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TRANSITIVE HALL SETS

GÉRARD DUCHAMP, MARIANNE FLOURET AND JEAN-GABRIEL
LUQUE

Dedicated to Xavier Viennot

Abstract. We give the definition of Lazard and Hall sets in the
context of transitive factorizations of free monoids. The equiv-
alence of the two properties is proved. This allows to build new
effective bases of free partially commutative Lie algebras. The com-
mutation graphs for which such sets exist are completely character-
ized and we explicit, in this context, the classical PBW rewriting
process.

1. Introduction

Since the pioneering works of Schützenberger [27, 28] and Viennot
[30] it has been believed (and hoped) that the correct dictionary be-
tween (discrete) monoids and (discrete) Lie algebras could be obtained
through the correspondence between multiplicative factorizations of
monoids and additive factorizations of Lie algebras.

On the other hand, one observes that elimination processes in dis-
crete Lie algebras give free factors as for the Knizhnik-Zamolodchikov
Lie algebra (see [1] eq. 4.9 and [15]) and partially commutative Lie
algebras through a scheme (LA = Lie Algebra)

LA1 in the class C=Free LA ⊕ LA2 in the class C

with increasing degree indices so that the process could be applied to
obtain bases (and, indeed in the case of Free Lie algebras, all homoge-
neous ones, including Hall). This observation has led to believe that
the free factors could be the right way to generalize Hall processes.

One must mention here that the contribution of Viennot himself
to the subject is twofold. First to the factorizations of monoids, the
subject of Viennot’s “Thèse d’État” [29]. In this impressive memoir,
Viennot proposes a classification of the factorizations of the free monoid
and constructs a very interesting category, the bascules (a reconstru-
tion of the effect of the factorization “from outside”), endowed with
two functors L and K〈?〉, respectively toward the category of K-Lie
algebras and to the category of K-associative algebras with unit. The
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second, and not least, contribution is the model of heaps [31] which
provides a geometric insight for the partially commutative monoid [2].
This model allows also to introduce a thickness parameter for the pieces
[14, 21].

In this paper, we want to show that the framework of factorization
with free factors can be broaden, following the track of the “transitive
factorizations”. We show that the category of partially commutative
structures [8, 9, 11] can be used for getting a correct generalization of
Hall rewriting techniques as they appear in the works of Reutenauer
and Mélançon [26, 22, 23, 24]. Our construction here, although it works
for a wider category of algebras is valid for only some types of graphs.

The insight of heaps, by means of the “pyramids” which are the exact
counterpart of the elements of the Lazard code obtained by eliminating
some variables (letters of the alphabet) has been worked out by Lalonde
and Krob. They can be found in [19, 17, 18].

The structure of the paper is the following. In section (2), we give a
partially commutative version of Schützenberger ’s factorization theo-
rem. We introduce in Section (3) the notions of transitive Lazard and
transitive Hall sets in the free algebras of trees. Transitive Lazard sets
are defined by means of iterations of transitive bisections [11]. Tran-
sitive Hall sets classically use a description of the total order of the
factorization which, here, must be compatible with the commutations.
We prove that the two notions coincide and allow the construction of
bases of the free partially commutative Lie algebra L(A, θ) as well as
a natural Poincaré-Birkhoff-Witt rewriting process (PBW).

2. Factorizations of a trace monoid

Let A be an alphabet and θ ∈ A×A−{(a, a)|a ∈ A} be a symmetric
relation. We will denote by M(A, θ) a trace monoid (or a free partially
commutative monoid) over the alphabet A and whose commutations
are defined by ab = ba when (a, b) ∈ θ.
The only way to get the equality

(1) M(A, θ) = a∗.M(X, θX)

where X is a subset of M(A, θ), a∗ is the free monoid of the alphabet
{a} and E =

∑

e∈E e, is to impose for each pair of letters (z1, z2) ∈
θ ∩ (A − a)2 the commutation (z1, a) ∈ θ or (z2, a) ∈ θ. It is a direct
consequence of the transitive factorization theorem (see Section (3.3)
[11]).

More generally, an ordered family (Mi)i∈I of submonoids of M is
said to be a factorization if the product mapping

∐

i∈I Mi → M is
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one to one. For |I| = 2, one gets the notion of a bisection related to
the flip-flop1 Lie-algebra by Viennot [30]. At the other end, when all
the Mi have a single generator, one obtains a complete factorization
whose generating series is equal to the Hilbert series of the Free Lie
algebra. It has been shown in [8] that this property stills holds in the
case of partial commutations and the link between the Lyndon basis
and Lazard elimination in this context has been elucidated [16]. In this
paper, we use this property to define transitive Lazard sets for a family
of trace monoids. Let us first show some properties about conjugacy.

2.1. Roots of conjugacy classes. Let m ∈ M(A, θ). It is shown in
[10] (see also [7]) that the equation u = tp (p ≥ 1) has at most one
solution. When it exists, this solution will be denoted by p

√
u. In

the same paper [10], it is shown that if g, r, and t are three traces
such that g = rq = tp with q, p ∈ N then there exists a trace g′ and
m ∈ lcm(p, q)N such that g = g′m. Hence, one defines the root

√
g of

a trace g as the smallest trace g′ satisfying g = g′m (the integer m will
be called the exponent of g, we denote m = ex(g)).

Example 2.1. Let us consider the commutation graph

(A, θ) = a − c − b

we have
√

babcac = bac and ex(babcac) = 2

We recall here the definition of conjugacy due to Duboc and Choffrut
[4]. Two traces t and t′ are said conjugate if there exists a trace u such
that tu = ut′. Conjugacy is an equivalence relation which, in turn, is
no more that the restriction to M(A, θ) of the conjugacy relation for
the group F(A, θ). Exponent and root are invariant under conjugacy
in the following sense.

Proposition 2.2. Let C be a conjugacy class, f ∈ C, g ∈ M(A, θ) and
p ∈ N be such that f = gp. For each f ′ ∈ C, there exists g′ ∈ M(A, θ)
such that f ′ = g′p. Furthermore g and g′ are conjugate.

As a consequence of Proposition (2.2) the root
√

C of a conjugacy

class C is uniquely defined as the set
√

C = {√g}g∈C .

2.2. Schützenberger’s factorization theorem for traces. It is clas-
sical that a submonoid M of M(A, θ) has a unique minimal generating
set. Hence, a factorization will be characterized by the family of the
generating sets of its components and will be denoted by F = (Yi)i∈I

instead of F = (Mi)i∈I if Yi = Mi − M2
i .

1In french ”bascule”.
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The existence of the root of conjugacy classes allows us to extend
Schützenberger’s factorization theorem [27] to trace monoids.

Theorem 2.3. Let F = (Yi)i∈J be an ordered family of noncommutative
subsets (i.e., for each i and each pair (x, y) ∈ Y 2

i , x 6= y implies xy 6=
yx) of M(A, θ) and 〈Yi〉 the submonoid generated by Yi.
We consider the following assertions:

(1) The mapping prod is into.
(2) The mapping prod is onto.
(3) Each monoid 〈Yi〉 is free. For each conjugacy class C in M(A, θ),

if C is connected (i.e., if the restriction of the noncommutation
graph to the alphabet Alph(C) = {a ∈ A|uav ∈ C with u, v ∈
M(A, θ)} is a connected graph) then there exists a unique i ∈ J
such that C ∩ 〈Yi〉 6= ∅ and in this case C ∩ 〈Yi〉 is a conjugacy
class of 〈Yi〉. If C is not connected, for each i ∈ J , C∩〈Yi〉 = ∅.

Two of the previous assertions imply the third.

Proof. The structure of the proof is, in the broad outline, the same as in
[27]. Nevertheless, due to the specificity of the partially commutative
context, numerous technical arguments are more sophisticated.

Without restriction, one supposes that each Yi is a minimal gener-
ating set of 〈Yi〉.

We prove 1) and 2) imply 3) by examining the series

(2) log M(A, θ) −
∑

log 〈Yi〉.
Observing that 1) and 2) force the set F to be a factorization, it is easy
to show that (2) is a Lie series whose valuation is strictly greater than
1. Hence, if C is a conjugacy class of M(A, θ), one has

(3)
(

C,
∑

log 〈Yi〉
)

=



C,
∑

l∈Ly(A,θ)

log
1

1 − l





where Ly(A, θ) denotes the set of Lyndon traces (which is a complete
factorization of M(A, θ) for the standard order [17, 18, 19]) and ( , ) is
the scalar product for which the monomials are orthonormal. Lalonde
has proved [17] that Ly(A, θ) is a representative set of the strongly
connected conjugacy classes.

If C is not connected (3) implies
(

C,
∑

i

∑

m

1

m
Y m

i

)

=

(

C,
∑

l

∑

m

1

m
lm

)

= 0

and, the series
∑

i

∑

m
1
m

Y m
i being positive, one gets 〈Yi〉 ∩ C = ∅.
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If C is strongly primitive (i.e., C is connected and
√

C = C), equality
(3) implies

(

C,
∑

i

∑

m

1

m
Y m

i

)

= 1.

Let i and m be such that C ∩ Y m
i 6= ∅. The strong primitivity of C

implies
(

C,
∑

i

∑

m

1

m
Y m

i

)

≥ 1

and the uniqueness of Yi follows. Furthermore, by CardC ∩ Y m
i = m,

we show that C ∩ Y m
i is a conjugacy class in 〈Yi〉.

Now, suppose that C is connected but not primitive and let p > 1
such that C = {gp/g ∈

√
C}. Let Yi such that

√
C ∩ 〈Yi〉 6= ∅ is a

conjugacy class in 〈Yi〉 (from the previous case, Yi exists and is unique).
One has C ∩ 〈Yi〉 = Cj where each Cj is a conjugacy class in 〈Yi〉. But
for each j,

(

Cj,
∑

m

1

m
Yi

m

)

=
1

p

and from (3) one has
(

C,
∑

m

1

m
Yi

m

)

=
1

p
.

The uniqueness of Yi and Cj follows.

In order to prove that 1) (resp. 2)) and 3) imply 2) (resp. 1)), one
considers a conjugacy class C of M(A, θ). We need to examine two
cases. If C is connected, assertion 3) implies that there exists a unique
i and a unique conjugacy class Ci of the monoid 〈Yi〉 verifying Ci =
C ∩〈Yi〉. Let p be the exponent of C and pi the exponent of Ci in 〈Yi〉.
The monoid 〈Yi〉 being a submonoid of M(A, θ), one has immediately

p ≥ pi. On the other hand, let j such that
√

C ∩ 〈Yj〉 = Cj 6= 0 where
Cj is a conjugacy class of the monoid 〈Yj〉. Hence, for each w ∈ Cj,
wp ∈ C. This implies C ∩ 〈Yj〉 6= 0 and, by assertion 3), i = j. It
follows p ≤ pi and then p = pi.

Now, each 〈Yj〉 being free with generator Yj, assertion 3) gives
(

C,
∑

j∈J

∑

m≥1

1

m
Y m

j

)

=

(

Ci,
∑

m≥1

1

m
Y m

i

)

=
1

pi

=
1

p
.
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But, according to Lalonde [17], one has

(C, log M(A, θ)) =



C,
∑

l∈Ly(A,θ)

∑

m

1

m
lm



 =
1

p
.

Hence

(4)

(

C,
∑

j∈J

∑

m≥1

1

m
Y m

j

)

= (C, log M(A, θ)) .

Now, if C is not connected, by assertion 3), one has again

(5)

(

C,
∑

j∈J

∑

m≥1

1

m
Y m

j

)

= 0 = (C, log M(A, θ)) .

Let φ be the natural morphism from M(A, θ) in the totaly commutative
monoid MA = M(A, A×A−∆) ∼ NA. For each x ∈ MA, the set φ−1(x)
is an union of conjugacy classes and by (4) and (5) one obtains

(6)
(

φ−1(x), log(M(A, θ)
)

=

(

φ−1(x),
∑

j∈J

∑

m≥1

1

m
Y m

j

)

.

The morphism φ can be extend to a unique morphism of algebra from
the algebra of partially commutative formal series Q〈〈A, θ〉〉 onto the

algebra commutative series Q[[A]], by φ(S) =
∑

x

(

φ−1(x), S
)

x. From

(6), one obtains

φ
(

log(M(A, θ))
)

= φ

(

∑

j∈J

∑

m≥1

1

m
Y m

j

)

.

The continuity of φ implies

log
(

φ(M(A, θ))
)

= log

(

∏

i∈J

φ(〈Yj〉)
)

.

and

(7) φ(M(A, θ)) =
∏

i∈J

φ(〈Yj〉).

By Assertion 1) or 2), there exists a series S ∈ Q+〈〈A, θ〉〉 verifying

(8) M(A, θ) =
∏

i∈J

φ(〈Yj〉) ± S

Applying φ to (8) and comparing with (7), one proves that φ(S) is zero.
The positivity of the coefficient of S implies S = 0 and our result. �
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Denote by Cont(F) =
⋃

i∈J Yi the contents of the factorization F =
(Yi)i∈I . The following result is an extension of a classical result due to
Schützenberger [27].

Corollary 2.4. Let F be a complete factorization of M(A, θ) (i.e., each
Yi is a singleton). Then for each conjugacy class C we have

Card(C ∩ Cont(F)) =







1 if C is strongly connected

(i.e., C is connected and
√

C = C),
0 otherwise.

Hence, complete factorizations of M(A, θ) receive the same combi-
natorics than in the free case. In particular, one recovers that the
generating series of a complete factorization is equal to the Hilbert
series of the free partially commutative Lie algebra.

3. Transitive Lazard sets

3.1. Complete elimination strings and transitive Lazard sets.

Let M(2, A) be the free magma on A whose product will be denoted
by (., .) (i.e., the set of binary trees with leaves in A endowed with the
natural non associative product). The canonical morphism M(2, A) →
M(A, θ) which is identical on A will be called the foliage morphism
and denoted by f as in [26]. Observe that θM = {(w, w′)|ww′ =
w′w and Alph(w)∩Alph(w′) = ∅} is a commutation relation on M(A, θ)
([11]).

We consider a commutation alphabet (A, θ) and some graphs whose
vertices belong to M(2, A) and such that (t1, t2) is an edge if and only
if (f(t1), f(t2)) ∈ θM.

Let G = (V, E) be such a graph, we call an Elimination String

(ES) in G a n-uple of vertices (a1, · · · , an) such that for each i ∈ [1, n]
and v1, v2 ∈ V − {a1, · · · , ai}
(9) (v1, v2) ∈ E ⇒ (v1, ai) ∈ E or (v2, ai) ∈ E

The vertex a1 will be called the starting point of the ES.
An ES (a1, · · · , an) will be called complete (CES in the sequel) if

V = {a1, · · · , an}. A graph admitting a CES will be called type-H

graph. We will prove, in the last section, that when the commutation
relation is a type-H graph, we can construct analogues of Hall sets for
trace monoids.

In the sequel, we will denote by M(2, A)≤n the set of trees with fewer
than n leaves.
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Example 3.1. (1) Let us consider the following graph

(A, θ) =
a − d − e
| |
b − c

the family (a, d, b, c, e) is a CES of (A, θ) and then it is a type
H graph.

(2) The graph

(A, θ) =
a − b
c − d

is not a type-H graph.

Type-H graphs admits a nicer graph-theoretic characterization.

Proposition 3.2. A graph is a type-H graph if and only if each of its
induced subgraphs2 contains at most one connected component of with
two vertices.

Proof. Let G = (V, E) such that each of its (induced) subgraphs con-
tains at most one connected component with two vertices. We prove by
induction on the cardinality of V that G admits a CES. If Card(V ) = 1,
the result is straightforward. Suppose now Card(V ) > 1. Our strategy
consists in proving the existence of a starting point of the ES in G.
Suppose that such a vertex does not exist: for each vertex a, there
exist b, c 6= a such that (b, c) ∈ E and (a, b), (a, c) 6∈ E. Let a, b, c
such vertices. There exists a pair (d, e) verifying d, e 6= b, (d, e) ∈ E
and (d, b), (b, d) 6∈ E. Hence, the subgraph generated by the vertices
{b, c, d, e} is the union of connected components with two vertices. This
contradicts our hypothesis on G and proves that there exists a vertex
a ∈ V , such that for each (b, c) ∈ E, (b, a) ∈ E pr (c, a) ∈ E. Now, the
subgraph of G generated by V \ {a} is such that each of its subgraph
contains at most one connected component with two vertices. Hence,
by induction, it has a CES, s = (a1, . . . , an). It is easy to see that the
sequence (a0 = a, a1, . . . , an) is a CES of G. This proves that G is a
type-H graph.

Conversely, let G be a type-H graph and s = (a1, . . . , an) be a CES

of G. Suppose that there exists a subgraph G′ of G with two con-
nected components G′

1 = (V ′
1 , E

′
1), G′

2 = (V ′
2 , E

′
2) with at least two

vertices. Let (ai, aj) ∈ E ′
1 ⊂ E and (ak, al) ∈ E ′

2 ⊂ E. The fact that
(ai, ak), (ai, al), (aj, ak), (aj, al) 6∈ E implies that s is not a CES. �

2An induced subgraph G′ = (V ′, E′) of a graph G = (V, E) is a graph such that
V ′ ⊂ V and E′ = E ∩ (V ′ × V ′).
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According to this characterization, the type-H graphs are rare. Nev-
ertheless, we will prove that it is a sufficient and necessary condition
for producing complete factorizations using a Lazard elimination pro-
cess which preserves the property of ”being a trace monoid” for every
factor.

3.2. Transitive Lazard sets. Let v be a vertex of G, the H-star of
G for v of rank n > 0 is the graph G∗v

n = (V ∗v
n , E∗v

n ) defined by
(10)










V ∗v
n = (V ∩M(2, A)≤n − v)

∪{(v′vm) ∈ M(2, A)≤n|m > 0, (v′, v) 6∈ E},
E∗v

n = {(v1, v2) ∈ (V ∗
n )2|(f(v1), f(v2)) ∈ θM}.

Example 3.3. For the following graph

(A, θ) = a − b − c − d

then

(A∗c
4 , θ∗c4 ) =

ac
|

a − b −((a, c), c) d
|

(((a, c), c), c)

Proposition 3.4. Let G be a type-H graph and a1 be the starting point
of a CES then G∗a1

n is a type-H graph.

Proof. Let λ = (a1, · · · , am) be a CES of G. We construct a list Λ of
vertices of G∗a1

n = (V ∗, E∗) removing a1 from λ and substituting each
ai such that (ai, a1) 6∈ E by the sequence

(ai, a
m−1
1 ), . . . , (ai, a1), ai.

Set Λ = (a′
1, · · · , a′

M) and suppose that Λ is not a CES, then there ex-
ists α < β < γ such that (a′

β, a′
γ) ∈ E∗, (a′

α, a′
β) 6∈ E∗ and (a′

α, a′
γ) 6∈ E∗.

If a′
α = (ai, a

p
1), a′

β = (aj, a
q
1) and a′

γ = (ak, a
r
1), then the construction

implies i ≤ j < k and p = 0 or q = 0. If i = j then p 6= 0 which gives
(ai, a1) 6∈ E and r = 0. Hence, (a1, ak) 6∈ E and q = 0. This implies
that (ai, ak) ∈ E, (a1, ai) 6∈ E and (a1, ak) 6∈ E and contradicts the
fact that λ is a CES. If i < j, suppose that r = 0 (the case q = 0 is
symmetric), we need to examine several cases

(1) If p = 0, then q 6= 0 (otherwise (ai, aj), (ai, ak) 6∈ E and
(aj, ak) ∈ E, which contradicts the fact that λ is a CES).
But, as (ak, ai) 6∈ E, (aj, ak) ∈ E and λ being a CES, one
has (ai, aj) ∈ E and hence (a1, ai) 6∈ E. Finally (a1, aj) 6∈ E,
which contradicts the fact that λ is a CES.
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(2) If p 6= 0 and q = 0, then, as λ is a CES, either (ai, aj) ∈ E,
either (ai, ak) ∈ E. Suppose that (ai, aj) ∈ E (the other case
is symmetric), one has (a1, aj) ∈ E (otherwise (a′

α, a′
β) ∈ E∗).

But, λ being a CES, one gets (a1, ak) ∈ E and by (a′
α, a′

γ) 6∈
E∗ one obtains (ai, ak) 6∈ E. Finally (a1, aj), (a1, ai) 6∈ E and
(ai, aj) ∈ E contradicts the fact that λ is a CES.

(3) If p, q 6= 0 then, as (a′
γ, a

′
β) ∈ E∗, one as (a1, ak) ∈ E and by

(a′
α, a′

γ) 6∈ E∗, one obtains (ai, ak) 6∈ E. The sequence λ being a
CES, (ai, aj) ∈ E. Hence (a1, aj), (a1, ai) 6∈ E and (ai, aj) ∈ E
contradicts the fact that λ is a CES.

This proves that Λ is a CES. �

The definition of a transitive Lazard set follows:

Definition 3.5. Let G = (A, θ) be a commutation alphabet considered
as a graph and L ⊂ M(2, A), we will say that L is a transitive Lazard

set if and only if for each n > 0, L ∩ M(2, A)≤n = {s1, · · · , sk} such
that there exist k + 1 graphs G1 = (A1, θ1), . . . , Gk+1 = (Ak+1, θk+1)
satisfying the following conditions:

(1) The first graph G1 is equal to G.
(2) The last graph Gk+1 is empty (i.e., Gk+1 = (∅, ∅))
(3) The graphs G2, . . . , Gk+1 are defined by induction

(a) For each i < k + 1, si ∈ Ai and si is the starting point of
a CES of Gi.

(b) We have Gi+1 = (Gi)
∗si
n .

3.3. Type-H graphs and the transitive factorization theorem.

Classicaly, we will denote by L(A, θ) the free partially commutative
Lie algebra on the alphabet A for the commutation relation θ. The
well known properties of the (noncommutative) Lazard sets hold true
and can be seen as consequences of the transitive factorization theorem
[11]. We recall it here.

Let (A, θ) be a partially commutative alphabet and B ⊂ A. Then
M(B, θB) is the left (resp. right) factor of a bisection of M(A, θ). Ex-
plicitly,

M(A, θ) = M(B, θB).〈βZ(B)〉
where 〈βZ(B)〉 means the submonoid generated by the set

βZ(B) = {zw/z ∈ Z, w ∈ M(B, θB), IA(zw) = {z}}
and IA(t) = {z ∈ A|t = zw} is the initial alphabet of the trace t.

Let B ⊂ A, we say that B is a transitively factorizing subalpha-

bet (TFSA) if and only βZ(B) is a partially commutative code. We
prove the following theorem.
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Theorem 3.6 (Duchamp–Luque [11]). Let (B, Z) be a partition of A.

(1) The following assertions are equivalent.
(i) The subalphabet B is a TFSA.
(ii) The subalphabet B satisfies the following condition.

For each z1 6= z2 ∈ Z and w1, w2, w
′
1, w

′
2 ∈ M(A, θ) such

that

IA(z1w1) = IA(z1w
′
1) = {z1}

and

IA(z1w2) = IA(z2w
′
2) = {z2}

we have

z1w1z2w2 = z2w
′
2z1w

′
1 ⇒ w1 = w′

1, w2 = w′
2.

(iii) For each (z, z′) ∈ Z2 ∩ θ, the dependence graph (i.e., non-
commutation) has no partial graph like

z − b1 − · · · − bn − z′.

with b1, . . . , bn ∈ B.
We have the decomposition

L(A, θ) = L(B, θB) ⊕ J

where J is the Lie ideal generated (as a Lie algebra) by

τZ(B) = {[. . . [z, b1], . . . bn] | zb1 . . . bn ∈ βZ(B)}.
Furthermore,

(2) (i) The subalgebra J is a free partially commutative
Lie algebra if B is a TFSA of A.
(ii) Conversely if J is a free partially commutative Lie
algebra with code τZ(B) then B is a TFSA.

Applying Theorem 3.6 and taking the inductive limit of the process
one obtains.

Proposition 3.7. Let L be a transitive Lazard set.

(1) The foliage f(L) is a complete factorization of M(A, θ).
(2) Let Π be the unique morphism M(2, A) → L(A, θ) such that

Π(a) = a for each letter a ∈ A. Then Π(L) is a basis of the
Free Lie algebra L(A, θ).

Such a factorization will be called Transitive Lazard Factorization
(TLF). Not all the trace monoids possess a TLF. For example, in the
graph a−b

c−d we can not find a CES. Nevertheless, the property “having
a TLF” is decidable as shown by the following result.
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Theorem 3.8. A trace monoid admits a TLF if and only if its com-
mutation alphabet is a type-H graph.

Proof. It suffices to observe that a trace monoid has a TLF if and
only if one can construct a transitive Lazard set from its commutation
graph, which is a consequence of proposition 3.4. �

3.4. An alternative definition for transitive Lazard sets. In or-
der to generalize the correspondance between Hall and Lazard sets, we
introduce the notion of F -Lazard sets.

Definition 3.9. Let E be a finite set. A subset S of M(2, A) will be
called Local Transitive Complete Elimination relatively to E if
and only if, denoting S ∩ E = {si, . . . , sk}, there exist k + 1 graphs
G1 = (A1, θ1),. . .Gk+1 = (Ak+1, θk+1) verifying

(1) The initial graph is G1 = (A, θ)
(2) The last graph is Gk+1 = (∅, ∅)
(3) The intermediate graphs are constructed following the two rules

(a) for each i < k + 1, si ∈ Ai and si is the starting point of a
CES of Gi.

(b) for each i < k +1, the commutation graphs Gi+1 is defined
by its alphabet

Ai+1 = (Ai − si) ∪ {(bcn
i ) ∈ E|n > 0,∈ Ai and (b, ci) 6∈ θi}

and its commutation rules

θi+1 = θAi+1
:= {(t, t′) ∈ A2

i |Alph(t) × Alph(t′) ⊂ θ}
Definition 3.10. Let ∅ ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · be a filtration
of M(2, A). And denote F = (Fn)n∈N. A set L ⊂ M(2, A) has the
F-Lazard property if and only if for each i ∈ N, L is a LTCE of A
relatively to Fi.

Observe that each transitive Lazard set is a F -Lazard set when F
denotes the filtration by degree.

We will say that a filtration F = (Fi)i∈N
of M(2, A) is admissible

if and only if each Fi is finite and each subtree of an item of Fi belongs
again in Fi (A set having this property is called closed set in [26]).
The next result proves that, when F is an admissible filtration, the
notion of F -Lazard sets is independent of the choice of the filtration
and hence coincides with the notion of transitive Lazard sets.

Lemma 3.11. A set L is a transitive Lazard set if and only if it is a
F-Lazard set for an admissible filtration F .
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Proof. The ”if” part is straightforward. Let us prove the converse
denoting by L a F -Lazard set for an admissible filtration F . We
have to prove that L is a LTCE relatively to M(2, A)≤n for each
n ≥ 0. We set L ∩ M(2, A)≥n = {s1, . . . , sk} and p = max{q|L ∩
M(2, A)≥n ⊂ Fq}. The set L is a LTCE of A relatively to Fp.
Hence, if we set L ∩ Fp = {r1, . . . , rl}, one can construct l + 1 graphs
G′

1 = (A′
1, θ

′
1), · · · , G′

l+1 = (A′
l+1, θ

′
l+1) according to the definition of

F -Lazard sets. Consider the indices i1, . . . , ik for which sj = rij and
let G1 = (A1, θ1), . . . , Gk = (Ak, θk) be the commutation graphs de-
fined by Aj = A′

ij
∩M≤n and θj = θ′j ∩ (Aj × Aj). Such a sequence of

graphs satisfies the items (1)-(3) of the definition of a LTCE relatively
to M(2, A)≥n. We conclude that L is a transitive Lazard set. �

As an immediate consequence of Lemma 3.11, one has the following
lemma.

Lemma 3.12. A set of trees L is a transitive Lazard set if and only if
it is a LTCE of (A, θ) relatively to each closed set.

4. Transitive Hall sets

4.1. A total order on a transitive Lazard set.

Definition 4.1. A Transitive Hall Set (THS) H is a family of trees
(h)h∈H endowed with a total order < such that

(1) The family (f(h))h∈H is a complete factorization of M(A, θ) (for
the reverse order).

(2) The set H contains the alphabet A.
(3) If h = (h′, h′′) ∈ H − A then h′′ ∈ H and h < h′′.
(4) If h = (h′, h′′) ∈ M(2, A) − A then h ∈ H if and only if the

following four assertions are true:
(a) The two sub-trees h′ and h′′ belong to H.
(b) We have the inequality h′ < h′′.
(c) The foliage of the two sub-trees are not related by the “dis-

joint commutation” relation (i.e., (f(h′), f(h′′)) 6∈ θM).
(d) Either h′ ∈ A or h′ = (x, y) with y ≥ h′′.

Although no condition on the shape of the graph is apparent in the
definition, we will see that part (1) strongly restricts implicitly the
possibilities. For example, let us consider the commutation graph

a b − c

and a set H such that

H ∩M(2, A)≤3 = {a, (b, a), ((c, a), a), c, ((c, a), c), (c, a), (b, (c, a)),
((b, a), c), b, ((b, a), b), (b, a)}.
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We suppose that trees above are ordered from the right to the left.
Clearly, trees listed here verify axioms (2), (3) and (4) of the defini-
tion of transitive Hall sets, but the trace cba admits two decreasing
decomposition cba = f(c).f((b, a)) = c.ba = bca = f(b, (c, a)).

As in the free case we have a perfect correspondence between the
notions of transitive Hall and Lazard sets.

Theorem 4.2. A set L is a transitive Lazard set if and only if it is a
transitive Hall set.

Proof. A slight adaptation of the noncommutative case (see [26]) shows
that each transitive Lazard set is a transitive Hall set.

Let us prove the converse. According to Lemma 3.12, it suffices to
prove that a transitive Hall set H is a LTCE relatively to any finite
closed set E. Let us show it by induction on Card E. If Card E = 1
the result is obvious. Now, we suppose Card E > 1 and set

c = max{h ∈ H ∩ E}
X = {(acn) ∈ E|a ∈ A − c, n ≥ 0, (a, c) ∈ θ} ∩ {b|(b, c) ∈ θ}
θX = θM ∩ X × X
H ′ = H ∩M(2, X)
and E ′ = E ∩M(2, X)

We endow H ′ with the restriction to H ′ of the total order < on H.
First, we check that H ′ is a transitive Hall set for the alphabet

(X, θX).

(1) The family (fX(h))h∈H′ is a complete factorization of M(X, θX)
where f denotes here the natural morphism

M(2, X) → M(X, θ).

The result follows from the isomorphism between M(X, θX) and
M(fA(X), θfA(X)) and the fact that the (fA(h))h∈H is a complete
factorization of M(A, θ).

(2) The generator set X belongs to H ′ (it suffices to observe that
X ⊂ H).

(3) If (h′, h′′) ∈ H ′, either h′′ = c and in this case h′, (h′, h′′) ∈ X,
either h′′ ∈ H ′ and as one has h < h′′ in H the same inequality
occurs in H ′.

(4) If h = (h′, h′′) ∈ H ′ − X, then
(a) As H ′ ∈ M(2, A), h′, h′′ ∈ H ′,
(b) the inequality h′ < h′′ follows from H ′ ⊂ H,
(c) Suppose that (fX(h′), fX(h′′)) ∈ θX , this implies (f(h′),

f(h′′)) ∈ θ which is in contradiction with h = (h′, h′′) ∈
H ′ ⊂ H.
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(d) If h′′ 6∈ X, then h′′ = (x, y) with x, y ∈ H ′ ⊂ H which
implies h′ ≤ y (by restriction of < to H ′).

Conversely, if we let h = (h′, h′′) ∈ M(2, X) such that h′, h′′ ∈
H ′, (fX(h′), fX(h′′)) 6∈ θX and h′ < h′′. If h′′ ∈ A then h ∈
H ∩M(2, X) = H ′. If h′′ ∈ X − A, then h′′ = (x, c) but c > h′

which implies (from the fact that H is a transitive Hall set)
h ∈ H. Finally, if h′′ ∈ H ′ − X one has h′′ = (x, y) and y ≥ h′

implies h ∈ H.

It follows that H ′ is a transitive Hall set over the alphabet (X, θX).
Observe that Card E ′ < CardE, hence by induction H ′ is a LTCE of
(X, θX) relatively to E ′. According to the definition of a LTCE, one
sets H ′ ∩ E ′ = {s1, . . . , sk} and one constructs the associated graphs
G1 = (A1, θ1), . . . , Gk+1 = (Ak+1, θk+1). If we denote (a1, · · · , an−1)
the subsequence of the letters of A appearing in (s1, . . . , sk), then
(a1, . . . , an−1) is a CES of A − c. The fact that H is a transitive Hall
set implies that (c, a1, . . . , an−1) is a CES of A. In fact, if we suppose
that (c, a1, . . . , an−1) is not a CES, then there exist i, j ∈ {1, . . . , n−1}
such that (ai, aj) 6∈ θ, (ai, c) 6∈ θ and (aj, c) 6∈ θ. But (ai, c), (aj, c) ∈ H
by definition of H, and ai.ajc = aj.aic contradicts the first point of the
definition of transitive Hall sets. Then (c, a1, · · · , an−1) is a CES of
G0 = (A, θ) and c is its starting point. Furthermore, (A0−c)∪{(acn) ∈
E|n > 0, a ∈ A and (a, c) 6∈ θ} = X = A1. It follows that H is a LTCE

of (A, θ) relatively to E with associated graphs G0, G1, · · · , Gk+1. Ap-
plying Lemma 3.12, one deduces that H is a transitive Lazard set. �

This correspondence is very useful to construct decomposition algo-
rithms.

4.2. Rewriting process. We can construct standard sequences of
Hall trees (h1, · · · , hn) such that for each i ∈ [1, n] either hi ∈ A, or hi =
(h′

i, h
′′
i ) with h′′

i ≥ hi+1, . . . , hn. In a standard sequence an ascent is an
index i such that hi < hi+1 and a legal ascent is an ascent i such that
hi+1 ≥ hi+2, · · · , hn (these definitions are due to Schützenberger [28]).
Let s be a standard sequence and i a legal ascent. We write s → s′ if
s′ = (h1, · · · , hi−1, (hi, hi+1), hi+2, · · · , hn) when (f(hi), f(hi+1)) 6∈ θM

and s′ = (h1, · · · , hi−1, hi+1, hi, hi+2, · · · , hn) otherwise. The transitive

closure
∗→ of → is such that for each standard sequence there exists

a unique decreasing standard sequence s′ such that s
∗→ s′. Using this

property on a sequence of letters, we obtain an algorithm which allows
to find the factorization of a trace in a decreasing concatenation of Hall
traces.
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Example 4.3. Let us consider the following commutation alphabet:

(A, θ) = a − b − c − d.

and let H be a transitive hall set such that

H ∩M(2, A)≤3 = {c, b, a, (a, c), ((a, c), c), (a, (a, c)), (d, b), ((d, b), b),

(d, (b, a)), (d, (a, c)), (d, a), ((d, a), a), (d, (d, b)), (d, (d, a)), d}.
We can compute the factorization of the word bcaccbdbddad in the fol-
lowing way

(b, c, a, c, c, b, d, b, d, d, a, d)
↓

(b, c, a, c, c, b, d, b, d, (d, a), d)
↓

(b, c, a, c, c, b, d, b, (d, (d, a)), d)
↓

(b, c, (a, c), c, b, (d, b), (d, (d, a)), d)
↓

(b, c, ((a, c), c), b, (d, b), (d, (d, a)), d)
↓

(b, c, b, ((a, c), c), (d, b), (d, (d, a)), d)
↓

(c, b, b, ((a, c), c), (d, b), (d, (d, a)), d)

which gives bcaccbdbddad = c.b.b.acc.db.dda.d.

Let s = (h1, · · · , hn) be a standard sequence and i a legal ascent, we
define

(11) λi(s) = (h1, . . . , hi−1, (hi, hi+1), hi+2, . . . , hn)

and

(12) ρi(s) = (h1, · · · , hi−1, hi+1, hi, hi+2, · · · , hn).

The derivation tree of s is the tree T (s) satisfying the following

(1) if s is a decreasing sequence then T (s) is only the root labeled
s

(2) otherwise, we consider the greatest legal ascent i of s. Then
(a) if (hi, hi+1) ∈ θM, the root of the tree T (s) is s and T (s)

has only one subtree T (ρi(s)).
(b) otherwise, the root of T (s) is s, the left subtree of T (s) is

T (λi(s)) and the right sub-tree of T (s) is T (ρi(s))

If we denote [s] = [h1] · · · [hn], one obtains

(13) [s] =
∑

s′∈F(T (s))

[s′]
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where F(T (s)) denotes the set of the leaves of T (s). Applying this
equality to sequences of words, one gets an algorithm allowing to de-
compose a polynomial in the PBW basis associated to a transitive Hall
set.

Example 4.4. We use the transitive Hall set defined in the example
4.3. One has for example:

(b, c, a, c, c, b, d)

(b, c, c, a, c, b, d)

(b, c, c, c, a, b, d)

(b, c, c, c, b, a, d)

(c, b, c, c, b, a, d)

(c, c, b, c, b, a, d)

(c, c, c, b, b, a, d)

(b, c, c, (a, c), b, d)

(b, c, c, b, (a, c), d)

(c, b, c, b, (a, c), d)

(c, c, b, b, (a, c), d)

(b, c, (a, c), c, b, d)

(b, c, c, (a, c), b, d)

(b, c, c, b, (a, c), d)

(c, b, c, b, (a, c), d)

(c, c, b, b, (a, c), d)

(b, c, ((a, c), c), b, d)

(b, c, b, ((a, c), c), d)

(c, c, b, ((a, c), c), d)

which allows us to write

bcaccbd = c.c.c.b.b.a.d + 2c.c.b.b.[a, c].d + c.b.b.[[a, c], c].d.

5. Conclusion

The stable concept of a transitive factorization allows the adaptation
of the Hall machinery as it has been here made explicit. The construc-
tion is characteristic free. It would be interesting to investigate such
constructions in the case of p-commutations [5, 6, 12].

Another effective construction of bases of free partially commutative
Lie algebras (Klyachko idempotents) has been obtained recently by
F. Patras and C. Reutenauer [25]. Their construction holds without
restriction on the commutation rules but is not characteristic free.
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no. 189-190 (1990), Exp. No. 716, pp. 17–67.



18 G. DUCHAMP, M. FLOURET AND J.-G. LUQUE
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[22] G. Mélançon, Combinatorics of Hall trees and Hall words, J. Combin. The-
ory Ser. A 59 (1992), 285–308.
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Math., vol. 691, 1978.

[31] G.X. Viennot, Heaps of pieces, I: basic definitions and combinatorial lem-
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