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Abstract. Foata and Han [Adv. in Appl. Math. 18 (1997), 489–509; Electron. J.

Combin. 4 (1997), Article #R9] proved some remarkable generating functions for statis-
tics on the hyperoctahedral group Bn. These generating functions can be specialized to
give a large number of generating functions for permutation statistics appearing in the
literature. In this paper, we give a new proof of Foata and Han’s result by defining a
homomorphism on the ring of symmetric functions and applying it to a simple symmet-
ric function identity. Our methods easily extend to derive several natural extensions of
Foata and Han’s generating functions. In particular, we show that there exists a natural
family of generating functions for permutation statistics over wreath products Ck ≀Sn of
cyclic groups Ck with the symmetric group Sn which can be viewed as generalizations
of the Foata-Han generating functions. We also prove some new generating functions
for the Foata-Han statistics for tuples of permutations of Bn or Ck ≀ Sn whose common
descent set contain a final sequence of at least s or whose common descent set contain a
final sequence of exactly size s.

1. Introduction and Preliminaries

Let G be a finite group and Sn the symmetric group on n letters. This work is the con-
tinuation of a series of papers that show how various generating functions for permutation
statistics on wreath products G ≀ Sn can be derived by applying appropriate homomor-
phisms on the ring of symmetric functions to simple symmetric function identities.

1 Partially supported by NSF Grant DMS 0400507 and DMS 0502858.
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This idea was first used by Brenti [Bre93]. Beck and Remmel then gave combinatorial
proofs of Brenti’s results by exploiting combinatorial interpretations of the entries of the
transitions matrices between bases of symmetric functions [Bec93, BR95]. This combi-
natorial approach allowed for q-analogues of Brenti’s results as well as generalizations
of Brenti’s results for the hyperoctahedral group Bn. Wagner extended these results to
study permutation statistics on groups of the form Ck ≀Sn where Ck is the cyclic group of
order k [Wag00]. Since then, there has been a series of papers that have developed these
methods, see [LR06, MRa, MR06]. A systematic treatment of these ideas is currently
being developed by the authors [MRb].

The goal of this paper is to show how such methods can be used to prove a remark-
able generating function for permutation statistics on the hyperoctahedral group Bn first
proved by Foata and Han [FH97a, FH97b]. Foata and Han’s generating function is sig-
nificant because it can be specialized to give a large number of generating function for
permutation statistics for Sn and Bn. Their paper includes a flow chart recording the
many different specializations.

Our proof has a number of important features.

• It can be easily extended to give an entire family of extensions of the Foata-Han
generating function to groups of the form Ck ≀ Sn for k ≥ 2 (Bn is isomorphic to
C2 ≀ Sn).
• It allows us to define a new set of permutation statistics on Bn that have the same

distribution as the permutation statistics that appear in the Foata-Han result.
• It provides an archetypal example of a result found in the literature with the

property that the homomorphism required in our proof can be read directly from
the generating function itself. Then, once one has proved the given generating
function by our methods, it can immediately be generalized to give a number of
new results.
• It exploits a symmetric function identity that involves a new class of symmetric

functions which have properties similar to the power symmetric functions. Special
cases of these symmetric functions have appeared in the work of Langley and
Remmel [LR06] and Mendes and Remmel [MR06].
• Finally, as with many other cases of our method, once we have proved a given

result, we can modify the combinatorics involved in the proof to prove new results.
In this case, we will show that we can easily modify our proof to give generating
functions for tuples of permutations in Ck ≀ Sn whose final common decreasing
sequence has size at least s or exactly s for any s ≥ 2, relative to the statistics
involved in our generalization of the Foata-Han result. These results are completely
new even in the case where k = 2 and Ck ≀ Sn = Bn.

The outline of this paper is as follows. In Section 2, we shall define the various permu-
tation statistics for Bn that we shall use and state the Foata-Han result. In particular,
we shall state a variation of the Foata-Han result which uses a more natural version of
an inversion statistics than was originally used by Foata and Han. This result is new
and does not follow from the previous results of Foata and Han. In Section 3, we shall
define our new class of symmetric functions and prove a simple identity (5) involving our
new class of symmetric functions to which will apply various homomorphisms defined on
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the ring of symmetric functions to derive our results. In Section 4, we shall define the
homomorphism ξ which can be applied to the symmetric function identity (5) to yield
both the Foata-Han generating function relative to their definition of inversions for signed
permutations and our new generating function relative to a more natural definition of in-
versions for signed permutations. We shall give a very careful proof that ξ applied to (5)
yields both generating functions since if one understands the proof in this case, then one
can see that relatively simple variations of that proof will yield our family of extensions
of these results to Ck ≀Sn for any k ≥ 3 as well as the new generating functions for tuples
of permutations in Ck ≀ Sn whose final common decreasing sequence has size at least s
or exactly s for any s ≥ 2. The proof that we present in section 4 could be simplified if
our goal was just to prove the results stated in section 2. However, the main goal of this
paper is to prove the generalizations and extensions of the results stated in section 2 to the
groups Ck ≀ Sn. The reader will see that the proof presented in section 4 is a template for
the proofs of those generalizations and extensions. In Section 5, we extend our methods to
give some new families of generating functions for permutation statistics on Ck ≀Sn. Some
of the identities that we prove were first proved by Wagner [Wag] using the methods of
Foata and Han. Finally, in Section 6, we shall use the combinatorics developed in Section
5 to prove a new class of generating functions for tuples of permutations in Ck ≀ Sn whose
final common decreasing segment has size at least s or exactly s for any s ≥ 2.

2. Permutation Statistics and Generating Functions for Bn

Following Foata and Han, we shall think of an element of Bn as pair (σ, ǫ) where σ ∈ Sn

and ǫ ∈ {x, y}n. Then we define the following statistics on Bn.
We call i a descent of (σ, ǫ) if either

(i) ǫ(i) = ǫ(i + 1) and σi > σi+1,
(ii) ǫ(i) = x and ǫ(i + 1) = y, or
(iii) i = n and ǫ(n) = x.

Let Des(σ, ǫ) denote the set of descents (σ, ǫ) ∈ Bn.
A pair (i, j) is a FH-inversion (respectively FH-coinversion) of (σ, ǫ) if

(i) i < j, ǫ(i) = ǫ(j) and σi > σj (respectively σi < σj), or
(ii) ǫ(i) = y and ǫ(j) = x, and σi > σj .

We say that a pair (i, j) is an inversion (respectively coinversion) of (σ, ǫ) if i < j and σi >
σj (respectively σi < σj), i.e. we say that (i, j) is an inversion (respectively coinversion)
of (σ, ǫ) if it is an inversion (respectively coinversion) of σ. In [FH97a, FH97b], Foata
and Han used the term inversion and coinversion for what we are calling FH-inversion
and FH-coinversion respectively. They did not consider the usual notion of inversion and
coinversion as we have defined.

Next we consider the restriction of (σ, ǫ) to its x part σǫ|x, the restriction of (σ, ǫ) to its

y part σǫ|y, and their inverses σ−1
ǫ|x and σ−1

ǫ|y . These are best understood with an example.
Suppose

(σ, ǫ) = (6 2 7 4 3 1 5 8 9, x x y y y y x x x).

We may think of (σ, ǫ) as an array:
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1 2 3 4 5 6 7 8 9
σ = 6 2 7 4 3 5 1 8 9
ǫ = x x y y y y x x x

Then σǫ|x and σǫ|y may be found by looking at the columns corresponding to the x’s and
y’s, respectively:

1 2 7 8 9
σǫ|x = 6 2 1 8 9

and
3 4 5 6

σǫ|y = 7 4 3 5
.

We will let ℓ(σǫ|x) be the length of σǫ|x. To find the inverses σ−1
ǫ|x and σ−1

ǫ|y , we take

the arrays corresponding to σǫ|x and σǫ|y, interchange the numbers in each column, then
reorder the columns so the numbers in the top row corresponding are increasing. In our
case, the process would result in the following arrays:

1 2 6 8 9
σ−1

ǫ|x = 7 2 1 8 9
and

3 4 5 7
σ−1

ǫ|y = 5 4 6 3
.

For any sequence τ = τ1 · · · τn of distinct integers, we define the usual notions of de-
scents, rises, major index, comajor index, inversion and coinversions:

Des(τ) = {i < n : τi > τi+1}, Rise(τ) = {i < n : τi < τi+1},

des(τ) = |Des(τ)|, rise(τ) = |Rise(τ)|,

maj(τ) =
∑

i∈Des(τ)

i, comaj(τ) =
∑

i∈Rise(τ)

i,

inv(τ) = {(i, j) : 1 ≤ i < j ≤ n, τi > τj}, coinv(τ) = {(i, j) : 1 ≤ i < j ≤ n, τi < τj}.

In addition, we define

inv(σǫ|x, σǫ|y) = |{(i, j) : ǫ(i) = y, ǫ(j) = x, σi > σj}|.

In our example, inv(σǫ|x, σǫ|y) = 9. We can now give the following two statistics on
elements (σ, ǫ) in Bn. Let

imaj(σ, ǫ) = maj(σ−1
ǫ|x) + maj(σ−1

ǫ|y ) + inv(σǫ|x, σǫ|y), and

icomaj(σ, ǫ) = comaj(σ−1
ǫ|x) + comaj(σ−1

ǫ|y ) + inv(σǫ|x, σǫ|y).

Our definitions of FH-inversion, FH-coinversions, inversions and coinversions for ele-
ments (σ, ǫ) in Bn satisfy the following relationships:

FHinv(σ, ǫ) = inv(σǫ|x) + inv(σǫ|y) + inv(σǫ|x, σǫ|y),

FHcoinv(σ, ǫ) = coinv(σǫ|x) + coinv(σǫ|y) + inv(σǫ|x, σǫ|y),

inv(σ, ǫ) = inv(σ), and

coinv(σ, ǫ) = coinv(σ).

We will write (σ(1), σ(2), . . . , σ(k); ǫ) for the sequence of elements (σ(1), ǫ), (σ(2), ǫ), . . . ,
(σ(k), ǫ) of Bn (the second elements of all pairs are the same). Define

Comdes((σ(1), ǫ), (σ(2), ǫ), . . . , (σ(k), ǫ)) = Comdes(σ(1), σ(2), . . . , σ(k); ǫ) =
⋂

i

Des(σ(i), ǫ)
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and

comdes((σ(1), ǫ), (σ(2), ǫ), . . . , (σ(2), ǫ)) = comdes(σ(1), σ(2), . . . , σ(k); ǫ)

= |Comdes(σ(1), σ(2), . . . , σ(k); ǫ)|.

Suppose we are given two sequences of variables, Q = (Q1, . . . , QL) and q = (q1, . . . , qℓ).
We will use the following notation:

Q(n
2) = Q

(n
2)

1 · · ·Q
(n

2)
L ,

(Q,Q)n =
L
∏

i=1

(Qi, Qi)n,

(q,q)n =

ℓ
∏

i=1

(qi, qi)n, and

J(u,Q,q) =
∑

n≥0

(−1)nunQ(n
2)

(Q,Q)n (q,q)n

where (a, q)0 = 1 and (a, q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n > 0. The usual
q-analogues of the factorial, binomial coefficients, and multinomial coefficients will be
used:

[n]q = q0 + · · ·+ qn−1 =
1− qn

1− q
,

[n]q! = [1]q[2]q · · · [n]q =
(q, q)n

(1− q)n
,

[

n

k

]

q

=
[n]q!

[k]q![n− k]q!
=

(q, q)n

(q, q)k(q, q)n−k

, and

[

n

b1, . . . , bk

]

q

=
[n]q!

[b1]q! · · · [bk]q!
=

(q, q)n

(q, q)b1 · · · (q, q)bk

.

If Σ = (Σ(1), . . . , Σ(L)) and σ = (σ(1), . . . , σ(ℓ)) are sequences of permutations in Sn and
ǫ ∈ {x, y}n, we let

Qinv(Σ;ǫ) =

L
∏

i=1

Q
inv(Σ(i) ,ǫ)
i and qinv(σ;ǫ) =

ℓ
∏

i=1

q
inv(σ(i) ,ǫ)
i . (1)

We may replace the “inv” in (1) with any other permutation statistic like “imaj”, “ico-
maj”, “FHinv”, etc.

If Σ = (Σ(1), . . . , Σ(L)) and σ = (σ(1), . . . , σ(ℓ)) are sequences in the symmetric group
Sn and ǫ is a word of length n in the letters {x, y}, we will denote

(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ)
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as (Σ, σ; ǫ). The last definitions we will need to make before we can state the results of
Foata and Han are as follows. Let

W (1)
n (X, Y, t,Q,q) =

∑

(Σ,σ;ǫ)

Xℓ(ǫ|x)Y ℓ(ǫ|y)tcomdes(Σ,σ;ǫ)QFHinv(Σ;ǫ)qFHcoinv(σ;ǫ),

W (2)
n (X, Y, t,Q,q) =

∑

(Σ,σ;ǫ)

Xℓ(ǫ|x)Y ℓ(ǫ|y)tcomdes(Σ,σ;ǫ)Qinv(Σ;ǫ)qcoinv(σ;ǫ), and

W (3)
n (X, Y, t,Q,q) =

∑

(Σ,σ;ǫ)

Xℓ(ǫ|x)Y ℓ(ǫ|y)tcomdes(Σ,σ;ǫ)Qimaj(Σ;ǫ)qicomaj(σ;ǫ)

where the sums run over all ǫ ∈ {x, y}n and all sequences (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈
SL+ℓ

n . Foata and Han proved the following theorem.

Theorem 1. For i = 1 and i = 3,

∑

n≥0

W
(i)
n (X, Y, t,Q,q)un

(Q,Q)n(q,q)n

=
(1− t)J((1− t)Xu;Q,q)

−t + J((1− t)uX;Q,q)J((1− t)Y u;Q,q)
.

An immediately corollary of this theorem is that

W (1)
n (X, Y, t,Q,q) = W (3)

n (X, Y, t,Q,q).

Indeed, Foata and Han gave a bijection showing this fact by proving the following theorem.

Theorem 2. For all pairs of nonnegative integers L and ℓ, let ΓBn,L,ℓ be the set of all

(Σ, σ; ǫ) = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) such that ǫ ∈ {x, y}n and Σ(i), σ(j) ∈ Sn for

all i and j. Then there is a bijection Ψn : ΓBn,L,ℓ → ΓBn,L,ℓ such that if Ψn((Σ, σ; ǫ)) =
(Σ′, σ′; ǫ′), then

ℓ(ǫ|x) = ℓ(ǫ′|x),

comdes(Σ, σ; ǫ) = comdes(Σ′, σ′; ǫ′),

imaj(Σ, ǫ) = FHinv(Σ′; ǫ′) and

icomaj(σ, ǫ) = FHcoinv(σ′; ǫ′).

We shall see that the proof of Theorem 1 in section 4 can also be modified to give a
proof of the following theorem which is a new result.

Theorem 3.

∑

n≥0

W
(2)
n (X, Y, t,Q,q)un

(Q,Q)n(q,q)n

=
(1− t)J((1− t)Xu;Q,q)

−t + J((1− t)uX;Q,q)J((1− t)Y u;Q,q)
.

3. Symmetric Functions

In this section, we shall give the necessary background on symmetric functions and the
combinatorics of the entries of the transition matrix that we need before we can give our
proofs of Theorems 1 and 3.

A symmetric polynomial p in the variables x1, . . . , xN is a polynomial over a field F of
characteristic 0 with the property that

p(x1, . . . , xN) = p(xσ1 , . . . , xσN
)
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Figure 1. A brick tabloid.

for all σ = σ1 · · ·σN ∈ SN . Let ΛN be the ring of symmetric polynomials in x1, . . . , xN

and ΛN
n be the subset of ΛN containing the homogeneous elements of degree n. Using

the surjective ring homomorphism from ΛN+1
n to ΛN

n defined by taking xN+1 = 0, let
Λn = lim

←−N
ΛN

n for each n ≥ 0. Define Λ =
⊕

n≥0 Λn to be the ring of symmetric functions
over F . A symmetric function in the variables x1, x2, . . . may be thought of as a symmetric
polynomial in an infinite number of variables.

For instance, the elementary symmetric function en = en(x1, x2, . . . ) may be defined by
∑

n≥0

entn = (1 + x1t)(1 + x2t) · · · .

Let λ = (λ1, . . . , λℓ) be an integer partition; that is, λ is a finite sequence of weakly
increasing nonnegative integers. We will let ℓ(λ) denote the number of nonzero integers
in λ. If the sum of these integers is n, we say that λ is a partition of n and write
λ ⊢ n. For any partition λ = (λ1, . . . , λℓ), let eλ = eλ1 · · · eλℓ

. It is well known that that
{eλ : λ is a partition} is a basis for Λ.

The homogeneous symmetric function hn = hn(x1, x2, . . . ) is defined such that

∑

n≥0

hnt
n =

1

1− x1t
·

1

1− x2t
· · · .

Therefore,

∑

n≥0

hnt
n =

1

1− x1t
·

1

1− x2t
· · · = ((1− x1t)(1− x2t) · · · )

−1 =

(

∑

n≥0

en(−t)n

)−1

. (2)

The coefficient of the homogeneous symmetric functions when written in terms of the
elementary symmetric function basis is a sum of combinatorial objects. A rectangle of
height 1 and length n chopped into “bricks” of lengths found in the partition λ is known
as a brick tabloid of shape (n) and type λ. One brick tabloid of shape (9) and type
(1, 1, 2, 5) is displayed in Figure 1.

Let Bλ,n be the number of such objects. Through simple recursions stemming from (2),
Eğecioğlu and Remmel proved in [ER91] that

hn =
∑

λ⊢n

(−1)n−ℓ(λ)Bλ,neλ. (3)

A large number of generating functions for various statistics are the result of applying an
appropriate homomorphism to (3), see [Men04]. However to prove Theorems 3 and 1 and
their extensions, we will need to have an increased amount of flexibility than is available
in the relationship between the homogeneous and elementary symmetric functions. To
this end, we define the following class of symmetric functions.
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Let ν be a function which maps the set of nonnegative integers into the field F . Re-
cursively define pn,ν ∈ Λn by setting p0,ν = 1 and letting

pn,ν = (−1)n−1ν(n)en +
n−1
∑

k=1

(−1)k−1ekpn−k,ν

for all n ≥ 1. By multiplying series, this means that
(

∑

n≥0

(−1)nentn

)(

∑

n≥1

pn,νt
n

)

=
∑

n≥1

(

n−1
∑

k=0

pn−k,ν(−1)kek

)

tn =
∑

n≥1

(−1)n−1ν(n)entn,

where the last equality follows from the definition of pn,ν . Therefore,

∑

n≥1

pn,νt
n =

∑

n≥1(−1)n−1ν(n)entn
∑

n≥0(−1)nentn
(4)

or, equivalently,

1 +
∑

n≥1

pn,νt
n =

1 +
∑

n≥1(−1)n(en − ν(n)en)tn
∑

n≥0(−1)nentn
. (5)

When taking ν(n) = 1 for all n ≥ 1, (5) becomes

1 +
∑

n≥1

pn,1t
n = 1 +

∑

n≥1(−1)n−1ent
n

∑

n≥0(−1)nentn
=

1
∑

n≥0(−1)nentn
= 1 +

∑

n≥1

hntn

which implies pn,1 = hn.
Other special cases for ν give well known generating functions. Taking ν such that

ν(n) = n for n ≥ 1, pn,n is the power symmetric function
∑

i x
n
i . Let χ(S) be equal to 1

if S is true and 0 if false for any statement S. By taking ν(n) = (−1)kχ(n ≥ k + 1) for
some k ≥ 1, pn,(−1)kχ(n≥k+1) is the Schur function corresponding to the partition (1k, n).

This definition of pn,ν is desirable because of its expansion in terms of elementary
symmetric functions. The coefficient of eλ in pn,ν has a nice combinatorial interpretation
similar to that of the homogeneous symmetric functions. Suppose T is a brick tabloid of
shape (n) and type λ and that the final brick in T has length ℓ. Define the weight of a
brick tabloid wν(T ) to be ν(ℓ) and let

wν(Bλ,n) =
∑

T is a brick tabloid
of shape (n) and type λ

wν(T ). (6)

When ν(n) = 1 for n ≥ 1, Bλ,n and wν(Bλ,n) are the same. By the recursions found in
the definition of pn,ν, it may be shown that

pn,ν =
∑

λ⊢n

(−1)n−ℓ(λ)wν(Bλ,n)eλ (7)

in almost the exact same way that (3) was proved in [ER91]. A detailed proof may be
found in [Men04].

We are now ready to give our proof of Theorems 3 and 1.
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4. Our proof of Theorems 1 and 3

In this section, we shall prove Theorem 1 in the case where i = 1 and Theorem 3 by
applying a homomorphism ξ defined on the ring of symmetric functions to the identity
((5)) for an appropriate weight function ν. The case where i = 3 of Theorem 1 will
then follow by applying the bijection of Foata and Han described in Theorem 2. The
remarkable fact is that we can essentially read the required homomorphism ξ and the
required function ν directly from the right hand side of the statement of Theorem 3.
Rewrite this expression as

(1− t)J((1− t)Xu;Q,q)

1− t + (J((1− t)Xu;Q,q)J((1− t)Y u;Q,q)− 1)

=
1 +

∑

n≥1(−1)nXnun(1− t)n Q
(n

2)
(Q,Q)n(q,q)n

1 +
∑

n≥1(−1)nun(1− t)n−1
∑n

k=0
XkQ

(k
2)Y n−kQ

(n−k
2 )

(Q,Q)k(q,q)k(Q,Q)n−k(q,q)n−k

.

This suggests that we should set

ξ(en) = (1− t)n−1

n
∑

k=0

XkQ(k
2)Y n−kQ(n−k

2 )

(Q,Q)k(q,q)k(Q,Q)n−k(q,q)n−k

(8)

and

ξ(en)− ν(n)ξ(en) =
(1− t)nXnQ(n

2)

(Q,Q)n(q,q)n

. (9)

Solving (9) for ν(n), we see that

ν(n) =
1

ξ(en)

(

ξ(en)−
(1− t)n−1XnQ(n

2)

(Q,Q)n(q,q)n

+
t(1− t)n−1XnQ(n

2)

(Q,Q)n(q,q)n

)

. (10)

Therefore, to prove Theorem 1, we need only show that

ξ(pn,ν) =
W

(1)
n (X, Y, t,Q,q)

(Q,Q)n(q,q)n

or, equivalently, that

(Q,Q)n(q,q)nξ(pn,ν) = W (1)
n (X, Y, t,Q,q). (11)

Similarly, to prove Theorem 3, we need only show that

ξ(pn,ν) =
W

(2)
n (X, Y, t,Q,q)

(Q,Q)n(q,q)n

or, equivalently, that

(Q,Q)n(q,q)nξ(pn,ν) = W (2)
n (X, Y, t,Q,q). (12)
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We start by using (7) to express pn,ν in terms of the elementary symmetric functions.
We have

(Q,Q)n(q,q)nξ(pn,ν) = (Q,Q)n(q,q)n

∑

µ⊢n

(−1)n−ℓ(µ)wν(Bµ,n)ξ(eµ)

=
∑

µ⊢n

(−1)n−ℓ(µ)
∑

T=(b1,...,bk)∈Bµ,n

(Q,Q)n(q,q)nν(bk)
k
∏

i=1

ξ(ebi
). (13)

Focusing on the term (Q,Q)n(q,q)nν(bk)
∏k

i=1 ξ(ebi
), we have for i < k,

ξ(ebi
) = (1− t)bi−1

k
∑

j=0

XjQ(j
2)Y bi−jQ(bi−j

2 )

(Q,Q)j(q,q)j(Q,Q)bi−j(q,q)bi−j

= (1− t)bi−1
∑

ri+si=bi

XriY siQ(ri
2 )Q(si

2 )

(Q,Q)ri
(q,q)ri

(Q,Q)si
(q, q)si

.

For i = k,

ξ(ebk
)ν(bk) = ξ(ebk

)
1

ξ(ebk
)

(

ξ(ebk
)−

(1− t)bk−1XbkQ(bk
2 )

(Q,Q)bk
(q,q)bk

+
t(1− t)bk−1XbkQ(b+k

2 )

(Q,Q)bk
(q,q)bk

)

= (1− t)bk−1

(

bk−1
∑

j=0

XjQ(j
2)Y bk−jQ(bk−j

2 )

(Q,Q)j(q,q)j(Q,Q)bk−j(q,q)bk−j

)

+
t(1− t)bk−1XbkQ(b+k

2 )

(Q,Q)bk
(q,q)bk

= (1− t)bk−1

(

∑

rk+sk=bk ,rk 6=bk

XrkY skQ(rk
2 )Q(sk

2 )

(Q,Q)rk
(q,q)rk

(Q,Q)sk
(q,q)sk

)

+
t(1− t)bk−1XbkQ(bk

2 )

(Q,Q)bk
(q,q)bk

.

The net effect of taking the weight ξ(ebk
) versus the weight ν(bk)ξ(ebk

) is that the last
term summand for ξ(ebk

) is

(1− t)bk−1XbkQ(bk
2 )

(Q,Q)bk
(q,q)bk

while the last term in the summand for ν(bk)ξ(ebk
) has an extra factor of t,

t(1− t)bk−1XbkQ(bk
2 )

(Q,Q)bk
(q,q)bk

.
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Thus, (13) is equal to

∑

µ⊢n

(−1)n−ℓ(µ)
∑

T=(b1,...,bk)∈Bµ,n

∑

ri+si=bi

(1− t)n−ℓ(µ)Xr1+···+rkY s1+···+sk

×
(Q,Q)n

(Q,Q)r1(Q,Q)s1 · · · (Q,Q)rk
(Q,Q)sk

×Q
P

(ri
2 )+

P

(si
2 )

(q,q)n

(q,q)r1(q,q)s1 · · · (q,q)rk
(q,q)sk

tχ(rk=bk)

=
∑

µ⊢n

(t− 1)n−ℓ(µ)
∑

T=(b1,...,bk)∈Bµ,n

∑

ri+si=bi

Xr1+···+rkY s1+···+sktχ(rk=bk)

×
L
∏

a=1

[

n

r1, s1, . . . , rk, sk

]

Qa

Q
Pk

i=1((
ri
2 )+(si

2 ))
a

ℓ
∏

b=1

[

n

r1, s1, . . . , rk, sk

]

qb

.

Fix a brick tabloid T = (b1, . . . , bk) ∈ Bµ,n and fix a sequence r1, s1, . . . , rk, sk such that
for all i = 1, . . . , k, ri + si = bi. We wish to give a combinatorial interpretation to the
term

Xr1+···+rkY s1+···+sk

L
∏

a=1

[

n

r1, s1, . . . , rk, sk

]

Qa

Q
Pk

i=1((
ri
2 )+(si

2 ))
a

ℓ
∏

b=1

[

n

r1, s1, . . . , rk, sk

]

qb

. (14)

Take the brick tabloid T = (b1, . . . , bk) and divide each brick bi into two pieces, the first
of size ri and the second of size si. Place X’s at the top of all the cells corresponding to
r1, . . . , rk and Y ’s at the top of all the cells corresponding to s1, . . . , sk. Further divide
the brick tabloid T into L + ℓ rows and consider the set of all fillings FT,L,ℓ,r1,s1,...,rk,sk

of
T with integers such that

(1) within each row j, each brick bi is filled with subsets Ri,j, Si,j ⊆ {1, . . . , n} such
that |Ri,j| = ri, |Si,j| = si, the numbers in Ri,j occupy the first ri cells of row j in
the brick bi in decreasing order, and the numbers in Si,j occupy the last si cells of
row j in the brick bi in decreasing order, and

(2) for each row j,
⋃k

i=1(Ri,j ∪ Si,j) = {1, . . . , n}.

If we read to numbers from left to right in the first L rows, we will obtain permutations
Σ(1), . . .Σ(L) in Sn. If we read to numbers from left to right in the last ℓ rows, we will
obtain permutations σ(1), . . . σ(ℓ) in Sn. For example, if T = (4, 5), r1 = s1 = 2, r2 = 2
and s2 = 3, and L = ℓ = 2, then and element of FT,L,ℓ,r1,s1,...,rk,sk

is pictured in Figure 2
In the special case where the configuration F has only one permutation, i.e. when

either L = 1 and ℓ = 0 or L = 0 and ℓ = 1, we shall denote FT,L,ℓ,r1,s1,...,rk,sk
by simply

FT,r1,s1,...,rk,sk
.

Our goal is to interpret (14) as a weighted sum over all elements F ∈ FT,L,ℓ,r1,s1,...,rk,sk
.

Carlitz showed in [Car70] that the q-multinomial coefficient can be interpreted as

[

n

r1, s1, . . . , rk, sk

]

q

=
∑

r∈R(1r12s13r24s2 ···(2k−1)rk (2k)sk )

qinv(r).
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68

7 5 1 6 4 9 8 3

3 5 2 7 4 19

2

XX Y Y X X Y Y Y

12793648

2 1 8 3 9 5 7 4

5

Σ1

σ1

σ1

Σ2

s1 = 2 r2 = 2 s2 = 3r1 = 2

6

Figure 2. An element of FT,L,ℓ,r1,s1,...,rk,sk

where R(1r12s13r24s2 · · · (2k − 1)rk(2k)sk) is the set of all possible rearrangements of
1r12s13r24s2 · · · (2k − 1)rk(2k)sk . Similarly,

[

n

r1, s1, . . . , rk, sk

]

q

=
∑

r∈R(1r12s13r24s2 ···(2k−1)rk (2k)sk )

qcoinv(r).

Given a rearrangement r ∈ R(1r12s13r24s2 · · · (2k − 1)rk(2k)sk), we can associate a
permutation σr by labeling the 1’s from right to left with 1, . . . , r1, labeling the 2’s from
right to left with r1 + 1, . . . , r1 + s1, etc. It is not difficult to see that inv(σr) = inv(r) +
∑k

i=1

((

ri

2

)

+
(

si

2

))

and that σ−1
r consists of a list of the positions of the 1’s in r in decreasing

order, followed by a list of positions of the 2’s in r in decreasing order, etc.
For instance, we consider the example where n = 9, b1 = 4, b2 = 5, r1 = s1 = 2, r2 = 2

and s2 = 3. If the rearrangement r = 1 3 4 2 1 4 3 4 2, then we would obtain

r = 1 3 4 2 1 4 3 4 2 ,
σr = 2 6 9 4 1 8 5 7 3 ,
σ−1

r = 5 1 9 4 7 2 8 6 3 .

Thus such a σ−1
r corresponds to a legitimate filling of one of the rows of a configuration

of F in FT,L,ℓ,r1,s1,...,rk,sk
. Since we can reverse the labeling process, it is easy to see the

map r → σ−1
r is bijection from R(1r12s13r24s2 · · · (2k−1)rk(2k)sk) onto FT,r1,s1,...,rk,sk

. Our
labeling ensures that

inv(σr) = inv(r) +
k
∑

i=1

(

ri

2

)

+
k
∑

i=1

(

si

2

)

and

coinv(σr) = coinv(r).

Since inv(σr) = inv(σ−1
r ) and coinv(σr) = coinv(σ−1

r ), it follows that

q
Pk

i=1 (ri
2 )+

Pk
i=1 (si

2 )
[

n

r1, s1, . . . , rk, sk

]

q

=
∑

σ∈FT,r1,s1,...,rk,sk

qinv(σ) and (15)

[

n

r1, s1, . . . , rk, sk

]

q

=
∑

σ∈FT,r1,s1,...,rk,sk

qcoinv(σ). (16)

It follows from (15) and (16) that if we let ǫ = xr1ys1 · · ·xrkysk, then we have the
following.
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Lemma 4.

Xr1+···+rkY s1+···+sk

L
∏

a=1

[

n

r1, s1, . . . , rk, sk

]

Qa

Q
Pk

i=1((ri
2 )+(si

2 ))
a

ℓ
∏

b=1

[

n

r1, s1, . . . , rk, sk

]

qb

= Xℓ(ǫ|x)Y ℓ(ǫ|y)
∑

F=(Σ(1),...,Σ(L),σ(1),...,σ(ℓ))∈FT,L,ℓ,r1,s1,...,rk,sk

Qinv(Σ(1) ,...,Σ(L);ǫ)qcoinv(σ(1) ,...,σ(ℓ);ǫ).

By slightly modify our labeling, we can get an analogue of Lemma 4 where we replace
the statistics inv and coinv by FHinv and FHcoinv respectively. That is, it is also that
case that

[

n

r1, s1, . . . , rk, sk

]

q

=
∑

r∈R(1s12s2 ···ksk (k+1)r1 (k+2)r2 ···(2k)rk )

qinv(r).

As before, given a rearrangement r ∈ R(1s12s2 · · · ksk(k + 1)r1(k + 2)r2 · · · (2k)rk), we
associate a permutation σr by labeling the 1’s from right to left with 1, . . . , s1, labeling
the 2’s from right to left with s1 + 1, . . . , s1 + s2, etc. As before, σ−1

r consists of a list of
the positions of the 1’s in r in decreasing order, followed by a list of positions of the 2’s
in r in decreasing order, etc.

For example, consider the case where n = 9, b1 = 4, b2 = 5, r1 = 1, s1 = 3, r2 = 2
and s2 = 3 and where the rearrangement is r = 1 3 1 2 1 4 2 4 2. Since in the end we
want the positions corresponding to the ri’s weighted by X and the position of the sj ’s
weighted by Y , we place the appropriate X and Y on top of the letters. Doing this, we
would obtain

Y X Y Y Y X Y X Y
r = 1 3 1 2 1 4 2 4 2,

Y X Y Y Y X Y X Y
σr = 3 7 2 6 1 9 5 8 4,

and

Y Y Y Y Y Y X X X
σ−1

r = 5 3 1 9 7 4 2 8 6.

At this point σ−1
r does not correspond to a legitimate filling of a configuration of F ∈

FT,r1,s1,...,rk,sk
since it consists of decreasing sequences of lengths s1, . . . , sk, r1, . . . , rk,

respectively. However, we can easily obtain a legitimate filling of a configuration of
F ∈ FT,r1,s1,...,rk,sk

by simply bringing the decreasing sequence corresponding to r1 in front
of the decreasing sequence corresponding to s1, then bringing the decreasing sequence cor-
responding to r2 immediately in front of the decreasing sequence corresponding to s2, etc.
Let us call the result of this rearrangement σ∗

r . In our example,

X Y Y Y X X Y Y Y
σ∗

r = 2 5 3 1 8 6 9 7 4.
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If we let ǫ = ys1+···+skxr1+···+rk and ǫ∗ = xr1ys1xr2ys2 · · ·xrkysk, then, since all the Y ’s
precede all the X’s in σ−1

r , we have

k
∑

i=1

(

ri

2

)

+

k
∑

i=1

(

si

2

)

+ inv(r) = inv(σr) = inv(σ−1
r )

= inv((σ−1
r )ǫ|x) + inv((σ−1

r )ǫ|y)

+
∑

i,j

χ(ǫi = y, ǫj = x, (σ−1
r )i > (σ−1

r )j).

But clearly

inv((σ−1
r )ǫ|x) + inv((σ−1

r )ǫ|y) +
∑

i,j

χ(ǫi = y, ǫj = x, & (σ−1
r )i > (σ−1

r )j)

= inv((σ∗
r )ǫ∗|x) + inv((σ∗

r)ǫ∗|y) +
∑

i,j

χ(ǫ∗i = y, ǫ∗j = x, & (σ∗
r)i > (σ∗

r )j),

which in turn is equal to FHinv(σ∗
r). It follows that

q
Pk

i=1 (ri
2 )+

Pk
i=1 (si

2 )
[

n

r1, s1, . . . , rk, sk

]

q

=
∑

σ∈FT,r1,s1,...,rk,sk

qFHinv(σ). (17)

We also need to show that
[

n

r1, s1, . . . , rk, sk

]

q

=
∑

σ∈FT,r1,s1,...,rk,sk

qFHcoinv(σ). (18)

In this case, we need a slightly different labeling. That is, it is the case that
[

n

r1, s1, . . . , rk, sk

]

q

=
∑

r∈R(1r12r2 ···krk(k+1)s1 (k+2)s2 ···(2k)sk )

qcoinv(r).

As before, given a rearrangement r ∈ R(1r12r2 · · · krk(k + 1)s1(k + 2)s2 · · · (2k)sk), we can
associate a permutation σr by labeling the 1’s from right to left with 1, . . . , r1, labeling
the 2’s from right to left with r1 + 1, . . . , r1 + r2, etc. As before σ−1

r consists of a list of
the positions of the 1’s in r in decreasing order, followed by a list of positions of the 2’s
in r in decreasing order, etc.

For instance, let us return to our example where n = 9, b1 = 4, b2 = 5, r1 = 1, s1 = 3,
r2 = 2 and s2 = 3. Consider the rearrangement r = 1 3 4 2 3 4 3 4 2. Since in the end we
want the positions corresponding to the ri’s weighted by X and the position of the sj ’s
weighted by Y we shall again place the appropriate X and Y on top of the letters. Thus
we would obtain

X Y Y X Y Y Y Y X
r = 1 3 4 2 3 4 3 4 2,

X X Y X Y X Y X X
σr = 1 6 9 3 5 8 4 7 2,

and
X X X Y Y Y Y Y Y

σ−1
r = 1 9 4 7 5 2 8 6 3.
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At this point σ−1
r does not correspond to a legitimate filling of a configuration of F ∈

Fr1,s1,...,rk,sk
since it consists of decreasing sequences of lengths r1, . . . , rk, s1, . . . , sk, respec-

tively. However, we can obtain a legitimate filling of a configuration of F ∈ Fr1,s1,...,rk,sk

by placing the decreasing sequence corresponding to s1 immediately after the decreasing
sequence corresponding to r1, then placing the decreasing sequence corresponding to s2

immediately after the decreasing sequence corresponding to r2, etc. Call the result of this
rearrangement σ∗∗

r . In our example,

X Y Y Y X X Y Y Y
σ∗∗

r = 1 7 5 2 9 4 8 6 3.

If we let ǫ′ = yr1+···+rkxs1+···+sk and ǫ∗∗ = xr1ys1xr2ys2 · · ·xrkysk, it is easy to see that since
all the X’s precede all the Y ’s in σ−1

r , we have

coinv(r) = coinv(σr) = coinv(σ−1
r )

= coinv((σ−1
r )ǫ′|x) + coinv((σ−1

r )ǫ′|y)

+
∑

i,j

χ(ǫi = y, ǫj = x, (σ−1
r )i > (σ−1

r )j).

Clearly,

coinv((σ−1
r )ǫ′|x) + coinv((σ−1

r )ǫ′|y) +
∑

i,j

χ(ǫi = y, ǫj = x, (σ−1
r )i > (σ−1

r )j)

= coinv((σ∗∗
r )ǫ∗∗|x) + inv((σ∗

r)ǫ∗∗|y) +
∑

i,j

χ(ǫ∗∗i = y, ǫ∗∗j = x, (σ∗∗
r )i > (σ∗∗

r )j),

which in turn is equal to FHcoinv(σ∗∗
r ). Thus, (18) is true.

Since (17) and (18) have been proved, if we let ǫ = xr1ys1 · · ·xrkysk, then we have the
following.

Lemma 5.

Xr1+···+rkY s1+···+sk

L
∏

a=1

[

n

r1, s1, . . . , rk, sk

]

Qa

Q
Pk

i=1((ri
2 )+(si

2 ))
a

ℓ
∏

b=1

[

n

r1, s1, . . . , rk, sk

]

qb

= Xℓ(ǫ|x)Y ℓ(ǫ|y)

×
∑

F=(Σ(1),...,Σ(L),σ(1),...,σ(ℓ))∈FT,L,ℓ,r1,s1,...,rk,sk

QFHinv(Σ(1),...,Σ(L);ǫ)qFHcoinv(σ(1) ,...,σ(ℓ);ǫ).

We are in the position to give two different combinatorial interpretations for
(Q, Q)n(q, q)nξ(pn,ν). Recall that we have already shown that (Q, Q)n(q, q)nξ(pn,ν) is
equal to
∑

µ⊢n

(t− 1)n−ℓ(µ)
∑

T=(b1,...,bk)∈Bµ,n

∑

ri+si=bi

Xr1+···+rkY s1+···+sk

×
L
∏

a=1

[

n

r1, s1, . . . , rk, sk

]

Qa

Q
P

(ri
2 )+

P

(si
2 )

ℓ
∏

b=1

[

n

r1, s1, . . . , rk, sk

]

qb

tχ(rk=bk).
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Figure 3. A combinatorial object.

We can interpret this equation as follows. For each brick T = (b1, . . . , bk) ∈ Bµ,n and for
each choice r1, s1, . . . , rk, sk from the sum

∑

ri+si=bi
, the term

Xr1+···+rkY s1+···+sk

L
∏

a=1

[

n

r1, s1, . . . , rk, sk

]

Qa

Q
P

(ri
2 )+

P

(si
2 )

ℓ
∏

b=1

[

n

r1, s1, . . . , rk, sk

]

qb

can be viewed either as the sum

Xℓ(ǫ|x)Y ℓ(ǫ|y)
∑

F=(Σ(1),...,Σ(L),σ(1),...,σ(ℓ))∈FT,L,ℓ,r1,s1,...,rk,sk

Qinv(Σ(1),...,Σ(L);ǫ)qcoinv(σ(1) ,...,σ(ℓ);ǫ)

or the sum

Xℓ(ǫ|x)Y ℓ(ǫ|y)
∑

F=(Σ(1),...,Σ(L),σ(1),...,σ(ℓ))∈FT,L,ℓ,r1,s1,...,rk,sk

QFHinv(Σ(1),...,Σ(L);ǫ)qFHcoinv(σ(1) ,...,σ(ℓ);ǫ)

where ǫ = xr1ys1 · · ·xrkysk.
Now, if sk 6= 0, then we have a factor of (t− 1)n−ℓ(µ). For each

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ))

in FT,L,ℓ,r1,s1,...,rk,sk
, we create a new set of weighted objects by placing a t or a −1 in cell

of T which is not at the end of a brick and placing a 1 in each cell which at the end of
the brick.

For example, if we let T = (4, 5) and r1 = 2, s1 = 2, r2 = 2 and s2 = 3, then we
would obtain configuration C as pictured in Figure 3. We then let w(C) be the product
of the all the −1’s, t’s, X’s and Y ’s appearing in the configuration. For the configuration
appearing Figure 3, w(C) = −t4X4Y 5.

If sk = 0 so that rk = bk, we have a factor of t(t − 1)n−ℓ(µ). As before, for each
member F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) of the set FT,L,ℓ,r1,s1,...,rk,sk

, we create a new set
of weighted objects by placing a t or a −1 in cell of T which is not at the end of a brick
and placing a 1 in each cell which at the end of the brick which is not the final brick and
placing a t in the last cell of the final brick.

For example, if we let T = (4, 5) and r1 = 2, s1 = 2, r2 = 5 and s2 = 0, then we
would obtain configuration C ′ as pictured in Figure 4. Let w(C ′) be the product of the
all the −1’s, t’s, X’s and Y ’s appearing in the configuration. For the configuration below,
w(C ′) = t5X7Y 2.
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tt−1t−11ttt

5

Figure 4. A configuration similar to Figure 3 but with a slightly different labeling.

Let CT,L,ℓ,r1,s1,...,rk,sk
denote the set of all configurations C as constructed from elements

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) of the set FT,L,ℓ,r1,s1,...,rk,sk
and let

Cn =
⋃

µ⊢n

⋃

T=(b1,...,bk)∈Bµ,n

⋃

ri+si=bi

CT,L,ℓ,r1,s1,...,rk,sk
.

Define two different weights on configurations C ∈ Cn. If C ∈ CT,L,ℓ,r1,s1,...,rk,sk
is con-

structed from F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈ FT,r1,s1,...,rk,sk
, let

U1(C) = w(C)QFHinv(Σ(1),...,Σ(L);ǫ)qFHcoinv(σ(1) ,...,σ(ℓ);ǫ) and

U2(C) = w(C)Qinv(Σ(1),...,Σ(L);ǫ)qcoinv(σ(1) ,...,σ(ℓ);ǫ)

where ǫ = xr1ys1 · · ·xrkysk. It follows that

(Q, Q)n(q, q)nξ(pn,ν) =
∑

C∈Cn

U1(C) and (19)

(Q, Q)n(q, q)nξ(pn,ν) =
∑

C∈Cn

U2(C).

It follows from (11) and (19) that to prove Theorem 1, we need to show that
∑

C∈Cn

U1(C) = W (1)
n (X, Y, t,Q,q) (20)

Similarly, to prove Theorem 3, we need to show that
∑

C∈Cn

U2(C) = W (2)
n (X, Y, t,Q,q). (21)

To prove both (20) and (21), we will define a sign-reversing weight-preserving involution
I on Cn so that the fixed points of I will give the desired right hand side of (20) or (21).
In fact, the same involution will work for both (20) or (21).

Suppose that C is constructed from

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈ FT,L,ℓ,r1,s1,...,rk,sk
,

then we say that a sequence of cells in c, c+1, . . . , c+ k in C forms a decreasing sequence
if the following three things happen:

(i) the labels at the top of the cells c, c + 1, . . . , c + k when read from left to right is
a word of the form XuY v for some u, v ≥ 0,
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68

7 5 1 6 4 9 8 3

3 5 2 7 4 19

2

XX Y Y X X Y Y Y

12793648

2 1 8 3 9 5 7 4

5

Σ1

σ1

σ1

Σ2

r3 = 2 s3 = 3r1 = 2 s1 = 2s2 = 1

t t 1 1 −1 t −1 t 1

6

Figure 5. The image of Figure 3 under I.

(ii) the entries in each of the rows corresponding to Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ) are
decreasing in cells whose label is X, i.e., in cells c, c + 1, . . . , c + u− 1, and

(iii) the entries in each of the rows corresponding to Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ) are
decreasing in cells whose label is Y , i.e., in cells c + u, c + u + 1, . . . , c + u + v − 1.

By definition, the cells corresponding to each brick in a configuration C ∈ Cn form a
decreasing sequence.

We define the involution I as follows. Given C ∈ Cn, scan the cells of the C from left
to right until either

• Case 1: there is a cell c with a −1 in which case I(C) is the result of changing the
weight cell c to 1 and breaking the brick bi which contains cell c into two bricks b′

and b′′ where b′ ends at cell c, or
• Case 2: we find two consecutive bricks bi and bi+1 such that cells corresponding to

bi and bi+1 form a decreasing sequence in which case I(C) is the result of replacing
bricks bi and bi+1 by a single brick b and changing the weight of the last cell of bi

from 1 to −1.

If neither Case 1 or Case 2 holds, then define I(C) = C.
For example, if we consider the configuration C pictured in Figure 3, then we are Case

1 with cell c equal to cell 3 so that I(C) = C ′ where C ′ is pictured in Figure 5. However,
C ′ is in Case 2 because we can combine bricks b1 and b2 so that I(C ′) is equal to C.

The definition of I is designed so that the only change is the total number of bricks.
The underlying permutations (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) remain unchanged. Moreover,
since we do not change any of the labels at the top of the column, it follows that if cell n
has an X at the top of the column, then the last brick of both C and I(C) must contain
all X’s since the cells in each brick must form a decreasing sequence and hence the weight
of the final cell in both C and I(C) is equal to t.

Our definitions ensure that if I(C) 6= C, then U1(C) = −U1(I(C)), U2(C) = −U2(I(C)),
and I(I(C)) = C. Let FixI = {C ∈ Cn : I(C) = C}. Then I shows that

∑

C∈Cn

U1(C) =
∑

C∈F ixI

U1(C), and

∑

C∈Cn

U2(C) =
∑

C∈F ixI

U2(C).
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Consider the fixed points of I. Suppose that C ∈ FixI and C is constructed from
an element F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) of the set FT,L,ℓ,r1,s1,...,rk,sk

. No cell of C
can have label −1 and the sequence of cells in any two consecutive bricks do not form a
decreasing sequence. This means that if bi and bi+1 are two consecutive bricks in C, s is
last cell in bi, s + 1 is the first cell of bi+1, and ǫ = xr1ys1 · · ·xrkysk, then either

• ǫs = y and ǫs+1 = x,
• ǫs = x and ǫs+1 = x and there is some i such that Σ(i)(s) < Σ(i)(s + 1) or there is

some j such that σ(j)(s) < σ(j)(s + 1), or
• ǫs = y and ǫs+1 = y and there is some i such that Σ(i)(s) < Σ(i)(s + 1) or there is

some j such that σ(j)(s) < σ(j)(s + 1).

It follows that s is not a member of Comdes(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) and that the
weight of cell s is 1. If s = n, then s ∈ Comdes(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) if and only
if ǫn = x. Thus if ǫn = y, s is not an element of Comdes(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ))
and the weight of cell s is 1. If ǫn = x, s ∈ Comdes(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) and
that the weight of cell s is t. If s is not the last cell of a brick, then our definitions
ensure that s ∈ Comdes(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) and that the weight of cell s is t.
Therefore w(C) = tcomdes(Σ,σ;ǫ). Thus if C ∈ FixI and C is constructed from a member
of FT,L,ℓ,r1,s1,...,rk,sk

, then

U1(C) = tcomdes(Σ,σ;ǫ)QFHinv(Σ,σ;ǫ)qFHcoinv(Σ,σ;ǫ), and

U2(C) = tcomdes(Σ,σ;ǫ)Qinv(Σ,σ;ǫ)qcoinv(Σ,σ;ǫ).

Finally, if we are given (Σ, σ; ǫ) = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ), then we can construct
a configuration C ∈ FixI such that

U1(C) = tcomdes(Σ,σ;ǫ)QFHinv(Σ,σ;ǫ)qFHcoinv(Σ,σ;ǫ) and

U2(C) = tcomdes(Σ,σ;ǫ)Qinv(Σ,σ;ǫ)qcoinv(Σ,σ;ǫ)

as follows. Let rows of C correspond the sequence of permutations

(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ) : ǫ)

and label the top of column i with X if ǫi = x and with Y if ǫi = y. Next, let

E = {1, . . . , n− 1} − Comdes(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)).

If E = ∅, then C has a single brick of length n and if E = {i1 < · · · < ik}, then we have
bricks ending at i1, . . . , ik, n. Then we label each cell i with a t if i ∈ Comdes(Σ(1), . . . ,
Σ(L), σ(1), . . . , σ(ℓ)) and with a 1 if i /∈ Comdes(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) and i 6= n.
We label the last cell with a 1 if the last cell has a Y at the top of the column and with t
is the last cell has an X at the top of the column. It is then easy to check that C ∈ FixI .
It follows that

∑

C∈Cn

U1(C) =
∑

C∈F ixI

U1(C) = W (1)
n (X, Y, t,Q,q) and

∑

C∈Cn

U2(C) =
∑

C∈F ixI

U2(C) = W (2)
n (X, Y, t,Q,q)
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as desired. This completes the proof of Theorems 1 and 3.
In the next section, we shall show how we can modify this proof to prove a whole family

of extensions of Theorem 1 and 3 to groups of the form Ck ≀ Sn.

5. Permutation Statistics and Generating Functions for Ck ≀ Sn

For the rest of the paper, assume k ≥ 2. An element of Ck ≀ Sn is a pair (σ, ǫ) where
σ ∈ Sn and ǫ ∈ {x1, . . . , xk}

n. Define the following statistics on Ck ≀ Sn. For 1 ≤ d ≤ k,
we call i a descent of type d of (σ, ǫ) if either

(i) ǫ(i) = ǫ(i + 1) and σi > σi+1,
(ii) ǫ(i) = xs and ǫ(i + 1) = xt where s < t, or
(iii) i = n and ǫ(n) ∈ {x1, . . . , xd}.

A pair (i, j) is a FH-inversion (respectively FH-coinversion) of (σ, ǫ) if

(i) i < j, ǫ(i) = ǫ(j) and σi > σj (respectively σi < σj), or
(ii) ǫ(i) = xt and ǫ(j) = xs where t > s and σi > σj .

A pair (i, j) is an inversion (respectively coinversion) of (σ, ǫ) if i < j and σi > σj

(respectively σi < σj), i.e. we say that (i, j) is an inversion (respectively coinversion) of
(σ, ǫ) if it is an inversion (respectively coinversion) of σ.

Let Desd(σ, ǫ) denote the set of all descents of type d for elements (σ, ǫ) ∈ Ck ≀ Sn.
The restriction of (σ, ǫ) to its xi part will be denoted σǫ|xi

for i = 1, . . . , k. The inverses
to these sequences will be denoted σ−1

ǫ|xi
. These are found in the same manner as displayed

in the second 2. Let

inv(σǫ|x1, . . . , σǫ|xk
) = |{(i, j) : ǫ(i) = xt, ǫ(j) = xs, t > s, σi > σj}|

This given, we define the following two statistics for elements (σ, ǫ) ∈ Ck ≀ Sn.

imaj(σ, ǫ) = inv(σǫ|x1
, . . . , σǫ|xk

) +
k
∑

i=1

maj((σ−1)ǫ|xi
)

icomaj(σ, ǫ) = inv(σǫ|x1
, . . . , σǫ|xk

) +
k
∑

i=1

comaj((σ−1)ǫ|xi
).

Our definitions imply that

FHinv(σ, ǫ) = inv(σǫ|x1, . . . σǫ|xk
) +

k
∑

i=1

inv(σǫ|xi
),

FHcoinv(σ, ǫ) = inv(σǫ|x1, . . . σǫ|xk
) +

k
∑

i=1

coinv(σǫ|xi
),

inv(σ, ǫ) = inv(σ), and coinv(σ, ǫ) = coinv(σ).

We will write (σ(1), σ(2), . . . , σ(k); ǫ) for the sequence of elements

(σ(1), ǫ), (σ(2), ǫ), . . . , (σ(k), ǫ)
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of Ck ≀ Sn. For each 1 ≤ d ≤ k, let

Comdesd((σ(1), ǫ), (σ(2), ǫ), . . . , (σ(k), ǫ))

= Comdesd(σ(1), σ(2), . . . , σ(k); ǫ) =
⋂

i

Desd(σ(i), ǫ)

and

comdesd((σ(1), ǫ), (σ(2), ǫ), . . . , (σ(k), ǫ)) = comdesd(σ(1), σ(2), . . . , σ(k); ǫ)

= |Comdesd(σ(1), σ(s), . . . , σ(k); ǫ)|.

We will employ the same convention as found in (1), namely, if Σ = (Σ(1), . . . , Σ(L)) is
a sequence of permutations in Ck ≀ Sn, then we let

Qinv(Σ;ǫ) =
L
∏

i=1

Q
inv(Σ(i),ǫ)
i and qinv(σ;ǫ) =

ℓ
∏

i=1

q
inv(σ(i) ,ǫ)
i

where inv may be replaced with any other statistic. If Σ = (Σ(1), . . . , Σ(L)) and σ =
(σ(1), . . . , σ(ℓ)) are lists of elements in Sn, we let (Σ, σ; ǫ) = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ).

Our Ck ≀ Sn analogues of W (1),W (2), and W (3) are:

W (1,d)
n (X, Y, t,Q,q) =

∑

(Σ,σ;ǫ)

(

k
∏

i=1

X
ℓ(ǫ|xi)
i

)

tcomdesd(Σ,σ;ǫ)QFHinv(Σ;ǫ)qFHcoinv(σ;ǫ),

W (2,d)
n (X, Y, t,Q,q) =

∑

(Σ,σ;ǫ)

(

k
∏

i=1

X
ℓ(ǫ|xi)
i

)

tcomdesd(Σ,σ;ǫ)Qinv(Σ;ǫ)qcoinv(σ;ǫ), and

W (3,d)
n (X, Y, t,Q,q) =

∑

(Σ,σ;ǫ)

k
∏

i=1

(

X
ℓ(ǫ|xi)
i

)

tcomdesd(Σ,σ;ǫ)Qimaj(Σ;ǫ)qicomaj(σ,ǫ)

where the sums run over all ǫ ∈ {x1, . . . , xk}
n and all (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈

(Ck ≀ Sn)L+ℓ. Our next theorem gives a family of generating functions which can be
viewed as natural analogues of Theorem 1 for Ck ≀ Sn.

Theorem 6. For i = 1, i = 2 and d = 1, . . . , k,

∑

n≥0

W
(i,d)
n (X, Y, t,Q,q)un

(Q,Q)n(q,q)n

=
(1− t)

∏d

i=1 J((1− t)Xiu;Q,q)

−t +
∏k

j=1 J((1− t)Xju;Q,q)
.

The fact that W
(1,d)
n (X, Y, t,Q,q) = W

(3,d)
n (X, Y, t,Q,q) can be proved using the same

bijection that Foata and Han used to prove Theorem 2, implying that Theorem 6 holds
when i = 3 as well.

We will prove a more general theorem than Theorem 6 which may be specialized to
give Theorem 6 for either i = 1 or i = 2. Fix nonnegative integers L1, L2, L, ℓ1, ℓ2, and
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ℓ such that L1 + L2 = L and ℓ1 + ℓ2 = ℓ. Let

W (4,d)
n (X1, . . . , Xk, t,Q,q) =

∑

(Σ,σ;ǫ)

(

k
∏

i=1

X
ℓ(ǫ|xi)
i

)

tcomdesd(Σ,σ;ǫ)
L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

×
L
∏

i=L1+1

Q
inv(Σ(i),ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i) ,ǫ)
i

where the sums run over all ǫ ∈ {x1, . . . , xk}
n and all (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈

(Ck ≀ Sn)
L+ℓ. We shall prove the following result.

Theorem 7. For d = 1, . . . , k,

∑

n≥0

W
(4,d)
n (X, Y, t,Q,q)un

(Q,Q)n(q,q)n

=
(1− t)

∏d

i=1 J((1− t)Xiu;Q,q)

−t +
∏k

j=1 J((1− t)Xju;Q,q)
.

Proof. Our idea is that for each d = 1, . . . , k the identity in the statement of the theorem
should be the result of applying a homomorphism ξd to the identity found in (5) for an
appropriate function νd. Indeed, there is a single homomorphism ξ that works for all d.
However, the weighting function νd does vary as d varies.

As before, we can read what the required homomorphism ξ and the required function
νd are from directly from the right hand side of statement of the Theorem 7. This is we
can rewrite (7) as follows:

1 +
∑

n≥1(−1)nun(1− t)n
∑

ai≥0,a1+···+ad=n

∏d

i=1
X

ai
i Q

(ai
2 )

(Q,Q)ai
(q,q)ai

1 +
∑

n≥1(−1)nun(1− t)n−1
∑

fi≥0,f1+···+fk=n

∏k
j=1

X
fi
i Q

(fi
2 )

(Q,Q)fi
(q,q)fi

.

This suggests that for d = 1, . . . , k, we should set

ξ(en) = (1− t)n−1
∑

fj≥0,f1+···+fk=n

k
∏

j=1

XfiQ(fi
2 )

(Q,Q)fi
(q,q)fi

and

ξ(en)− νd(n)ξ(en) =
(1− t)n

∑

ai≥0,a1+···+ad=n

∏d
i=1 XaiQ(n

2)

(Q,Q)ai
(q,q)ai

,

so that νd(n) is equal to

1−
(1− t)n−1

∑

ai≥0,a1+···+ad=n

∏d

i=1 Xn
i Q(ai

2 )

ξ(en)(Q,Q)ai
(q,q)ai

+
t(1− t)n−1

∑

ai≥0,a1+···+ad=n

∏d

i=1 Xai

i Q(ai
2 )

ξ(en)(Q,Q)ai
(q,q)ai

Therefore, to prove Theorem 7, we will show that

ξ(pn,νd
) =

W
(4,d)
n (X, Y, t,Q,q)

(Q,Q)n(q,q)n

or, equivalently,

(Q,Q)n(q,q)nξ(pn,νd
) = W (4,d)

n (X, Y, t,Q,q). (22)
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We begin by using (7) to express pn,νd
in terms of the elementary symmetric functions:

(Q,Q)n(q,q)nξ(pn,νd
) = (Q,Q)n(q,q)n

∑

µ⊢n

(−1)n−ℓ(µ)wν(Bµ,n)ξ(eµ)

=
∑

µ⊢n

(−1)n−ℓ(µ)
∑

T=(b1,...,bm)∈Bµ,n

(Q,Q)n(q,q)nνd(bm)

m
∏

s=1

ξ(ebs
).

Focusing on the (Q,Q)n(q,q)nνd(bm)
∏m

s=1 ξ(ebs
) term, we have for s < m,

ξ(ebs
) = (1− t)bs−1

∑

fj≥0,f1+···+fk=bs

k
∏

j=1

X
fj

j Q(fj
2 )

(Q,Q)fj
(q,q)fj

.

For s = m, we have ξ(ebm
)νd(bm) is equal to

ξ(ebm
)

1

ξ(ebm
)

(

ξ(ebm
)− (1− t)bm−1

∑

ai≥0,a1+···ad=bm

d
∏

i=1

Xai

i Q(ai
2 )

(Q,Q)ai
(q,q)ai

+t(1− t)bm−1
∑

ai≥0,a1+···ad=bm

d
∏

i=1

XaiQ(ai
2 )

(Q,Q)ai
(q,q)ai

)

which in turn is equal to

(1− t)bm−1
∑

(f1,...,fk)∈Ad(bm)

k
∏

j=1

XfjQ(fj
2 )

(Q,Q)fj
(q,q)fj

+ t(1− t)bm−1
∑

(f1,...,fk)∈Bd(bm)

k
∏

j=1

XfjQ(fj
2 )

(Q,Q)fj
(q,q)fj

where

(i) Ad(bm) is the set of k-tuples (f1, . . . , fk) such that
∑k

j=1 fj = bm and at least one
of fd+1, . . . fd is nonzero, and

(ii) Bd(bm − 1) is the set of all tuples (f1, . . . , fk) such that
∑k

j=1 fj = bm and fd+1 =
· · · = fd = 0.

The effect of taking the weight ξ(ebm
) versus the weight νd(bm)ξ(ebm

) is that the terms
corresponding to the sequences (f1, . . . , fk) where fd+1 = · · · = fd = 0 in the summand
for ξ(ebm

) are of the form

(1− t)bm−1
k
∏

j=1

XfjQ(fj
2 )

(Q,Q)fj
(q,q)fj

while the corresponding sequences in the summand for νd(bm)ξ(ebm
) have an extra factor

of t,

t(1− t)bm−1

k
∏

j=1

XfjQ(fj
2 )

(Q,Q)fj
(q,q)fj

.
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Therefore (Q,Q)n(q,q)nξ(pn,ν) is equal to

∑

µ⊢n

(−1)n−ℓ(µ)
∑

T=(b1,...,bm)∈Bµ,n

∑

f i
j
≥0,f i

1+···f i
k
=bi

(1− t)n−ℓ(µ)

(

k
∏

t=1

X
f1

t +···+fm
t

t

)

Q
Pm

i=1

Pk
j=1 (fi

j
2
)

×
(Q,Q)n

∏m
i=1

∏k
j=1(Q,Q)f i

j

(q,q)n
∏m

i=1

∏k
j=1(q,q)f i

j

tχ(fm
d+1+···+fm

k
=0)

which in turn is equal to

∑

µ⊢n

(t− 1)n−ℓ(µ)
∑

T=(b1,...,bm)∈Bµ,n

∑

f i
j≥0,f i

1+···f i
k
=bi

(

k
∏

t=1

X
f1

t +···+fm
t

t

)

tχ(fm
d+1+···+fm

k
=0)

×
L
∏

a=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

Qa

Q
Pm

i=1

Pk
j=1 (fi

j
2
)

a

ℓ
∏

b=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

qb

.

Fix a brick tabloid T = (b1, . . . , bm) ∈ Bµ,n and a sequence f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

such that for all i = 1, . . . , k, f i
1 + · · · f i

k = bi. As in our proofs of Theorem 1 and Theorem
3, the first step is to give a combinatorial interpretation to the term

m
∏

i=1

X
Pk

j=1 f i
j

i

L
∏

a=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

Qa

Q
Pm

i=1

Pk
j=1 (fi

j
2
)

a

×
ℓ
∏

b=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

qb

. (23)

Take the brick tabloid T = (b1, . . . , bm) and divide each brick bi into pieces of size
f i

1, . . . , f
i
k reading from left to right. Place Xj’s at the top of all the cells corresponding to

f 1
j , . . . , fm

j for j = 1, . . . k. Further divide the brick tabloid T into L+ℓ rows and consider
the set of all fillings FT,L,ℓ,f1

k
,...,fm

1 ,...,fm
k

of T with integers such that

(1) within each row s, each brick bi is filled with sets Ri,1,s, Ri,2,s, . . . , Ri,k,s ⊆ {1, . . . , n}

such that |Ri,j,s| = f i
j , the numbers in Ri,j,s occupy the cells 1 +

∑j−1
t=1 f i

t , . . . , f
i
j +

∑j−1
t=1 f i

t within the brick bi in row s and are arranged in decreasing order, and

(2) for each row s,
⋃m

i=1

⋃k
j=1 Ri,j,s = {1, . . . , n}.

If we read to numbers from left to right in the first L rows, we find permutations
Σ(1), . . . , Σ(L) in Sn. If we read to numbers from left to right in the last ℓ rows, we
will obtain permutations σ(1), . . . σ(ℓ) in Sn.

For instance, if k = 3, T = (6, 5), f 1
1 = 2, f 1

2 = 1, f 1
3 = 3, f 2

1 = 2, f 2
2 = 2, f 2

3 = 1, and
L = ℓ = 2, then an element of FT,L,ℓ,f1

1 ,...,f1
k
,...,fm

1 ,...,fm
k

is found in Figure 6.
In the case where there is a single permutation, i.e., when either L = 1 and ℓ = 0 or

L = 0 and ℓ = 1, we shall simply write FT,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

for FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

.

Our goal is to interpret (23) as a weighted sum over all elements

F ∈ FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

.
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Figure 6. A combinatorial object arising from (23).

The q-multinomial coefficient can be interpreted as
[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

q

=
∑

r∈R(1f1
1 ···k

f1
k ···((m−1)k+1)fm

1 ((m−1)k+2)fm
2 ···(mk)

fm
k )

qinv(r).

Similarly,
[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

q

=
∑

r∈R(1f1
1 ···k

f1
k ···((m−1)k+1)fm

1 ((m−1)k+2)fm
2 ···(mk)

fm
k )

qcoinv(r).

Given a rearrangement

r ∈ R(1f1
1 2f1

2 · · · kf1
k · · · ((m− 1)k + 1)fm

1 ((m− 1)k + 2)fm
2 · · · (mk)fm

k ),

we may associate a permutation σr by labeling the 1’s from right to left with 1, . . . , f 1
1 ,

labeling the 2’s from right to left with f 1
1 + 1, . . . , f 1

1 + f 1
2 , etc. Then inv(σr) = inv(r) +

∑m

i=1

∑k

j=1

(

f i
j

2

)

and σ−1
r consists of a list of the positions of the 1’s in r in decreasing

order, followed by a list of positions of the 2’s in r in decreasing order, etc.
For example, suppose n = 11, b1 = 6, b2 = 5, and f 1

1 = 2, f 1
2 = 1, f 1

3 = 3, f 2
1 = 2, f 2

2 = 2
and f 2

3 = 1. Then if we consider the rearrangement r = 1 3 4 2 1 4 3 4 2, we find

r = 1 3 4 2 1 5 3 4 6 3 5 ,
σr = 2 6 8 3 1 10 5 7 11 4 9 ,
σ−1

r = 5 1 4 10 7 2 8 3 11 6 9 .

Such a σ−1
r corresponds to a legitimate filling of one of the rows of a configuration of an

element F of FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

. Since this labeling process can be reversed, the map

r → σ−1
r is bijection from

R(1f1
1 2f1

2 · · · kf1
k · · · ((m− 1)k + 1)fm

1 ((m− 1)k + 2)fm
2 · · · (mk)fm

k )

onto FT,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

. Our labeling insures that

inv(σr) = inv(r) +

m
∑

i=1

k
∑

j=1

(

f i
j

2

)

and coinv(σr) = coinv(r).
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Since inv(σr) = inv(σ−1
r ) and coinv(σr) = coinv(σ−1

r ), it follows that

q
Pm

i=1

Pk
j=1 (fi

j
2
)
[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

q

=
∑

σ∈F
T,f1

1 ,...,f1
k

,...,fm
1 ,...,fm

k

qinv(σ) and (24)

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

q

=
∑

σ∈F
T,f1

1 ,...,f1
k

,...,fm
1 ,...,fm

k

qcoinv(σ). (25)

It follows from (24) and (25) that if we let ǫ = x
f1
1

1 · · ·x
f1

k

k · · ·x
f1

m

1 · · ·x
f1

m

k , then we have
the following.

Lemma 8.

k
∏

j=1

X
f1

j +···+fm
j

j

L
∏

a=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

Qa

Q
Pm

i=1

Pk
j=1 (fi

j
2
)

a

×
ℓ
∏

b=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

qb

=

k
∏

j=1

X
ℓ(ǫ|xj)
j

∑

F=(Σ(1),...,Σ(L),σ(1),...,σ(ℓ))∈F
T,L,ℓ,f1

1 ,...,f1
k

,...,fm
1 ,...,fm

k

Qinv(Σ(1),...,Σ(L);ǫ)qcoinv(σ(1) ,...,σ(ℓ);ǫ).

Next we show that modifications of our labeling allows us to prove an analogue of
Lemma 8 where we replace the statistics inv and coinv with FHinv and FHcoinv.

Given a rearrangement

r ∈ R(1f1
k · · ·mfm

k (m+1)f1
k−1 · · · (2m)fm

k−1 · · · ((k−1)m+1)f1
1 ((k−1)m+2)f2

1 · · · (km)fm
1 ),

we can associate a permutation σr by labeling the 1’s from right to left with 1, . . . , f 1
k ,

labeling the 2’s from right to left with f 1
k + 1, . . . , f 1

k + f 2
k , etc. As before, σ−1

r consists of
a list of the positions of the 1’s in r in decreasing order, followed by a list of positions of
the 2’s in r in decreasing order, etc.

For example, suppose that n = 11, b1 = 6, b2 = 5, and f 1
1 = 2, f 1

2 = 1, f 1
3 = 3, f 2

1 =
2, f 2

2 = 2, f 2
3 = 1 and we consider the rearrangement r = 6 1 5 1 2 1 4 2 5 4 6 3. Since in

the end we want the positions corresponding to the f i
j ’s weighted by Xj, we place the Xj

on top of all the numbers corresponding to f i
j ’s. Doing this, we would find

X1 X3 X1 X3 X2 X3 X2 X3 X1 X2 X1

r = 6 1 5 1 3 1 4 2 5 4 6

X1 X3 X1 X3 X2 X3 X2 X3 X1 X2 X1

σr = 11 3 9 2 5 1 7 4 9 6 10

and

X3 X3 X3 X3 X2 X2 X2 X1 X1 X1 X1

σ−1
r = 6 4 2 8 5 10 7 9 3 11 1
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At this point σ−1
r does not correspond to a legitimate filling of a configuration of

an element in FT,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

since it consists of decreasing sequences of lengths

f 1
k , . . . , fm

k , . . . , f 1
1 , f 2

1 , . . . , fk
1 . However, we can obtain a legitimate filling of a configu-

ration of F ∈ FT,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

by rearranging the decreasing sequences corresponding

to f i
j so that the decreasing sequences correspond to the order f 1

1 , . . . , f 1
k , . . . , fm

1 , . . . , fm
k .

Let us call the result of this rearrangement σ∗
r . In our example.

X1 X1 X2 X3 X3 X3 X1 X1 X2 X2 X3

σ∗
r = 9 3 5 6 4 2 11 1 10 7 8

If we let ǫ = x
Pm

i=1 f i
k

k · · ·x
Pm

i=1 f i
1

1 and ǫ∗ = x
f1
1

1 · · ·x
f1

k

k · · ·x
f1

m

1 · · ·x
f1

m

k , it may be seen that,
since in σ−1

r , all the Xm’s precede all the Xi’s for i = 1, . . . , m− 1, all the Xm−1’s precede
all the Xi’s for i = 1, . . . , m− 2, etc., we have

m
∑

i=1

k
∑

j=1

(

f i
j

2

)

+ inv(r) = inv(σr)

= inv(σ−1
r )

=

k
∑

j−1

inv((σ−1
r )ǫ|xj

) +
∑

i,j

χ(ǫi = xt, ǫj = xs, t > s, (σ−1
r )i > (σ−1

r )j)

=

k
∑

j=1

inv((σ∗
r )ǫ∗|xj

) +
∑

i,j

χ(ǫi = xt, ǫj = xs, t > s, (σ∗
r)i > (σ∗

r )j)

= FHinv(σ∗
r).

It follows that

q
Pm

i=1

Pk
j=1 (fi

j
2
)
[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

q

=
∑

σ∈F
T,f1

1 ,...,f1
k

,...,fm
1 ,...,fm

k

qFHinv(σ). (26)

We also need to prove that
[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

q

=
∑

σ∈F
T,f1

1 ,...,f1
k

,...,fm
1 ,...,fm

k

qFHcoinv(σ). (27)

This case requires a slightly different labeling. Given a rearrangement

r ∈ R(1f1
1 · · ·mfm

1 · · · ((k − 1)m + 1)f1
k · · · (km)fm

k ),

we may associate a permutation σr by labeling the 1’s from right to left with 1, . . . , f 1
1 ,

labeling the 2’s from right to left with f 1
1 + 1, . . . , f 1

1 + f 2
1 , etc. As before, σ−1

r consists
of a list of the positions of the 1’s in r in decreasing order, followed by a list of positions
of the 2’s in r in decreasing order, etc. For example, consider the case where n = 11,
b1 = 6, b2 = 5, and f 1

1 = 2, f 1
2 = 1, f 1

3 = 3, f 2
1 = 2, f 2

2 = 2, f 2
3 = 1 and the rearrangement

r = 1 5 6 2 2 4 3 5 4 1 5. Placing an Xj on top of all the numbers corresponding to f i
j ’s,

we find
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X1 X3 X3 X1 X1 X2 X2 X3 X2 X1 X3

r = 1 5 6 2 2 4 3 5 4 1 5

X1 X3 X3 X1 X1 X2 X2 X3 X2 X1 X3

σr = 2 10 11 4 3 7 5 9 6 1 8

and

X1 X1 X1 X1 X2 X2 X2 X3 X3 X3 X3

σ−1
r = 10 1 5 4 7 9 6 11 8 2 3.

At this point σ−1
r does not correspond to a legitimate filling of a configuration of

a member of FT,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

. To find a legitimate filling, move the decreasing se-

quences corresponding to f i
j so that the decreasing sequences correspond to the order

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k . This rearrangement will be called σ∗∗
r .

In our example,

X1 X1 X2 X3 X3 X3 X1 X1 X2 X2 X3

σ∗∗
r = 10 1 7 11 8 2 5 4 9 6 3

By letting ǫ = x
Pm

i=1 f i
1

1 · · ·x
Pm

i=1 f i
k

k and ǫ∗∗ = x
f1
1

1 · · ·x
f1

k

k · · ·x
f1

m

1 · · ·x
f1

m

k , we see that coinv(r),
coinv(σr), and coinv(σ−1

r ) are all equal to

k
∑

j−1

coinv((σ−1
r )ǫ|xj

) +
∑

i,j

χ(ǫi = xt, ǫj = xs, t > s, (σ−1
r )i > (σ−1

r )j).

However, this is equal to

k
∑

j=1

coinv((σ∗∗
r )ǫ∗∗|xj

) +
∑

i,j

χ(ǫi = xt, ǫj = xs, t > s, (σ∗∗
r )i > (σ∗∗

r )j),

which in turn is equal to FHcoinv(σ∗∗
r ). This shows that (27) holds.

Combining the results from (24), (25), (26), and (27), if we let

ǫ = x
f1
1

1 · · ·x
f1

k

k · · ·x
f1

m

1 · · ·x
f1

m

k ,

L = L1 + L2, and ℓ = ℓ1 + ℓ2, then we arrive at the following lemma.
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Lemma 9.

k
∏

j=1

X
Pm

i=1 f i
j

j

L
∏

a=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

Qa

Q
Pm

i=1

Pk
j=1 (fi

j
2
)

a

×
ℓ
∏

b=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

qb

=
k
∏

j=1

X
ℓ(ǫ|xj)
j

∑

F=(Σ(1),...,Σ(L),σ(1),...,σ(ℓ))∈F
T,L,ℓ,f1

1
,...,f1

k
,...,fm

1
,...,fm

k

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

×
L
∏

i=L1+1

Q
inv(Σ(i) ,ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i),ǫ)
i .

We now are in position to give our combinatorial interpretation of (Q, Q)n(q, q)nξ(pn,νd
).

Recall that we have shown (Q, Q)n(q, q)nξ(pn,νd
) is equal to

∑

µ⊢n

(t− 1)n−ℓ(µ)
∑

T=(b1,...,bm)∈Bµ,n

∑

f i
j≥0,f i

1+···f i
k
=bi

(

k
∏

t=1

X
f1

t +···+fm
t

t

)

tχ(fm
d+1+···+fm

k
=0)

×
L
∏

a=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

Qa

Q
Pm

i=1

Pk
j=1 (fi

j
2
)

a

ℓ
∏

b=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

qb

.

(28)

We interpret (28) as follows. For each brick T = (b1, . . . , bm) ∈ Bµ,n and for each choice
for the values of f 1

1 , . . . , f 1
k , . . . , fm

1 , . . . , fm
k from the sums

∑m

i=1

∑

f i
1+···+f i

k
=bi

, the term

k
∏

j=1

X
Pm

i=1 f i
j

j

L
∏

a=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

Qa

Q
Pm

i=1

Pk
j=1 (fi

j
2
)

a

×
ℓ
∏

b=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

qb

can be viewed as the sum

k
∏

j=1

X
ℓ(ǫ|xj)
j

∑

F=(Σ(1),...,Σ(L),σ(1),...,σ(ℓ))∈F
T,L,ℓ,f1

1
,...,f1

k
,...,fm

1
,...,fm

k

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

×
L
∏

i=L1+1

Q
inv(Σ(i),ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i),ǫ)
i

where ǫ = x
f1
1

1 · · ·x
f1

k

k · · ·x
f1

m

1 · · ·x
f1

m

k .
If fm

d+1 + · · ·+ fm
k 6= 0, then we have a factor of (t− 1)n−ℓ(µ). For each

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ))
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Figure 7. An example of a configuration arising from (28).

in FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

, create a new set of weighted objects by placing a t or a −1 in
cell of T which is not at the end of a brick and placing a 1 in each cell which at the end
of the brick.

For example, if we let k = 3, d = 2, T = (6, 5) and f 1
1 = 2, f 1

2 = 1, f 1
3 = 3, f 2

1 = 2, f 2
2 =

2, f 2
3 = 1, then we would obtain configuration C as the one pictured in Figure 7. We then

let w(C) be the product of the all the −1’s, t’s, Xj’s appearing in the configuration. For
the configuration appearing in Figure 7, w(C) = −t6X4

1X
3
2X

4
3 .

If fm
d+1 + · · · + fm

k = 0, then we have a factor of t(t − 1)n−ℓ(µ). As before, for each

member F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) of the set FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

, we create a
new set of weighted objects by placing a t or a −1 in cell of T which is not at the end of
a brick and placing a 1 in each cell which at the end of the brick which is not the final
brick and placing a t in the last cell of the final brick.

Let CT,L,ℓ,f1
1 ,...,f1

k
,f2

1 ,...,f2
k
,...,fm

1 ,...,fm
k

denote the set of all configurations C constructed from

one of the F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈ FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

and let

Cn =
⋃

µ⊢n

⋃

T=(b1,...,bm)∈Bµ,n

m
⋃

i=1

⋃

f i
1+···f i

m=bi

CT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

.

If C ∈ CT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

is constructed from an element

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ))

which is a member of FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

, then we let

Ud(C) = w(C)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

L
∏

i=1+L1

Q
inv(Σ(i),ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i) ,ǫ)
i .

It follows that

(Q,Q)n(q,q)nξ(pn,νd
) =

∑

C∈Cn

Ud(C). (29)

In order to use (22) and (29) to prove Theorem 7, we need to show that
∑

C∈Cn

Ud(C) = W (4,d)
n (X1, . . . , Xk, t,Q,q). (30)
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Figure 8. The image of Figure 7 under I

To do this, we will define a sign-reversing involution I on Cn so that the fixed points of I
will give the desired right hand side of (30). Our involution I is essentially the same as
the one we used in the proofs of Theorems 1 and 3.

To define I, we first need the concept of when a sequence of cells in C forms a decreasing
sequence. Suppose C is constructed from F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) which is a
member of the set
FT,L,ℓ,f1

1 ,...,f1
k
,...,fm

1 ,...,fm
k

. Then we say that a sequence of cells in c, . . . , c + k in C forms a
decreasing sequence if

(i) the labels at the top of the cells c, c + 1, . . . , c + k when read from left to right is
a word of the form Xu1

1 · · ·X
uk

k for some ui ≥ 0 and
(ii) the entries in each of the rows corresponding to Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ) are

decreasing in cells whose labels are Xj for j = 1, . . . k.

By definition, the cells corresponding to each brick in a configuration C ∈ Cn form a
decreasing sequence. This given, we can define our involution I as follows.

Given C ∈ Cn, scan the cells of the C from left to right until either

• Case 1: there is a cell c with a −1 in which case I(C) is the result of changing the
weight cell c to 1 and breaking the brick bi which contains cell c into two bricks b′

and b′′ where b′ ends at cell c, or
• Case 2: we find two consecutive bricks bi and bi+1 such that cells corresponding to

bi and bi+1 form a decreasing sequence in which case I(C) is the result of combining
bricks bi and bi+1 into a single brick b and changing the weight of the last cell of
bi from 1 to −1.

If neither Case 1 or Case 2 holds, let I(C) = C.
For example, if we consider the configuration C pictured in Figure 7, then we are Case

1 with cell c equal to cell 4 so that I(C) = C ′ where C ′ is pictured in Figure 8. However,
C ′ is in Case 2 because we can combine bricks b1 and b2 so that I(C ′) is equal to C.

The definitions of I leave the permutations (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) unchanged.
Moreover, since we do not change any of the labels at the top of the column, it follows
that if cell n has an Xi for some i ∈ {1, . . . , d} at the top of the column, then cell n of
both C and I(C) must have an Xi for some i ∈ {1, . . . , d} and hence the weight of cell n
in both C and I(C) is equal to t.
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Our definitions ensure that if I(C) 6= C, then Ud(C) = −Ud(I(C)) and I(I(C)) = C.
Let FixI = {C ∈ Cn : I(C) = C}. Then I shows that

∑

C∈Cn

Ud(C) =
∑

C∈F ixI

Ud(C).

What are the fixed points of I? Suppose that C ∈ FixI and C is constructed from an
element F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) of the set FT,L,ℓ,f1

1 ,...,f1
k
,...,fm

1 ,...,fm
k

. Then no cell
of C can have label −1 and the sequence of cells in any two consecutive bricks do not
form a decreasing sequence. This means that if bi and bi+1 are two consecutive bricks in

C, s is last cell in bi, s+1 is the first cell of bi+1, and ǫ = x
f1
1

1 x
f1
2

2 · · ·x
f1

k

k · · ·x
fm
1

1 x
fm
2

2 · · ·x
fm

k

k ,
then either

(a) ǫs = xi and ǫs+1 = xj for some i > j, or
(b) ǫs = xj and ǫs+1 = xj for some i = j, . . . , k and there is some i such that Σ(i)(s) <

Σ(i)(s + 1) or there is some r such that σ(r)(s) < σ(r)(s + 1).

It follows that s 6∈ Comdesd(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) and that the weight of cell s
is 1. For s = n, our definitions ensure that s ∈ Comdesd(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) if
and only if ǫn = xi for some i in {1, . . . , d}. Thus if ǫn = xj for some j ∈ {d + 1, . . . , k},
then n 6∈ Comdesd(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) and cell n has weight 1. If ǫn = xi

where i ∈ {1, . . . , d}, then n ∈ Comdesd(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) and the weight
of cell n is t. If s is not the last cell of a brick, then our definitions ensure that if
s ∈ Comdesd(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ), then the weight of cell s is t. It follows that

w(C) = tcomdesd(Σ,σ;ǫ).
Thus if C ∈ FixI and C is constructed from an element

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ)

of the set FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

, then

Ud(C) = tcomdesd(Σ,σ,ǫ)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

L
∏

i=1+L1

Q
inv(Σ(i),ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i),ǫ)
i .

Finally, suppose that we are given (Σ, σ, ǫ) = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ), then we
can construct a configuration C ∈ FixI such that

U(C) = tcomdesd(Σ,σ,ǫ)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

L
∏

i=1+L1

Q
inv(Σ(i) ,ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i) ,ǫ)
i

as follows. Let the rows of C correspond to the sequence (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) and
label the top of column i with Xj if ǫi = xj . Next, let

E = {1, . . . , n− 1} − Comdesd(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ).

If E = ∅, then C has a single brick of length n and if E = {i1 < · · · < ik}, then we have
bricks ending at i1, . . . , ik, n. Label each cell i with a t if i ∈ Comdesd(Σ(1), . . . , Σ(L), σ(1),
. . . , σ(ℓ)) and with a 1 if i /∈ Comdesd(Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)). Then C ∈ FixI .
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Therefore,
∑

C∈Cn

Ud(C) =
∑

C∈F ixI

Ud(C) = W (4,d)
n (X, Y, t,Q,q).

This completes the proof. �

6. Further generalizations of Theorem 7

Theorem 7 specializes to give all previous theorems recorded in this document. It is
the most general theorem in this paper up to this point. However, there are still further
generalizations which may be found using the methods we are presenting. To show that
this is the case, this section extends Theorem 7 according to certain restrictions on the
set of common descents. Given a tuple of permutations in Ck ≀ Sn, (Σ, σ; ǫ), we shall say
that it has a final common decreasing segment of size s if {n−s+1, . . . , n−1} is a subset
of Comdesd((Σ, σ; ǫ)) and n− s /∈ Comesd((Σ, σ; ǫ)). Then the goal of this section is to
derive generating functions for tuples of permutations in Ck ≀Sn according to the statistics
in Theorem 7 which either have a final common decreasing sequence of size at least s or
size exactly s for any given s ≥ 1.

The method we used to prove Theorem 7 can be summarized as follows. First we
had a desired generating function in mind. Next we rewrote that generating func-
tion in order to read the homomorphism ξ and the weighting function νd. Then we
built combinatorial objects to interpret (Q,Q)n(q,q)nξ(pn,νd

) Finally we found a weight
preserving sign reversing involution to simplify this collection of objects to prove that

(Q,Q)n(q,q)nξ(pn,νd
) = W

(4,d)
n (X1, . . . , Xk, t,Q,q).

In this section, we shall do something a bit different. We will not have a generating
function in mind when trying to simplify a certain permutation statistic. Instead, we
will take the already known homomorphism ξ and weighting function νd and alter them
a bit. As a result, the combinatorial objects we constructed will be altered accordingly.
Then, the same involution I will simplify things to leave a desired set of objects. In short,
instead of being lead by the generating function, we will be lead by the combinatorics.

As in the previous section, let

ξ(en) = (1− t)n−1
∑

fj≥0,f1+···+fk=n

k
∏

j=1

XfiQ(fi
2 )

(Q,Q)fi
(q,q)fi

.

Instead of keeping νd such that νd(n) is equal to

1−
(1− t)n−1

∑

ai≥0,a1+···+ad=n

∏d

i=1 Xn
i Q(ai

2 )

ξ(en)(Q,Q)ai
(q,q)ai

+
t(1− t)n−1

∑

ai≥0,a1+···+ad=n

∏d

i=1 Xai

i Q(ai
2 )

ξ(en)(Q,Q)ai
(q,q)ai

,
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we make an adjustment. Let s ≥ 1 be an integer and define νd,s(n) = (t/(t− 1)s−1χ(n ≥
s)νd(n) for d = 1, . . . , k. Thus νd,s is the function such that

νd,s(n) =







0 if n < s and
(

t

t− 1

)s−1

νd(n) if n ≥ s.
(31)

for all n = 1, 2, . . . . Note νd,1 = νd. The effect of this modification will occur in the
last brick of a combinatorial object because (6) tells us that the function νd,s changes the
weight on the last brick in a weighted brick tabloid.

This change is relatively easy to describe. We can proceed exactly as in the proof of
Theorem 7 to show that (Q,Q)n(q,q)nξ(pn,νd,s

) is equal to

∑

µ⊢n

(t− 1)n−ℓ(µ)
∑

T=(b1,...,bm)∈Bµ,n

m
∑

i=1

∑

f i
1+···+f i

k
=bi

k
∏

j=1

X
Pm

i=1 f i
j

j (t/(t− 1))s−1χ(bm ≥ s)

×
L
∏

a=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

Qa

Q
Pm

i=1

Pk
j=1 f i

j

×
ℓ
∏

b=1

[

n

f 1
1 , . . . , f 1

k , . . . , fm
1 , . . . , fm

k

]

qb

tχ(fm
d+1+···+fm

k
=0). (32)

The difference in this case is the extra factor of (t/(t− 1)sχ(bm ≥ s) that arises from
replacing νd(n) by νd,s(n). We can then interpret (32) as a sum over weighted configura-
tions

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈ FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

as in the the proof of Theorem 7 with two modifications. First the factor χ(bm ≥ s) has
the effect of eliminating all brick tabloids T = (b1, . . . , bm) in the sum in (32) such that
bm < s. Thus the only configurations that we need to consider have an underlying brick
tabloid T whose last brick has length greater than or equal to s. Now if (b1, . . . , bm) is such
that bm ≥ s, then there will be a factor of (t− 1)n−ℓ(µ)(t/(t− 1)s−1tχ(fm

d+1+···+fm
k

=0) which

can be rewritten as ts−1(t− 1)bm−1−(s−1)tχ(fm
d+1+···+fm

k
=0)
∏m−1

i=1 (t− 1)bi−1. This term then
effects the weight of a configuration as follows. For each of brick bi with i < m, we weight
the cells as before, namely, the last cell in the brick gets weight 1 and every other cell
can have weight t or −1. We use the remaining factor ts−1(t−1)bm−1−(s−1)tχ(fm

d+1+···+fm
k

=0)

to weight the cells of the last brick of the configuration as follows. First the last cell
gets weight 1 or t depending on whether the label Xi at the top of the last column has
i ∈ {d+1, . . . , k} or has i ∈ {1, . . . , d}. We then use the factor ts−1 to weight the s−1 cells
immediately to the left of the last cell of bm with t and we use the factor (t− 1)bm−1−(s−1)

to weight the remaining cells of bm with either t or −1. As before, we let w(C) be the
product of all the −1’s, t’s, and Xi’s appearing in the configuration.

Let Cs
T,L,ℓ,f1

1 ,...,f1
k
,f2

1 ,...,f2
k
,...,fm

1 ,...,fm
k

denote the set of all configurations C constructed from

one of the F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ)) ∈ FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

where bm ≥ s in this
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manner and let

Cs
n =

⋃

µ⊢n

⋃

T=(b1,...,bm),bm≥s)∈Bµ,n

m
⋃

i=1

⋃

f i
1+···f i

m=bi

Cs
T,L,ℓ,f1

1 ,...,f1
k
,...,fm

1 ,...,fm
k

.

If C ∈ Cs
T,L,ℓ,f1

1 ,...,f1
k
,...,fm

1 ,...,fm
k

is constructed from an element

F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ))

which is a member of FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

, then we let

Ud,s(C) = w(C)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

L
∏

i=1+L1

Q
inv(Σ(i) ,ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i) ,ǫ)
i .

It follows that
(Q,Q)n(q,q)nξ(pn,νd,s

) =
∑

C∈Cs
n

Ud(C). (33)

We can apply the same involution I to Cs
n that we used in Theorem 7. Note that since the

s− 1 cells immediately to the left of last cell in each configuration are labeled with t, we
will never try to split the last brick at any one of those cells and hence our involution will
automatically ensure that the image of any element in Cs

n will have its last brick of size ≥ s
and, hence, I maps Cs

n onto Cs
n. The fixed points of I restricted to Cs

n will be exactly the
same as in Theorem 7 with the added condition that the size of the last brick is ≥ s. Thus
if C ∈ FixI∩C

s
n and C is constructed from an element F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ)

of the set FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

, then just as before we will have that

Ud(C) = tcomdesd(Σ,σ,ǫ)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

L
∏

i=1+L1

Q
inv(Σ(i),ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i),ǫ)
i .

However, since the last brick is of size at least s, then we are guaranteed that

{n− s + 1, . . . , n− 1} ∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ).

Finally if F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) is an element of the set FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

is such that {n− s+ 1, . . . , n− 1} ∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ), then we can
use same argument as in Theorem 7 to show that we can construct a unique C ∈ FixI∩C

s
n

whose underlying configuration is F .
Now if we let

W (4,d,s)
n (X1, . . . , Xk, t,Q,q) =

∑

(Σ,σ;ǫ)

(

k
∏

i=1

X
ℓ(ǫ|xi)
i

)

tComdesd(Σ,σ;ǫ)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

×
L
∏

i=1+L1

Q
inv(Σ(i) ,ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i),ǫ)
i .

where the sum runs over all ǫ ∈ {x1, . . . , xk}
n and (Σ, σ) ∈ (Ck ≀ Sn)L+ℓ such that {n −

s + 1, . . . , n− 1} is contained in Comdesd((Σ, σ; ǫ)), then it follows that

(Q,Q)n(q,q)nξ(pn,νd,s
) = W (4,d,s)

n (X1, . . . , Xk, t,Q,q). (34)
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Hence
∑

n≥0

un

(Q,Q)n(q,q)n

W (4,d,s)
n (X1, . . . , Xk, t,Q,q) = 1 +

∑

n≥1

ξ(pn,νd,s
)un

=
1 +

∑

n≥1(−1)nun(ξ(en)− νd,s(n)ξ(en))
∑

n≥0(−1)nunξ(en)
. (35)

Now the denominator on the right-hand side of (35) is

∑

n≥0

(−1)nunξ(en) =
∑

n≥0

(−1)nun(1− t)n−1
∑

bj≥0,b1+···+bk=n

k
∏

j=1

XjQ
(bj

2 )

(Q,Q)bj
(q,q)bj

=
1

1− t



1− t +
∑

n≥1

(−1)nun(1− t)n
∑

bj≥0,b1+···+bk=n

k
∏

j=1

XjQ
(bj

2 )

(Q,Q)bj
(q,q)bj





=
1

1− t

(

−t +
k
∏

j=1

J((1− t)Xju,Q,q)

)

.

The numerator on the right-hand side of (35) is

1 +
∑

n≥1

(−1)nun(ξ(en)− νd,s(n)ξ(en))

= 1 +
∑

n≥1

(−1)nunξ(en)−
∑

n≥s

(−1)nun

(

t

t− 1

)s−1

×

(

ξ(en)− (1− t)n
∑

ai≥0,a1+···+ad=n

d
∏

i=1

Xai

i Q(ai
2 )

(Q,Q)ai
(q,q)ai

)

=

(

1−

(

t

t− 1

)s−1
)(

1 +
∑

n≥1

(−1)nunξ(en)

)

+

(

t

t− 1

)s−1
(

1 +

s−1
∑

n=1

(−1)nunξ(en)

)

+

(

t

t− 1

)s−1
(

1 +
∑

n≥1

(−1)nun(1− t)n
∑

ai≥0,a1+···+ad=n

d
∏

i=1

Xai

i Q(ai
2 )

(Q,Q)ai
(q,q)ai

)

−

(

t

t− 1

)s−1
(

1 +
s−1
∑

n=1

(−1)nun(1− t)n
∑

ai≥0,a1+···+ad=n

d
∏

i=1

Xai

i Q(ai
2 )

(Q,Q)ai
(q,q)ai

)

=

(

1−

(

t

t− 1

)s−1
)(

1

1− t

(

−t +

k
∏

j=1

J((1− t)Xju,Q,q)

))

+

(

t

t− 1

)s−1
(

d
∏

i=1

J((1− t)Xiu,Q,q)

)
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+

(

t

t− 1

)s−1 s−1
∑

n=1

(−1)nun

×

(

ξ(en)− (1− t)n
∑

ai≥0,a1+···+ad=n

d
∏

i=1

Xai

i Q(ai
2 )

(Q,Q)ai
(q,q)ai

)

=

(

1−

(

t

t− 1

)s−1
)(

1

1− t
(−t +

k
∏

j=1

J((1− t)Xju,Q,q))

)

+

(

t

t− 1

)s−1
(

d
∏

i=1

J((1− t)Xiu,Q,q)

)

+

(

t

t− 1

)s−1 s−1
∑

n=1

(−1)nun(1− t)n−1

×
∑

bj≥0,b1+···+bk=n

tχ(bd+1+···+bk=0)
k
∏

j=1

X
bj

j Q(ai
2 )

(Q,Q)bj
(q,q)bj

.

It then follows that we have the following theorem.

Theorem 10. For all k ≥ 2, d = 1, . . . , k, and s ≥ 1,
∑

n≥0

un

(Q,Q)n(q,q)n

W (4,d,s)
n (X1, . . . , Xk, t,Q,q)

=

(

1−

(

t

t− 1

)s−1
)

+

(

t

t− 1

)s−1
(1− t)

∏d

i=1 J((1− t)Xiu,Q,q)

−t +
∏k

j=1 J((1− t)Xju,Q,q)

+

(

t

t− 1

)s−1
∑s−1

n=1(−1)nun(1− t)n
∑

bj≥0,b1+···+bk=n tχ(bd+1+···+bk=0)
∏k

j=1

X
bj
j Q

(bj
2 )

(Q,Q)bj
(q,q)bj

−t +
∏k

j=1 J(u(1− t)Xj ,Q,q)
.

Next we present another modification which will product a generating functions for
those tuples of permutations (Σ, σ; ǫ) in Ck ≀ Sn such that {n − s + 1, . . . , n − 1} ⊆
Comdesd((Σ, σ; ǫ)) but n − s /∈ Comdesd((Σ, σ; ǫ)) That is, for d = 1, . . . , k, define a
function νd,s such that

νd,s(n) =



























0 if n < s,
(

t

t− 1

)s−1

νd(n) if n = s, and
(

−1

t− 1

)(

t

t− 1

)s−1

νd(n) if n > s.

for all n = 1, 2, . . . . Again the effect of this modification will occur in the last brick of a
combinatorial object because (6) tells us that the function νd,s changes the weight on the
last brick in a weighted brick tabloid.
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Figure 9. A combinatorial object coming from ξ and νd,3.

This change is also relatively easy to describe. Suppose the last brick of the underlying
brick tabloid of a configuration has a length b. If b < s, then the weight assigned by
νd,s is 0 as before. If b = s, then we use the extra factor of (t/(t − 1))s−1 that occurs
in the νd,s(s) to ensure that the weights of each of the s− 1 cells immediately preceding
the last cell of the configuration is t. If b > s, then we again we use the extra factor of
(t/(t − 1))s−1 that occurs in the νd,s(b) to ensure that the weights of each of the s − 1
cells immediately preceding the last cell of the configuration is t. However, in this case,
we have another factor of (−1)/(t − 1) which use to ensure that the next cell to left has
weight −1. That is, if b > s, we would take a combinatorial object as found in the proof
of Theorem 7, erase the final s choices of either −1 or t made at the end of the last brick
(the last cell in the brick will still be 1 or t). Then, the sequence −1 t t · · · t would be
placed in the cells instead. We let C

s

n denote the set of configurations that we can produce
in this manner.

An example of a configuration in C
s

n when s = 3 may be found in Figure 9.
The exact same involution I may be used to simplify the set of objects in C

s

n. Note that
if the last brick of a configuration C has length > s, then either we use the label −1 that
is forced on cell n− s to split at cell n− s so that I(C) will have its last brick of size s or
the involution either splits or combines bricks as some cell to the left of n−s in which case
the labels on the cells n−s, . . . , n−1 are not effected. Thus our involution I maps C

s

n onto
C

s

n. Since the fixed points of I have no cell with weight −1, it must be that all elements
of FixI ∩ C

s

n have a last brick of size s. Thus if C ∈ FixI ∩ C
s

n and C is constructed from
an element F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) of the set FT,L,ℓ,f1

1 ,...,f1
k
,...,fm

1 ,...,fm
k

, then just
as before we will have that

Ud(C) = tcomdesd(Σ,σ,ǫ)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

L
∏

i=1+L1

Q
inv(Σ(i),ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i),ǫ)
i .

However, since the last brick is of size s, then we are guaranteed that

{n− s + 1, . . . , n− 1} ∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ)

and n− s /∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ). Finally by the same argument that
we used in Theorem 7, we can show that if F = (Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) of the set
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FT,L,ℓ,f1
1 ,...,f1

k
,...,fm

1 ,...,fm
k

is such that

{n− s + 1, . . . , n− 1} ∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) and

n− s /∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ),

then we can construct a unique fixed C ∈ FixI ∩C
s

n whose underlying configuration is F .
Now if we let

W
(4,d,s)

n (X1, . . . , Xk, t,Q,q) =
∑

(Σ,σ;ǫ)

(

k
∏

i=1

X
ℓ(ǫ|xi)
i

)

tComdesd(Σ,σ;ǫ)

L1
∏

i=1

Q
FHinv(Σ(i),ǫ)
i

×
L
∏

i=1+L1

Q
inv(Σ(i) ,ǫ)
i

ℓ1
∏

i=1

q
FHcoinv(σ(i),ǫ)
i

ℓ
∏

i=1+ℓ1

q
coinv(σ(i) ,ǫ)
i

where the sum runs over all ǫ ∈ {x1, . . . , xk}
n and (Σ, σ) ∈ (Ck ≀ Sn)L+ℓ such that

{n− s + 1, . . . , n− 1} ∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ) and

n− s /∈ Comesd((Σ(1), . . . , Σ(L), σ(1), . . . , σ(ℓ); ǫ),

then we have shown that

(Q,Q)n(q,q)nξ(pn,νd,s
) = W

(4,d,s)

n (X1, . . . , Xk, t,Q,q). (35)

It follows that
∑

n≥0

un

(Q,Q)n(q,q)n

W
(4,d,s)

n (X1, . . . , Xk, t,Q,q)

= 1 +
∑

n≥1

ξ(pn,νd,s
)un

=
1 +

∑

n≥1(−1)nun(ξ(en)− νd,s(n)ξ(en))
∑

n≥0(−1)nunξ(en)
. (36)

We can then carry out a computation similar to the one we used to prove Theorem 10
to prove the following theorem.

Theorem 11. For all k ≥ 2, d = 1, . . . , k, and s ≥ 1,

∑

n≥0

un

(Q,Q)n(q,q)n

W
(4,d,s)

n (X1, . . . , Xk, t,Q,q) =

(

1 +
ts−1

(t− 1)s

)

+

(

t

t− 1

)s−1 ∏d

i=1 J((1− t)Xiu,Q,q)

−t +
∏k

j=1 J((1− t)Xju,Q,q)

−
ts−1

(t− 1)s

∑s

n=1(−1)nun(1− t)n
∑

bj≥0,b1+···+bk=n tχ(n=s)tχ(bd+1+···+bk=0)
∏k

j=1

X
bj
j Q

(bj
2 )

(Q,Q)bj
(q,q)bj

−t +
∏k

j=1 J((1− t)Xju,Q,q)
.

(37)
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