambda}\right)_{q}=$ $\left(U_{\lambda \omega}, \widehat{U}_{\lambda}\right)_{q}=1$ and $\left(U_{\lambda \omega \sigma_{1}}, x^{\lambda}\right)_{q}=\left(U_{\lambda \omega \sigma_{1}}, \widehat{U}_{\lambda}\right)_{q}=0$. Consequently, by Lemma 4.5, the function $x^{\lambda}\left(\nabla_{n-1}-b\right)=\widehat{U}_{\lambda s_{1}}$ satisfies the duality conditions

$$
\left(U_{\lambda \omega}, \widehat{U}_{\lambda s_{1}}\right)_{q}=0 \quad, \quad\left(U_{\lambda \omega \sigma_{1}}, \widehat{U}_{\lambda s_{1}}\right)_{q}=1 \quad \text { and } \quad\left(v, \widehat{U}_{\lambda s_{1}}\right)_{q}=0 \quad \text { for all } v \in V^{\prime}
$$

By iteration, this proves that for all u, v, one has $\left(U_{v}, \widehat{U}_{u \omega}\right)_{q}=\delta_{v, u}$.
This theorem implies that the space of symmetric functions and the linear span of dominant monomials are dual of each other, the Hall-Littlewood functions being the basis dual to dominant monomials.

We finally mention that in the case $q=0$, one has a reproducing kernel, as stated by the following theorem of [6], which gives another implicit definition of the scalar product (,).

Theorem 4.9. The two families of polynomials $\left(K_{v}\right)_{v \in \mathbb{N}^{n}}$ and $\left(\widehat{K}_{v}\right)_{v \in \mathbb{N}^{n}}$ satisfy the Cauchy formula

$$
\begin{equation*}
\sum_{u \in \mathbb{N}^{n}} K_{u}(x) \widehat{K}_{u \omega}(y)=\prod_{i+j \leq n+1} \frac{1}{1-x_{i} y_{j}} \tag{15}
\end{equation*}
$$

Acknowledgment

We thank Bogdan Ion for pointing out in detail the connection with the theory of nonsymmetric Macdonald polynomials.

References

[1] M. Demazure. Une nouvelle formule des caractères, Bull. Sci. Math. 98 (1974), 163-172.
[2] G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf and J.-Y. Thibon. Euler-Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publ. RIMS Kyoto 31 (1995), 179-201.
[3] B. Ion. Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials, ar χ iv:math.QA/0406060.
[4] B. Ion. Nonsymmetric Macdonald polynomials and Demazure characters, ar χ iv:math. QA/0105061.
[5] A. Lascoux About the y in the χ_{y}-characteristic of Hirzebruch, Contemporary Mathematics 241 (1999), 285-296.
[6] A. Lascoux. Double crystal graphs, Studies in Memory of Issai Schur, Progress in Math. 210, Birkhäuser, Boston, 2003, pp. 95-114.
[7] A. Lascoux. Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, vol. 99, Amer. Math. Soc., Providence, RI, 2003.
[8] A. Lascoux, B. Leclerc and J.Y. Thibon. Flag varieties and the Yang-Baxter equation, Letters in Math. Phys. 40 (1997), 75-90.
[9] D. E. Littlewood. On certain symmetric functions, Proc. London Math. Soc. 43 (1961), 485-498.
[10] G. Lusztig. Equivariant K-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), 337-342.
[11] I. G. Macdonald. Symmetric functions and Hall polynomials, 2nd edition, Oxford University Press, Oxford, 1995.
[12] Package ACE http://phalanstere.univ-mlv.fr/ace
[13] Package MuPAD-Combinat http://mupad-combinat.sourceforge.net/

