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MAGIC SQUARES, ROOK POLYNOMIALS AND
PERMUTATIONS

FANJA RAKOTONDRAJAO

Abstract. We study in this paper the set of magic squares and their
relation with some restricted permutations.

Résumé. Nous étudions dans cet article l’ensemble des carrés magiques et
leur relation avec des permutations spéciales.

1. Introduction

The oldest magic square
(

4 9 2
3 5 7
8 1 6

)
first appeared in ancient Chinese literature

under the name Lo Shu two thousands years BC. The reader is likely to
have encountered such objects, which following Ehrhart [2] are referred to as
historical magic squares. These are square matrices of order n whose entries
are nonnegative integers {1, . . . , n2} and whose rows and columns and the
main diagonals sum up to the same number, which is called the magic sum.
MacMahon [7] and Stanley [10] defined magic squares in modern combinatorics
as square matrices of order n whose entries are nonnegative integers and whose
rows and columns sum up to the same number, which is called the line sum.
In this paper we will study the magic squares following the next definition.

Definition 1.1. A magic square is a square matrix of order n, whose entries
are nonnegative integers and the sum of each row, each column and both the
main diagonals adds up to the same number, which is called the magic sum.

Example 1.2.
(

3 6 0
0 3 6
6 0 3

)
is a magic square of order 3 and whose magic sum is

equal to 9.

MacMahon [7] has already enumerated the number of all magic squares of
order 3 in 1915, and it was not until 2002 that Ahmed et al. [1] could find the
number of magic squares of order 4 for a given magic sum. The number of
magic squares of order n ≥ 5 with magic sum s ≥ 2 is a challenge! We will
introduce notions on magic permutations, which are generators of all magic
squares. In 1879, Hertzsprung [5] defined the number of magic permutations as
well as the number of permutations without fixed points and without reflected
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points, well before the development of rook theory ([3], [4], [8], [11]) as a
method for enumeration of permutations with restricted positions. Riordan
[8] in 1958 and Simpson [9] in 1995 recalled these recurrence relations. We
will use weighted rook polynomials to generalize the results on generalized
restricted permutations and we will give an unexpected relation which relates
derangements and restricted permutations. We will denote by MSn the set of
magic squares of order n.

2. Magic permutations

We will recall the following definitions:

Definition 2.1. A permutation σ of order n is a bijection over n objects.

We will denote by [n] the set {1, . . . , n}, and by Sn the set of all permuta-
tions over [n].

Definition 2.2. We say that an integer i is a fixed point for the permutation
σ if σ(i) = i.

Definition 2.3. We say that an integer i is a reflected point for the permuta-
tion σ if σ(i) = n− i + 1.

We will denote by Fix(σ) the set of the fixed points of the permutation σ,
and by Rfl(σ) the set of its reflected points.

Definition 2.4. We say that an integer i is a pivot point if i is a fixed reflected
point.

Remark 2.5. If n is even, no permutation of length n has a pivot point.

Remark 2.6. The only pivot point of a permutation of length n is the integer
n + 1

2
if n is odd.

Example 2.7. For the permutation σ =

(
1 2 3 4 5 6 7
1 6 5 4 2 7 3

)
, we have

Fix(σ) = {1, 4} and Rfl(σ) = {2, 3, 4} .

We will write a permutation σ of length n as a square matrix of order n
such that the i-th column is represented by the vector column eσ(i) where

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en−1 =


0
...
1
0

 and en =


0
...
0
1

 .
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Example 2.8. If we consider the permutation in Example 2.7, we have:

σ =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0


Remark 2.9. The reflected points and the fixed points of a permutation σ are
shown in the matrix representation of the permutation σ as the occurrence of
the integer 1 on the main diagonals.

Definition 2.10. A magic permutation is a permutation σ whose matrix rep-
resentation is a magic square of magic sum 1.

Proposition 2.11. A permutation σ is magic if σ has one fixed point and one
reflected point.

Example 2.12. The following permutations σ1 and σ2 of length 9 are magic:

σ1 =

(
1 2 3 4 5 6 7 8 9
3 2 5 6 8 1 4 9 7

)
and

σ2 =

(
1 2 3 4 5 6 7 8 9
2 4 9 7 5 1 8 3 6

)
Proposition 2.13. There does not exist a magic permutation of length n for
n = 2, 3.

Proposition 2.14. If a permutation σ is magic, then:

(1) σ−1 is magic,
(2) the reflected permutation σ′ of the permutation σ, defined by σ′(i) =

n− σ(i) + 1, is magic.

Proof. Notice that a fixed point of the permutation σ remains a fixed point
for σ−1 and becomes a reflected point for the reflected permutation σ′ and vice-
versa. Notice also that if the integer i is a reflected point for the permutation
σ, then the integer i is a fixed point for the reflected permutation σ′ and the
integer n− i + 1 is a reflected point for σ−1 and vice-versa. �

If we denote by an and xn the number of magic permutations and the number
of permutations without fixed points and without reflected points of length n
respectively, we can find in the following table the first values of these numbers:

n 0 1 2 3 4 5 6 7 8
an 0 1 0 0 8 20 96 656 5568
xn 1 0 0 0 4 16 80 672 4752
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Hertzsprung [5] established the following theorem:

Theorem 2.15. The numbers an and xn satisfy the following recurrences:

a2n = n(x2n − (2n− 3)x2n−1)

a2n+1 = (2n + 1)x2n + 3nx2n−1 − 2n(n− 1)x2n−2,

xn = (n− 1)xn−1 + 2(n− d)xn−e,

where (d, e) = (2, 4) if n is even, (1, 2) if n is odd.

We will generalize the theory of rook polynomials to enumerate some re-
stricted permutations.

3. Rook polynomials

We will study in this section the number of permutations σ ∈ Sn where
for each i, certain values of σ(i) are disallowed (namely, σ(i) 6= i and σ(i) 6=
n− i + 1). We have a board B ⊂ [n]× [n]. Each square s on B has a weight
ωs. We define the rook numbers (actually polynomials) of B by

rk =
∑
|A|=k

∏
s∈A

ωs

where the sum is over all subsets A ⊂ B of cardinality k with no two squares
on the same row or column. We define the generalized hit numbers hi:

hk =
∑

π

ω(π)

where the sum is over all permutations π of [n] with k hits (values of i such
that (i, π(i)) ∈ B) and the weight ω(π) of the permutation π is the products∏n

i=1 ω(i,π(i)) where ω(i,π(i)) is the weight of the square (i, π(i)) if (i, π(i)) ∈ B
and is 1 otherwise. The generalized hit polynomial is

H =
∑

k

hk.

We can find a relation between the hit polynomial H and the rook numbers ri

just as in the usual case. We claim that

H+ =
∑

k

rk(n− k)! (?)

where H+ is the result of replacing each weight ωs for the square s ∈ B with
ωs + 1. To see this, note that rk(n− k)! counts pairs (A, π) where A is a rook
placement in B of size k, and π extends A to a permutation of [n]. If we fix
π and sum over all possible rook placement A, we are summing over all of the
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subsets of the hits of A and this gives H+. If we replace each weight ωs in (?)
by ωs − 1 we get

H =
∑

k

r−k (n− k)!

where r−k is the result of replacing each ωs with ωs − 1.

Theorem 3.1 (The first main result). Let n = 2m and let B the following
board with weights as indicated. (This is the case n = 6)

α β
α β

α β
β α

β α
β α

By permuting the rows and columns we get

α β
β α

α β
β α

α β
β α

We see that ∑
k

rkX
k =

[
1 + (2α + 2β)X + (α2 + β2)X2

]m
,

so ∑
k

r−k Xk =
[
1 + (2α + 2β − 4)X + ((α− 1)2 + (β − 1)2)X2

]m
, (??)

∑
k r−k xk = [1 + (2α + 2β − 4)x + ((α− 1)2 + (β − 1)2)x2]

m
and therefore we

obtain the hit polynomial H =
∑

k r−k (n− k)! with r−k as above.

Theorem 3.2. The number x2m of permutations in the symmetric group S2m

without reflected points and without fixed points is given by the formula

x2m =
∑

k

r−k (2m− k)!

where the numbers r−k are the coefficients of the polynomial∑
k

r−k Xk = (1− 4X + 2X2)m.
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Proof. To count permutations with no reflected points and no fixed points, we
set α = β = 0 in the equation (??) to get∑

k

r−k Xk = (1− 4X + 2X2)m,

and we obtain the result. �

Theorem 3.3. The number a2m of permutations of the symmetric group S2m

having one reflected point and one fixed point is given by the formula:

a2m =
∑

k

r−k (2m− k)!

where the numbers r−k are the coefficients of the polynomial

4m(m− 1)X2(1−X)2(1− 4X + 2X2)m−2.

Proof. To count permutations with one reflected point and one fixed point we
look at the coefficient of αβ in the equation (??). So we want the coefficient
of αβ in [

1 + (2α + 2β − 4)X + ((α− 1)2 + (β − 1)2)X2
]m

which is easily computed to be

4m(m− 1)X2(1−X)2(1− 4X + 2X2)m−2.

And this gives the result. �

Theorem 3.4. The number of permutations of the symmetric group S2m with
no reflected points and one fixed point is given by the formula:∑

k

r−k (2m− k)!

where the numbers r−k are the coefficients of the polynomial

2mX(1−X)(1− 4X + 2X2)m−1.

Proof. To count permutations with no reflected points and one fixed point we
set β = 0 in the equation (??) and look at the coefficient of α. So we want the
coefficient of α in [

1 + (2α− 4)X + ((α− 1)2 + 1)X2
]m

which is easily computed to be

2mX(1−X)(1− 4X + 2X2)m−1

and this gives the result. �
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Theorem 3.5. The number of permutations in the symmetric group S2m with
two fixed points without reflected points is given by the formula:∑

k

r−k (2m− k)!

where the numbers r−k are the coefficients of the polynomial

(2m2 −m− 4m2X + 2m2X2)X2(1− 4X + 2X2)m−2.

Proof. To count permutations with two fixed points without reflected points,
we look at the coefficient of α2 in the equation (??) which is easily computed
to be

2m(m− 1)X2(1−X)2(1− 4X + 2X2)m−2 + mX2(1− 4X + 2X2)m−1

= (2m2 −m− 4m2X + 2m2X2)X2(1− 4X + 2X2)m−2.

�

Theorem 3.6 (The second main result). For n odd we take the following board
where we have a separate weight for the middle square

α β
α β

γ
β α

β α

By permuting the rows and columns we get

α β
β α

α β
β α

γ

We see that∑
k

rkX
k = (1 + γX)

[
1 + (2α + 2β)X + (α2 + β2)X2

]m
,

so∑
k

r−k Xk = (1+(γ−1)X)
[
1 + (2α + 2β − 4)X + ((α− 1)2 + (β − 1)2)X2

]m
,

(? ? ?)
and therefore H =

∑
k r−k (n− k)! with r−k as above and n = 2m + 1.

Theorem 3.7. The number x2m+1 of permutations in the symmetric group
S2m+1 without fixed points and without reflected points is given by the formula∑

k

r−k (2m + 1− k)!
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where the numbers r−k are the coefficients of the polynomial

(1−X)(1− 4X + 2X2)m.

Proof. To count permutations with no reflected points and no fixed points, we
set α = β = γ = 0 in the equation (? ? ?) to get∑

k

r−k Xk = (1−X)(1− 4X + 2X2)m

and
x2m+1 =

∑
k

r−k (2m + 1− k)!.

�

Theorem 3.8. The number of permutations in the symmetric group S2m+1

with no reflected points and one fixed point is given by the formula:∑
k

r−k (2m + 1− k)!

where the numbers r−k are the coefficients of the polynomial

2mX(1−X)(1− 4X + 2X2)m−1.

Proof. To count permutations with no reflected points and one fixed point we
set β = γ = 0 in the equation (? ? ?) and look at the coefficient of α. So we
want the coefficient of α in

(1−X)
[
1 + (2α− 4)X + ((α− 1)2 + 1)X2

]m

which is easily computed to be

2mX(1−X)(1− 4X + 2X2)m−1.

�

Theorem 3.9. The number of permutations in the symmetric group S2m+1

with no reflected points and two fixed points is given by the formula:∑
k

r−k (2m + 1− k)!

where the numbers r−k are the coefficients of the polynomial

2m(m− 1)X2(1−X)3(1− 4X + 2X2)m−2 + mX2(1−X)(1− 4X + 2X2)m−1.

Proof. To count permutations with no reflected points and two fixed points,
we set β = γ = 0 in the equation (? ? ?) and we look at the coefficient of α2

which is easily computed to be

2m(m− 1)X2(1−X)3(1− 4X + 2X2)m−2 + mX2(1−X)(1− 4X + 2X2)m−1.

�
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Theorem 3.10. The number of permutations in the symmetric group S2m+1

having a pivot point and no other fixed or reflected points is equal to the number
x2m.

Proof. If the pivot point is removed from such a permutation, what remains is
a permutation in S2m with no fixed or reflected points. �

Corollary 3.11. The number a2m+1 of permutations in the symmetric group
S2m+1 with one reflected point and one fixed point is given by the formula:

a2m+1 = x2m +
∑

k

r−k (2m + 1− k)!

where the numbers r−k are the coefficients of the polynomial

4m(m− 1)X2(1−X)3(1− 4X + 2X2)m−2.

Proof. First, to count permutations with one fixed point and one reflected
point without pivot points, we set γ = 0 in the equation (? ? ?) and look at
the coefficient of αβ in

(1−X)
[
1 + (2α + 2β − 4)X + ((α− 1)2 + (β − 1)2)X2

]m

to get ∑
k

r−k Xk = 4m(m− 1)X2(1−X)3(1− 4X + 2X2)m−2

and

a2m+1 =
∑

k

r−k (2m + 1− k)! + x2m.

�

Remark 3.12. To count derangements, that is, permutations without fixed
points, we set α = γ = 0 and β = 1 in the equation (? ? ?) to get the usual hit
polynomial

(1−X)n.

Definition 3.13. We say that a subset F of the set [n] is:

(1) semi-reflected if there exists at least one element i ∈ F such that
n− i + 1 ∈ F.

(2) self-reflected if n− i + 1 ∈ F, for all elements i in the subset F.

The proof of the following lemmas is a simple exercise of combinatorics.

Lemma 3.14. The number of pairs of disjoint subsets F and R of the set
[2n] such that #(F ∪ R) = 2k and both F and R are self-reflected is equal to

2k

(
n

k

)
.



10 FANJA RAKOTONDRAJAO

Lemma 3.15. The number of pairs of disjoint subsets F and R of the set [2n]
or [2n + 1] such that #(F ∪ R) = n and both F and R are not semi-reflected
is equal to 22n.

Theorem 3.16. The number of permutations of length 2n whose set of all
fixed or reflected points is of cardinality 2k, and is a self-reflected set, is equal

to

(
n

k

)
2kx2(n−k).

Proof. We consider the following board with weights as indicated. We illustrate
it with the case for 2n = 6.

α1 β1

α2 β2

α3 β3

β4 α4

β5 α5

β6 α6

By permuting the rows and columns we get

α1 β1

β6 α6

α2 β2

β5 α5

α3 β3

β4 α4

We see that∑
k

rkX
k =

n∏
i=1

[1 + (αi + α2n−i+1 + βi + β2n−i+1)X

+ (αiα2n−i+1 + βiβ2n−i+1)X
2],

so ∑
k

r−k Xk =
n∏

i=1

[1 + (αi + α2n−i+1 + βi + β2n−i+1 − 4)X

+ ((αi − 1)(α2n−i+1 − 1) + (βi − 1)(β2n−i+1 − 1))X2],

and therefore H =
∑

k r−k (n− k)! with r−k as above.
To count exactly once each permutation of length 2n in which the set of fixed
or reflected points is self-reflected and has cardinality 2k, we look first at the
coefficient of

∏p
s=1 µis

∏k
s=p+1 νis where µis = αisα2n−is+1 and νis = βisβ2n−is+1.

We should make {i1, . . . , ip} and {ip+1, . . . , ik} disjoint subsets of the set [n] and
moreover we should take i1 < . . . < ip and ip+1 < . . . < ik, and by Lemma 3.14
the number of possible choices for the set {i1, . . . , ip} and {ip+1, . . . , ik} is equal
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to 2k

(
n

k

)
. We can compute by induction the coefficient of

∏p
s=1 µis

∏k
s=p+1 νis

which is equal to X2k(1− 4X + 2X2)2(n−k) and this gives the result. �

Theorem 3.17. The number of permutations of [2n + 1], in which the set of
fixed or reflected points has cardinality 2k + 1 and is self-reflected, is equal to(

n

k

)
2kx2(n−k).

Proof. Notice that if the cardinality of a self-reflected subset of the set [2n+1]
is odd, this subset contains the integer n + 1. Since the integer n + 1 must
be fixed point, we can remove it to get one of the permutations counted by
Theorem 3.16. �

4. Derangements

We will conclude this paper with an unexpected relation which relates de-
rangements and restricted permutations.

Theorem 4.1. The number of permutations of [2n], in which the set of all
fixed or reflected points has cardinality n and is not semi-reflected, is equal to
22ndn.

Proof. We consider again a board as in the proof of Theorem 3.16. To count
exactly once each permutation of length 2n in which the set of all fixed or
reflected points is not semi-reflected and has cardinality n, we look first at the
coefficient of

∏p
s=1 αis

∏n
s=p+1 βis from

n∏
i=1

[1 + (αi + α2n−i+1 + βi + β2n−i+1 − 4)X

+ ((αi − 1)(α2n−i+1 − 1) + (βi − 1)(β2n−i+1 − 1))X2]

such that no occurrences of the form α`α2n−`+1 or β`β2n−`+1 appear in the
products. By induction we deduce this coefficient which is equal to

Xn(1−X)n.

For the sequence {i1, . . . , in}, we should make {i1, . . . , ip} and {ip+1, . . . , in}
disjoint subsets of the set [2n] and moreover we should take i1 < . . . < ip and
ip+1 < . . . < in. By Lemma 3.15 the number of possible choices for the set
{i1, . . . , ip} and {ip+1, . . . , in} is equal to 22n and this gives the result. �

Theorem 4.2. The number of permutations of [2n + 1], in which the set of
all fixed or reflected points is not semi-reflected and has cardinality n, is equal
to 22ndn+1.
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Proof. Notice that if the cardinality of a non semi-reflected subset of the set
[2n + 1] is equal to n, this subset does not contain the integer n + 1. Since the
integer n+1 is not a fixed point, we can add it to get one of the permutations
counted by Theorem 4.1. �

Theorem 4.3. The number of permutations of [2n + 1], in which the set of
all fixed or reflected points contains the integer n + 1 and has cardinality n + 1
and is not semi-reflected if the element n + 1 is deleted, is equal to 22ndn.

Proof. Notice that if the cardinality of a non semi-reflected subset of the set
[2n+1] is equal to n+1, this subset contains the integer n+1. Since the integer
n + 1 must be fixed point, we can remove it to get one of the permutations
counted by Theorem 4.1. �
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