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SIGNED WORDS AND PERMUTATIONS, III;

THE MACMAHON VERFAHREN

Dominique Foata and Guo-Niu Han

Glory to Viennot,
Wizard of Bordeaux,
A prince in Physics,
In Mathematics,
Combinatorics,
Even in Graphics,
Sure, in Viennotics.
He builds bijections,
Top calculations.

No one can beat him.
Only verbatim
Can we follow him.
He has admirers,
Who have got down here.
They all celebrate
Such a happy fate.
Sixty years have gone,
He still is our don.

Dedicated to Xavier.
Lucelle, April 2005.

Abstract. The MacMahon Verfahren is fully exploited to derive a
five-variable generating polynomial over signed permutations, where the
parameters are: “neg” (number of negative values), “fdes” (flag descent
number), “fmaj” (flag major index), “ifdes” and “ifmaj” (fdes and fmaj
for the inverse permutation); then a three-variable generating polynomial
over signed words with given letter multiplicities, where the parameters
are “neg”, “fmaj”, and “fdes”.

1. Introduction

To paraphrase Leo Carlitz [Ca56], the present paper could have been
entitled “Expansions of certain products,” as we want to expand the
product

(1.1) K∞(u) :=
∏

i≥0,j≥0

1
(1− uZijqi

1q
j
2)

,

in its infinite version, and

(1.2) Kr,s(u) :=
∏

0≤i≤r, 0≤j≤s

1
(1− uZijqi

1q
j
2)

,

in its graded version, where

Zij :=

{
Z, if i and j are both odd;
1, if i and j are both even;
0, if i and j have different parity.
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The second pair under study, which depends on r variables u1, . . . , ur,
reads
(1.3) L∞(u1, . . . , ur) :=

∏
1≤i≤r

1
(ui; q2)∞

1
(uiqZ; q2)∞

,

(1.4) Ls(u1, . . . , ur) :=
∏

1≤i≤r

1
(ui; q2)bs/2c+1

1
(uiqZ; q2)b(s+1)/2c

.

In those expressions we have used the usual notations for the q-
ascending factorial

(a; q)n :=
{

1, if n = 0;
(1− a)(1− aq) . . . (1− aqn−1), if n ≥ 1;(1.5)

in its finite form and
(a; q)∞ := limn(a; q)n =

∏
n≥0

(1− aqn);(1.6)

in its infinite form.
All those products will be the basic ingredients for deriving the distri-

butions of various statistics attached to signed permutations and words.
By signed word we understand a word w = x1x2 . . . xm, whose letters are
integers, positive or negative. If m = (m1,m2, . . . ,mr) is a sequence of
nonnegative integers such that m1 +m2 + · · ·+mr = m, let Bm be the set
of rearrangements w = x1x2 . . . xm of the sequence 1m12m2 . . . rmr , with
the convention that some letters i (1 ≤ i ≤ r) may be replaced by their
opposite values −i. For typographical reasons we shall use the notation
i := −i in the sequel. When m1 = m2 = · · · = mr = 1, the class Bm

is simply the hyperoctahedral group Bm (see [Bo68], p. 252-253) of the
signed permutations of order m (m = r).

Using the χ-notation that maps each statement A onto the value
χ(A) = 1 or 0 depending on whether A is true or not, we recall that
the usual inversion number, inv w, of each signed word w = x1x2 . . . xn is
defined by

inv w :=
∑

1≤j≤n

∑
i<j

χ(xi > xj).

It also makes sense to introduce
inv w :=

∑
1≤j≤n

∑
i<j

χ(xi > xj),

and define the flag-inversion number of w by

finv w := inv w + inv w + neg w,

where neg w :=
∑

1≤j≤n

χ(xj < 0). As noted in our previous paper

[FoHa05a], the flag-inversion number coincides with the traditional length
function `, when applied to each signed permutation.
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The flag-major index “fmaj” and the flag descent number “fdes”, which
were introduced by Adin and Roichman [AR01] for signed permutations,
are also valid for signed words. They read

fmaj w := 2 majw + neg w;
fdes w := 2 des w + χ(x1 < 0);

where majw :=
∑

j j χ(xj > xj+1) denotes the usual major index of w
and des w the number of descents des w :=

∑
j χ(xj > xj+1). Finally, for

each signed permutation w let w−1 denote the inverse of w and define
ifdes w := fdes w−1 and ifmaj := fmajw−1.

Notations. In the sequel Bn (resp. Bm) designates the hyperocta-
hedral group of order n (resp. the set of signed words of multiplicity
m = (m1,m2, . . . ,mr)), as defined above. Each generating polynomial
for Bn (resp. for Bm) by some k-variable statistic will be denoted by
Bn(t1, . . . , tk) (resp. Bm(t1, . . . , tk)). When the variable ti is missing in
the latter expression, it means that the variable ti is given the value 1.

The main two results of this paper corresponding to the two pairs of
products earlier introduced can be stated as follows.

Theorem 1.1. Let

(1.7) Bn(t1, t2, q1, q2, Z) :=
∑

w∈Bn

tfdes w
1 tifdes w

2 qfmaj w
1 qifmaj w

2 Zneg w

be the generating polynomial for the group Bn by the five-variable statistic
(fdes, ifdes, fmaj, ifmaj,neg). Then,

(1.8)
∑
n≥0

un

(t21; q
2
1)n+1(t22; q

2
2)n+1

(1 + t1)(1 + t2)Bn(t1, t2, q1, q2, Z)

=
∑

r≥0,s≥0

tr1t
s
2 Kr,s(u),

where Kr,s(u) is defined in (1.2).

Theorem 1.2. For each sequence m = (m1, . . . ,mr) let

(1.9) Bm(t, q, Z) :=
∑

w∈Bm

tfdes wqfmaj wZneg w

be the generating polynomial for the class Bm of signed words by the
three-variable statistic (fdes, fmaj,neg). Then

(1.10)
∑
m

(1 + t)Bm(t, q, Z)
um1

1 · · ·umr
r

(t2; q2)1+|m|
=

∑
s≥0

tsLs(u1, . . . , ur),

where |m| := m1 + · · ·+ mr and Ls(u1, . . . , ur) is defined in (1.4).

3



DOMINIQUE FOATA AND GUO-NIU HAN

It is worth noticing that Reiner [Re93a] has calculated the generating
polynomial for Bn by another 5-variable statistic involving each signed per-
mutation and its inverse. The bibasic series he has used are normalized by
products of the form (t1; q1)n+1(t2; q2)n instead of (t21; q

2
1)n+1(t22; q

2
2)n+1.

Using the properties of the fundamental transformation on signed
words described in our first paper [FoHa05a] we obtain the following
specialization of Theorem 1.1. Let

(1.11) finvBn(t, q) :=
∑

w∈Bn

tfdes wqfinv w

be the generating polynomial for the group Bn by the pair (fdes,finv).
Then, the q-factorial generating function for the polynomials finvBn(t, q)
(n ≥ 0) has the following form:

(1.12)
∑
n≥0

vn

(q2; q2)n

finvBn(t, q)

=
1− t

−t2 + (v(1− t2); q)∞

(
t + (v(1− t2)q; q2)∞

)
.

From identity (1.12) we deduce the generating function for the polynomials
dessBn(t, q) :=

∑
w∈Bn

tdess wqfinv w, where “dess” is the traditional number
of descents for signed permutations defined by

dess w := des w + χ(x1 < 0) instead of fdes w := 2 des w + χ(x1 < 0)

and recover Reiner’s identity [Re93a]

(1.13)
∑
n≥0

un

(q2; q2)n

dessBn(t, q) =
1− t

1− t eq(u(1− t))
1

(v(1− t); q2)∞
,

where eq(v(1 − t2)) = 1/(v(1 − t2); q)∞ is the traditional q-exponential.
This is done in section 4.

As in our second paper [FoHa05b] we make use of the MacMahon Ver-
fahren technique to prove the two theorems, which consists of transferring
the topology of the signed permutations or words measured by the var-
ious statistics, “fdes”, “fmaj”, to a set of pairs of matrices with integral
entries in the case of Theorem 1.1 and a set of plain words in the case of
Theorem 1.2 for which the calculation of the associated statistic is easy.
Each time there is then a combinatorial bijection between signed permu-
tations (resp. words) and pairs of matrices (resp. plain words) that has the
adequate properties. This is the content of Theorem 3.1 and Theorem 4.1.

In all our results we have tried to include the variable Z that takes the
number “neg” of negative letters of each signed permutation or word into
account. This allows us to re-obtain the classical results on the symmetric
group and sets of words.
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In the next section we recall the MacMahon Verfahren technique, which
was developed in our previous paper [FoHa05b] for signed permutations.
Notice that Reiner [Re93a, Re93b, Re93c, Re95a, Re95b], extending
Stanley’s [St72] (P, ω)-partition approach, has successfully developed a
(P, ω)-partition theory for the combinatorial study of the hyperoctahedral
group, which could have been used in this paper. Section 3 contains the
proof of Theorem 1.1, whose specializations are given in Section 4. We end
the paper with the proof of Theorem 1.2 and its specializations. Noticeably,
the generating polynomial for the class Bm of signed words by the two-
variable statistic (fdes, fmaj) is completely explicit, in the sense that we
derive the factorial generating function for those polynomials and also a
recurrence relation, while only the generating function given by (1.10) has
a simple form when the variable Z is kept.

2. The MacMahon Verfahren

Let Nn (resp. NIW(n)) be the set of words (resp. nonincreasing words)
of length n, whose letters are nonnegative integers. As done in [FoHa05b]
the MacMahon Verfahren consists of mapping each pair (b, w) ∈ NIW(n)×
Bn onto a word c ∈ Nn as follows. Write the signed permutation w as
the linear word w = x1x2 . . . xn, where xk is the image of the integer k
(1 ≤ k ≤ n). For each k = 1, 2, . . . , n let zk be the number of descents
in the right factor xkxk+1 . . . xn and εk be equal to 0 or 1 depending on
whether xk is positive or negative. Next, form the words z(w) := z1z2 . . . zn

and ε(w) := ε1ε2 . . . εn.
Now, take a nonincreasing word b = b1b2 . . . bn and define ak := bk +zk,

c′k := 2ak + εk (1 ≤ k ≤ n), then a(b, w) := a1a2 . . . an and c′(b, w) :=

c′1c
′
2 . . . c′n. Finally, form the two-row matrix

(
c′1 c′2 . . . c′n
|x1| |x2| . . . |xn|

)
. Its

bottom row is a permutation of 1 2 . . . n; rearrange the columns in
such a way that the bottom row is precisely 1 2 . . . n. Then the word
c(b, w) = c1c2 . . . cn which corresponds to the pair (b, w) is defined to be
the top row in the resulting matrix.

Example. Start with the pair (b, w) below and calculate all the neces-
sary ingredients:

b = 4 2 2 1 1 0 0
w = 3 5 1 6 7 4 2

z(w) = 2 1 1 1 1 0 0
ε(w) = 0 1 1 0 0 1 0

a(b, w) = 6 3 3 2 2 0 0
c′(b, w) = 12 7 7 4 4 1 0
c(b, w) = 7 0 12 1 7 4 4
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For each c = c1 . . . cn ∈ Nn and let tot c := c1 + · · · + cn, max c :=
max{c1, . . . , cn} and let odd c denote the number of odd letters in c . The
proof of the following theorem can be found in [FoHa05b, Theorem 4.1].

Theorem 2.1. For each nonnegative integer s the above mapping is a
bijection (b, w) 7→ c(b, w) of the set of pairs

(b, w) = (b1b2 . . . bn, x1x2 . . . xn) ∈ NIW(n)×Bn

such that 2b1 + fdes w = s onto the set of words c = c1c2 . . . cn ∈ Nn such
that max c = s. Moreover,

(2.1) 2b1 + fdes w = max c(b, w); 2 tot b + fmaj w = tot c(b, w);
neg w = odd c(b, w).

We end this section by quoting the following classical identity, where
b1 is the first letter of b.

(2.2)
1

(u; q)n+1
=

∑
s≥0

us
∑

b∈NIW(n), b1≤s

qtot b.

3. Proof of Theorem 1.1

We apply the MacMahon Verfahren just described to the two pairs
(b, w) and (β, w−1), where b and β are two nonincreasing words. The pair
(b, w) (resp. (β, w−1)) is mapped onto a word c := c(b, w) = c1c2 . . . cn

(resp. C := c(β, w−1) = C1C2 . . . Cn) of length n, with the properties

(3.1) 2b1 + fdes w = max c; 2 tot b + fmaj w = tot c;
(3.2) 2β1 + ifdes w = maxC; 2 totβ + ifmajw = tot C.

There remains to investigate the relation between the two words c and C
before pursuing the calculation. Form the two-row matrix(

c′

C

)
=

(
c′1 c′2 . . . c′n
C1 C2 . . . Cn

)
,

where c′ = c′1c
′
2 . . . c′n designates the nonincreasing rearrangement of the

word c. The following lemma is readily verified.

Lemma. The following properties hold:
(i) for each i = 1, 2, . . . , n the letters c′i and Ci are of the same parity;
(ii) if c′i = c′i+1 is even (resp. is odd), then Ci ≥ Ci+1 (resp. Ci ≤ Ci+1).

(iii) if
(
c′

C

)
is a two-row matrix of length n having properties (i) and (ii),

there exists one and only one signed permutation w and two nonincreasing
words b, β satisfying (3.1) and (3.2).
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Example. We take the same example for w as in the previous section,
but we also calculate C = c(β, w−1).

b = 4 2 2 1 1 0 0
w = 3 5 1 6 7 4 2

z(w) = 2 1 1 1 1 0 0
ε(w) = 0 1 1 0 0 1 0

a(b, w) = 6 3 3 2 2 0 0
c′ := c′(b, w) = 12 7 7 4 4 1 0
c := c(b, w) = 7 0 12 1 7 4 4

β = 3 2 1 1 0 0 0
w−1 = 3 7 1 6 2 4 5

z(w−1) = 2 2 1 0 0 0 0
ε(w−1) = 1 0 0 1 1 0 0

a(β, w−1) = 5 4 2 1 0 0 0
C ′ := c′(β, w−1) = 11 8 4 3 1 0 0
C := c(β, w−1) = 4 1 11 0 0 3 8(

c′

C

)
=

(
12 7 7 4 4 1 0
4 1 11 0 0 3 8

)
.

Let (i1 < i1 < · · · < ir) (resp. (j1 < j2 < · · · < js)) be the increasing
sequence of the integers i (resp. the integers j) such that c′i is even (resp.
c′j is odd). Define (“e” for “even” and “o” for “odd”)

2de =
(

2fe

2ge

)
:=

(
c′i1 c′i2 . . . c′ir

Ci1 Ci2 . . . Cir

)
;

2do + 1 =
(

2fo + 1
2go + 1

)
:=

(
c′j1 c′j2 . . . c′js

Cj1 Cj2 . . . Cjs

)
;

so that the two two-row matrices

de =
(

fe

ge

)
:=

(
c′i1/2 c′i2/2 . . . c′ir

/2
Ci1/2 Ci2/2 . . . Cir/2

)
,

do =
(

fo

go

)
:=

(
(c′j1 − 1)/2 (c′j2 − 1)/2 . . . (c′js

− 1)/2
(Cj1 − 1)/2 (Cj2 − 1)/2 . . . (Cjs

− 1)/2

)
,

may be regarded as another expression for the two-row matrix
(
c′

C

)
.

Define the integers imax and jmax by:

imax :=
{

(max c− 1)/2, if max c is odd;
max c/2, if max c is even;

jmax :=
{

(max C − 1)/2, if maxC is odd;
max C/2, if maxC is even.

Then, to the pair de, do there corresponds a pair of unique finite matrices
De = (de

ij), Do = (do
ij) (0 ≤ i ≤ imax, 0 ≤ j ≤ jmax) (and no other pair

of smaller dimensions), where de
ij (resp. do

ij) is equal to the number of the
two-letters in de (resp. in do) that are equal to

(
i
j

)
.

7



DOMINIQUE FOATA AND GUO-NIU HAN

On the other hand, with |f | designating the length of the word f ,

tot c = tot 2fe + tot(2fo + 1) = 2 tot fe + 2 tot fo + |fo|
= 2

∑
i,j

i de
ij + 2

∑
i,j

i do
ij +

∑
i,j

do
ij ;

totC = tot 2ge + tot(2go + 1) = 2 tot ge + 2 tot go + |go|
= 2

∑
i,j

j de
ij + 2

∑
i,j

j do
ij +

∑
i,j

do
ij .

The following proposition follows from Theorem 2.1.

Proposition 3.1. For each pair of nonnegative integers (r, s) the map
(b, β, w) 7→ (De, Do) is a bijection of the triples (b, β, w) such that
2b1 + fdes w ≤ r, 2β1 + ifdes w ≤ s onto the pairs of matrices De = (de

i,j),
Do = (do

i,j) (0 ≤ i ≤ r, 0 ≤ j ≤ s). Moreover,

(3.3) 2 tot b + fmaj w = 2
∑
i,j

i de
ij + 2

∑
i,j

i do
ij +

∑
i,j

do
ij ;

(3.4) 2 tot β + ifmajw = 2
∑
i,j

j de
ij + 2

∑
i,j

j do
ij +

∑
i,j

do
ij ;

(3.5) neg w =
∑
i,j

do
ij .

(3.6) |w| =
∑
i,j

de
ij +

∑
i,j

do
ij .

Again work with the same example as above. To the two-row matrix(
c′

C

)
=

(
12 7 7 4 4 1 0
4 1 11 0 0 3 8

)
there corresponds the pair

de =
(

6 2 2 0
2 0 0 4

)
, do =

(
3 3 0
0 5 1

)
.

As max c = 12 is even (resp. maxC = 11 is odd), we have imax = 6,
jmax = 5 and

De =



0 1 2 3 4 5
0 . . . . 1 .
1 . . . . . .
2 2 . . . . .
3 . . . . . .
4 . . . . . .
5 . . . . . .
6 . . 1 . . .


; Do =



0 1 2 3 4 5
0 . 1 . . .
1 . . . . . .
2 . . . . . .
3 1 . . . . 1
4 . . . . . .
5 . . . . . .
6 . . . . . .


.

Also verify that 2 tot b + fmajw = 35 = 2× (2 + 2 + 6) + 2× (3 + 3) + 3;
2 totβ + ifmajw = 27 = 2× (2 + 4) + 2× (1 + 5) + 3 and neg w = 3.
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In the following summations b and β run over the set of nonincreasing
words of length n. By using identity (2.2) we have∑

n≥0

un

(t21; q
2
1)n+1(t22; q

2
2)n+1

(1 + t1)(1 + t2)Bn(t1, t2, q1, q2, Z)

=
∑
n≥0

un(1 + t1)(1 + t2)Bn(t1, t2, q1, q2, Z)
∑

r′≥0, s′≥0
b,β,b1≤r′, β1≤s′

t2r′

1 t2s′

2 q2 tot b
1 q2 tot β

2

=
∑

n,r′,s′

un(t2r′

1 + t2r′+1
1 )(t2s′

2 + t2s′+1
2 )

×
∑

w∈Bn

b,β,b1≤r′, β1≤s′

tfdes w
1 tifdes w

2 qfmaj w+2 tot b
1 qifmaj w+2 tot β

2 Zneg w

=
∑

n,r′,s′

untr
′

1 ts
′

2

∑
w∈Bn

b,β,2b1≤r′, 2β1≤s′

tfdes w
1 tifdes w

2 qfmaj w+2 tot b
1 qifmaj w+2 tot β

2 Zneg w

=
∑
n,r,s

untr1t
s
2

∑
w∈Bn,b,β

2b1+fdes w≤r, 2β1+ifdes w≤s

qfmaj w+2 tot b
1 qifmaj w+2 tot β

2 Zneg w.

We can continue the calculation by using (3.3), (3.4) and (3.5), the inner
summation being over matrices De, Do of dimensions (r + 1) × (s + 1)
with

∑
i,j de

ij +
∑

i,j do
ij = n, that is,

=
∑
n,r,s

untr1t
s
2

∑
De,Do

q
2Σ ide

ij+2Σ ido
ij+Σ do

ij

1 q
2Σ jde

ij+2Σ jdo
ij+Σ do

ij

2 ZΣ do
ij

=
∑
r,s

tr1t
s
2

∑
De

uΣ de
ij q

Σ (2i)de
ij

1 q
Σ (2j)de

ij

2

∑
Do

uΣ do
ij q

Σ (2i+1)do
ij

1 q
Σ (2j+1)do

ij

2 ZΣ do
ij

=
∑
r,s

tr1t
s
2

∑
De

∏
i,j

(uq2i
1 q2j

2 )de
ij

∑
Do

∏
i,j

(uZq2i+1
1 q2j+1

2 )do
ij (0≤ i≤r, 0≤j≤s)

=
∑
r,s

tr1t
s
2

1∏
i,j

(1− uq2i
1 q2j

2 )
1∏

i,j

(1− uZq2i+1
1 q2j+1

2 )
(0≤ i≤r, 0≤j≤s)

=
∑

r≥0,s≥0

tr1t
s
2

1∏
0≤i≤r,0≤j≤s

(1− uZijqi
1q

j
2)

.

4. Specializations and Flag-inversion number

Define

(u; q1, q2)r+1,s+1 =
∏

0≤i≤r
0≤j≤s

(1− uqi
1q

j
2); (u; q1, q2)∞,∞ =

∏
i,j≥0

(1− uqi
1q

j
2).
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When Z := 0 and t1, t2, q1, q2 are replaced by their square roots, identity
(1.8) becomes

(4.1)
∑
n≥0

un

(t1; q1)n+1(t2; q2)n+1
An(t1, t2, q1, q2)=

∑
r≥0,s≥0

tr1t
s
2

(u; q1, q2)r+1,s+1
,

where An(t1, t2, q1, q2) is the generating polynomial for the symmetric
group Sn by the quadruple (des, ides,maj, imaj), an identity first derived
by Garsia and Gessel [GaGe78]. Other approaches can be found in [Ra79],
[DeFo85].

Remember that when a variable is missing in Bn(t1, t2, q1, q2, Z) it
means that the variable has been given the value 1. Multiply both sides
of (1.8) by (1− t2) and let t2 = 1. We get:

(4.2)
∑
n≥0

un

(t21; q
2
1)n+1(q2

2 ; q2
2)n

(1 + t1)Bn(t1, q1, q2, Z)

=
∑
r≥0

tr1
1∏

0≤i≤r,j≥0

(1− uZijqi
1q

j
2)

.

Again multiply both sides by (1− t1) and let t1 = 1:

(4.3)
∑
n≥0

un

(q2
1 ; q2

1)n(q2
2 ; q2

2)n
Bn(q1, q2, Z) =

1∏
i≥0,j≥0

(1− uZijqi
1q

j
2)

.

Also the (classical) generating function for the polynomials An(q1, q2) can
be derived from identity (4.3) and reads:∑

n≥0

un

(q1; q1)n(q2; q2)n
An(q1, q2) =

1
(u; q1, q2)∞,∞

.

With q1 = 1 the denominator of the fraction on the right side of identity
(4.2) becomes{

(u; q2
2)(r/2)+1
∞ (uq2Z; q2

2)r/2
∞ , if r is even;

(u; q2
2)(r+1)/2
∞ (uq2Z; q2

2)(r+1)/2
∞ , if r is odd.

Hence,∑
n≥0

un

(1− t21)n+1(q2
2 ; q2

2)n
(1 + t1)Bn(t1, q2, Z)

=
∑
s≥0

t2s+1
1

((u; q2
2)∞(uq2Z; q2

2)∞)s+1
+

∑
s≥0

t2s
1

((u; q2
2)∞(uq2Z; q2

2)∞)s

1
(u; q2

2)∞
.

=
1

−t21 + (u; q2
2)∞(uq2Z; q2

2)∞

(
t1 + (uq2Z; q2

2)∞
)
.

Now replace u by v(1 − t21). This implies the following result stated as a
theorem.

10
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Theorem 4.1. Let Bn(t1, q2, Z) be the generating polynomial for the
group Bn by the triple (fdes, ifmaj,neg). Then,

(4.4)
∑
n≥0

vn

(q2
2 ; q2

2)n
Bn(t1, q2, Z)

=
1− t1

−t21 + (v(1− t21); q
2
2)∞ (v(1− t21)q2Z; q2

2)∞

(
t1 + (v(1− t21)q2Z; q2

2)∞
)
.

Several consequences are drawn from Theorem 4.1. First, when Z = 0
and when t1, q2 are replaced by their square roots, we get

(4.5)
∑
n≥0

vn

(q2; q2)n
An(t1, q2) =

1− t1
−t1 + (v(1− t1); q2)∞

,

where An(t1, q2) is the generating polynomial for the group Sn by the pair
(des, imaj), but also by the pair (des, inv) (see [St76], [FoHa97]).

Let iw := w−1 denote the inverse of the signed permutation w. At this
stage we have to remember that the bijection Ψ of Bn onto itself that we
have constructed in our first paper [FoHa05a] preserves the inverse ligne
of route [FoHa05a, Theorem 1.2], so that the chain

w
i−−−→ w1

Ψ−−−→ w2
i−−−→ w3(

fdes
ifmaj

) (
ifdes
fmaj

) (
ifdes
finv

) (
fdes
finv

)
shows that the four pairs (fdes, ifmaj), (ifdes, fmaj), (ifdes,finv) and
(fdes,finv) are all equidistributed over Bn. Therefore,∑

w

tfdes wqifmaj w =
∑
w

tifdes wqfmaj w =
∑
w

tifdes wqfinv w =
∑
w

tfdes wqfinv w,

where w runs over Bn. The rightmost generating polynomial was des-
ignated by finvBn(t, q) in (1.11). Therefore we can derive a formula
for finvBn(t, q) by using its (fdes, ifmaj) interpretation. We have then
finvBn(t, q) = Bn(t1, q2, Z) with t1 = t, q2 = q and Z = 1. Let Z := 1
in (4.4); as (v(1− t21); q

2
2)∞ (v(1− t21)q2; q2

2)∞ = (v(1− t21); q2)∞, identity
(4.4) implies identity (1.12).

To recover Reiner’s identity (1.13) we make use of (1.12) by sorting the
signed permutations according to the parity of their flag descent numbers:
Bn(t, q) =: B′

n(t2, q) + t B′′
n(t2, q), so that dessBn(t2, q) = B′

n(t2, q) +
t2 B′′

n(t2, q). Hence∑
n≥0

vn

(q2; q2)n

dessBn(t2, q)=
(v(1− t2)q; q2)∞ − t2

−t2 + (v(1− t2); q)∞
+ t2

1− (v(1− t2)q; q2)∞
−t2 + (v(1− t2); q)∞

=
1− t2

−t2 + (v(1− t2); q)∞
(v(1− t2)q; q2)∞.

11
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As 1/(v(1−t2); q)∞ can also be expressed as the q-exponential eq(v(1−t2)),
we then get identity (1.13).

5. The MacMahon Verfahren for signed words

Let w = x1x2 . . . xm be a signed word belonging to the class Bm,
where m = (m1,m2, . . . ,mr) is a sequence of nonnegative integers such
that m1 + m2 + · · · + mr = m. Remember that this means that w is a
rearrangement of 1m12m2 . . . rmr , with the convention that some letters i
(1 ≤ i ≤ r) may be replaced by their opposite values i. Again, let ε :=
ε(w) := ε1ε2 . . . εm be the binary word defined by εi = 0 or 1, depending
on whether xi is positive or negative. As before, let b ∈ NIW(m).

The MacMahon Verfahren bijection for signed words is constructed as
follows. First, compute the word z = z1z2 . . . zm, where zk is equal to
the number of descents in the right factor xkxk+1 . . . xm, as well as the
word ε = ε1ε2 . . . εm mentioned above, so that, as in the case of signed
permutations,

(5.1) fmaj w = 2 tot z + tot ε.

Next, define ak := bk + zk, c′k := 2ak + εk (1 ≤ k ≤ m), then
a := a1a2 . . . am and c′ := c′1c

′
2 . . . c′m. Finally, form the two-row matrix(

c′

abs w

)
=

(
c′1 c′2 . . . c′m
|x1| |x2| . . . |xm|

)
. Its bottom row is a rearrangement of

the word 1m12m2 . . . rmr .
Make the convention that two biletters

( c′k
|xk|

)
and

( c′l
|xl|

)
commute if

and only if |xk| and |xl| are different and rearrange the biletters of that
biword in such a way that the bottom row is precisely 1m12m2 . . . rmr .
The top row in the resulting two-row matrix is then the juxtaposition
product of r nonincreasing words b(1) = b

(1)
1 . . . b

(1)
m1 , b(2) = b

(2)
1 . . . b

(2)
m2 ,

. . . , b(r) = b
(r)
1 . . . b

(r)
mr , of lengths m1, m2, . . . , mr, respectively. Moreover,

tot b(1) + tot b(2) + · · ·+ tot b(r) = tot c′ = 2 tot a + tot ε

= 2 tot b + 2 tot z + tot ε

= 2 tot b + fmaj w.(5.2)

On the other hand,

2b1 + fdes w = 2b1 + 2z1 + ε1 = c′1

= maxi b
(i)
1 (1 ≤ i ≤ r).(5.3)

As in the case of signed permutations, we can easily see that for each
nonnegative integer s the map (b, w) 7→ (b(1), b(2), . . . , b(r)) is a bijection of

12
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the set of pairs (b, w) ∈ NIW(m)×Rm such that 2b1+ fdes w=s onto the
set of juxtaposition products b(1)b(2) . . . b(r) such that maxi b

(i)
1 = s. The

reverse bijection is constructed in the same way as in the case of signed
permutations.

Example. Start with the pair (b, w), where w belongs to Bm with
m = (2, 2, 2, 2, 2, 2), r = 6, m = 12, the negative elements being overlined.

Id = 1 2 3 4 5 6 7 8 9 10 11 12
b = 4 4 4 4 4 4 4 2 2 1 1 1
w = 1 5 2 2 3 3 1 4 6 5 4 6
z = 3 2 2 2 1 1 1 1 0 0 0 0
ε = 0 1 1 0 1 1 1 0 1 1 0 0
a = 7 6 6 6 5 5 5 3 2 1 1 1
c′ = 14 13 13 12 11 11 11 6 5 3 2 2

abs w = 1 5 2 2 3 3 1 4 6 5 4 6
b(1) . . . b(r) = 14 11 13 12 11 11 6 2 13 3 5 2
1m1 . . . rmr = 1 1 2 2 3 3 4 4 5 5 6 6

We verify that 2 tot b+fmaj w = 2 tot b+2 tot z+tot ε = 2×35+2×13+7 =
103 = tot b(1) + · · · + tot b(6) and 2b1 + fdes w = 2b1 + 2z1 + ε1 =
2× 4 + 2× 3 + 0 = 14 = c′1 = maxi b

(i)
1 .

The combinatorial theorem for signed words that corresponds to The-
orem 2.1 is now stated.

Theorem 5.1. For each nonnegative integer s the above mapping is a
bijection of the set of pairs (b, w) = (b1b2 . . . bm, x1x2 . . . xm) ∈ NIW(m)×
Bm such that 2b1 + fdes w = s onto the set of juxtaposition products

b(1) . . . b(r) ∈ NIW(m1)×· · ·×NIW(mr) such that maxi b
(i)
1 = s. Moreover,

(5.2) and (5.3) hold, together with

(5.4) neg w = odd(b(1) . . . b(r))

Relation (5.4) is obvious, as the negative letters of w are in bijection
with the odd letters of the juxtaposition product. Now consider the
generating polynomial Bm(t, q, Z), as defined in (1.9). Making use of (2.2)
and of the usual q-identities

1
(u; q)N

=
∑
n≥0

[
N + n− 1

n

]
q

un;

[
N + n

n

]
q

=
∑

b∈NIW(N), b1≤n

qtot b;

13
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we have

1 + t

(t2; q2)m+1
Bm(t, q, Z) =

∑
s′≥0

(t2s′ + t2s′+1)
[
m + s′

s′

]
q2

Bm(t, q, Z)

=
∑
s′≥0

ts
′
[
m + bs′/2c
bs′/2c

]
q2

Bm(t, q, Z)

=
∑
s′≥0

ts
′ ∑
b∈NIW(m),

2b1≤s′

q2 tot b
∑

w∈Bm

tfdes wqfmaj wZneg w

=
∑
s≥0

ts
∑

b∈NIW(m), w∈Bm

2b1+fdes w≤s

q2 tot b+fmaj wZneg w.

But using (5.2), (5.3), (5.4) we can write

1 + t

(t2; q2)m+1
Bm(t, q, Z) =

∑
s≥0

ts
∑

b(1),...,b(r),

maxi b
(i)
1 ≤s

qtot b(1)+···+tot b(r)
Zodd b(1)+···+odd b(r)

and∑
m

(1+t)Bm(t, q, Z)
um1

1 · · ·umr
r

(t2; q2)1+|m|
=

∑
s≥0

ts
∏

1≤i≤r

∑
mi≥0

∑
b(i)

umi
i qtot b(i)

Zodd b(i)
,

using the notation: |m| := m1 + · · ·+ mr.
There remains to evaluate

∑
m

∑
b umqtot bZodd b, where the second

sum is over all nonincreasing words b = b1 . . . bm of length m such that
b1 ≤ s. Let 1 ≤ i1 < · · · < ik ≤ m (resp. 1 ≤ j1 < · · · < jl ≤ m)
be the sequence of all integers i (resp. j) such that bi is even (resp. bj

is odd). Then, b is completely characterized by the pair (be, bo), where
be := (bi1/2) . . . (bik

/2) and bo := ((bj1 − 1)/2) . . . ((bjl
− 1)/2). Moreover,

tot b = 2 tot be + 2 tot bo + |bo|. Hence,

∑
m≥0

∑
b,|b|=m,b1≤s

umqtot bZodd b =
∑

b,b1≤s

u|b|qtot bZodd b

=
∑

be, 2be
1≤s

u|b
e|q2 tot be ∑

bo, 2bo
1≤s−1

(uqZ)|b
o|q2 tot bo

=
1

(u; q2)bs/2c+1

1
(uqZ; q2)b(s+1)/2c

.

This completes the proof of Theorem 1.2.
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6. Specializations

As has been seen in this paper a t-graded form such as (1.10) has an
ungraded (infinite) version, obtained by multiplying the formula by (1− t)
and letting t := 1. This gives∑

m

Bm(q, Z)
um1

1 · · ·umr
r

(q2; q2)|m|
=

∏
1≤i≤r

1
(ui; q2)∞

1
(uiqZ; q2)∞

(6.1)

=
∏

1≤i≤r

eq2(ui) eq2(uiqZ),

where eq2(u) denotes the usual q-exponential with basis q2 ([GaRa90],
p. 9). Notice that Bm(q, Z) is the generating polynomial for the class Bm

by the pair (fmaj,neg), namely

(6.2) Bm(q, Z) =
∑
w

qfmaj wZneg w (w ∈ Bm).

On the other hand, Let

(6.3) finvBm(q, Z) :=
∑

w∈Bm

qfinv wZneg w

be the generating polynomial for the class Bm by the pair (finv,neg).
Using a different approach (the derivation is not reproduced in the paper;
it is not quite straightforward), we can prove the identity

finvBm(q, Z) = (−Zq; q)m1+···+mr

(q; q)m1+···+mr

(q; q)m1 · · · (q; q)mr

(6.4)

= (−Zq; q)m1+···+mr

[
m1 + · · ·+ mr

m1, . . . ,mr

]
q

,

using the traditional notation for the q-multinomial coefficient. In general,
Bm(q, Z) 6= finvBm(q, Z). This can be shown by means of a combinatorial
argument.

Let Z := 1 in (6.1) and make use of the q-binomial theorem (see [An76],
p. 17, or [GaRa90], chap. 1), on the one hand, and let Z := 1 in (6.4), on
the other hand. We get the evaluations

(6.5) Bm(q) = (−q; q)m1+···+mr

[
m1 + · · ·+ mr

m1, . . . ,mr

]
q

= finvBm(q).

This shows that “fmaj” and “finv” are equidistributed over each class Bm,
a property proved “bijectively” in our first paper [FoHa05a].
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Next, let q := 1 in (6.4). We obtain

(6.6) finvBm(Z) = (1 + Z)m1+···+mr

(
m1 + · · ·+ mr

m1, . . . ,mr

) (
= Bm(Z)

)
,

an identity which is equivalent to

(6.7)
∑
m

Bm(Z)
um1

1 · · ·umr
r

|m|!
=

∏
1≤i≤r

exp(ui) exp(uiZ).

Thus, the q-analog of (6.6) yields (6.4) with a combinatorial interpretation
in terms of the flag-inversion number “finv,” while (6.1) may be interpreted
as q-analog of (6.7) with an interpretation in terms of the flag-major index
number “fmaj.”

Finally, for Z = 0, formula (1.10) yields the identity∑
m

Am(t, q)
um1

1 · · ·umr
r

(t; q)1+|m|
=

∑
s≥0

ts
∏

1≤i≤r

1
(ui; q)s+1

,

where Am(t, q) is the generating polynomial for the class of the rearrange-
ments of the word 1m12m2 . . . rmr by (des,maj). As done by Rawlings
[Ra79], [Ra80], the polynomials Am(t, q) can also be defined by a recur-
rence relation involving either the polynomials themselves, or their coeffi-
cients.

7. The Signed-Word-Euler-Mahonian polynomials

We end the paper by showing that the polynomials Bm(t, q) =
Bm(t, q, Z) |Z=1 can be calculated not only by their factorial generating
function given by (1.10) for Z := 1, but also by a recurrence formula.

Definition. A sequence
(
Bm(t, q) =

∑
k≥0

tkBm,k(q)
)

(m = (m1, . . . ,mr);

m1 ≥ 0, . . . ,mr ≥ 0)) of polynomials in two variables t, q, is said to
be signed-word-Euler-Mahonian, if one of the following four equivalent
conditions holds:

(1) The (t2, q2)-factorial generating function for the polynomials

(7.1) Cm(t, q) := (1 + t)Bm(t, q)

is given by identity (1.10) when Z = 1, that is,∑
m

Cm(t, q)
um1

1 · · ·umr
r

(t2; q2)1+|m|
=

∑
s≥0

ts
∏

1≤i≤r

1
(ui; q)s+1

.(7.2)

(2) For each multiplicity m we have:

(7.3)
Cm(t, q)

(t2; q2)1+|m|
=

∑
s≥0

ts
[
m1 + s

s

]
q

· · ·
[
mr + s

s

]
q

.
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Let m + 1r := (m1, . . . ,mr−1,mr + 1).

(3) The following recurrence relation

(7.4) (1− qmr+1)Bm+1r
(t, q)

= (1− t2q2+2|m|)Bm(t, q)− qmr+1(1− t)(1 + tq)Bm(tq, q),

holds with B(0,...,0)(t, q) = 1.

(4) The following recurrence relation for the coefficients Bm,k(q)

(7.5) (1 + q + · · ·+ qmr )Bm+1r,k(q) = (1 + q + · · ·+ qmr+k)Bm,k(q)

+ qmr+kBm,k−1(q) + (qmr+k + qmr+k+1 + · · ·+ q2|m|+1)Bm,k−2(q),

holds with B(0,...,0),0(q) = 1 and B(0,...,0),k(q) = 0 for every k 6= 0.

Theorem 7.1. The conditions (1), (2), (3) and (4) in the previous
definition are equivalent.

Proof. The proofs of the equivalences [(1) ⇔ (2)] and [(3) ⇔ (4)]
are easy and therefore omitted. For proving the equivalence [(1) ⇔ (3)]
proceed as follows. Let C(t, q;u1, . . . , ur) denote the right side of (7.2) and
form the q-difference C(t, q;u1, . . . , ur)−C(t, q;u1, . . . , ur−1, urq) applied
to the sole variable ur. We get

(7.6) C(t, q;u1, . . . , ur)− C(t, q;u1, . . . , ur−1, urq)

=
∑
s≥0

ts

(u1; q)s+1 . . . (ur; q)s+1
−

∑
s≥0

ts

(u1; q)s+1 . . . (urq; q)s+1

=
∑
s≥0

ts

(u1; q)s+1 . . . (ur; q)s+1

[
1− 1− ur

1− urqs+1

]
= ur

∑
s≥0

ts

(u1; q)s+1 . . . (ur; q)s+1

[
1− qs+1 1− ur

1− urqs+1

]
= ur

(
C(t, q;u1, . . . , ur)− qC(tq, q;u1, . . . , ur−1, urq)

)
.

Now, let C(t, q;u1, . . . , ur) :=
∑

m Cm(t, q)um1
1 · · ·umr

r /(t2; q2)1+|m| and
express each term C(. . .) occurring in identity (7.6) as a factorial series in
the ui’s. We obtain∑

m

(1− qmr+1)Cm+1r
(t, q)

um1
1 · · ·umr+1

r

(t2; q2)2+|m|

=
∑
m

(1− t2q2+2|m|)Cm(t, q)
um1

1 · · ·umr+1
r

(t2; q2)2+|m|

−
∑
m

qmr+1(1− t2)Cm(tq, q)
um1

1 · · ·umr+1
r

(t2; q2)2+|m|
.
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Taking the coefficients of um1
1 . . . u

mr−1
r−1 umr+1

r yields

(1−qmr+1)Cm+1r
(t, q) = (1−t2q2+2|m|)Cm(t, q)−qmr+1(1−t2)Cm(tq, q),

which in turn is equivalent to (7.4) in view of (7.1). All the steps of the
argument are reversible.

Remark 1. The fact that Bm(t, q) is the generating polynomial for the
class Bm by the pair (fdes, fmaj) can also be proved by the insertion
technique using (7.5). The argument has been already developed in
[ClFo95a, § 6] for ordinary words. Again let m := |m| = m1 + · · · + mr.
With each word from Bm+1r associate (mr + 1) new words obtained by
marking one and only one letter equal to r or r. Let B∗

m+1r denote the
class of all those marked signed words. If w∗ = x1 . . . x∗i . . . xm+1 is such
a word, where the i-th letter is marked (accordingly, equal to either r
or r), let marki be the number of letters equal to r or r in the right factor
xi+1xi+2 . . . xm+1 and define:

fmaj∗ w∗ := fmajw + marki w∗.

On the other hand, let

Bm,k(q) :=
∑

w∈Bm, fdes w=k

qfmaj w.

Clearly, ∑
w∗∈B∗

m+1r , fdes w=k

qfmaj∗ w∗
= (1 + q + · · ·+ qmr )Bm+1r,k(q).

Now each word w from the class Bm gives rise to 2(m+1) distinct marked
signed words of length (m + 1), when the marked letter r or r is inserted
between letters of w, as well as in the beginning of and at the end of the
word. As in the case of the signed permutations, we can verify that for
each j = 0, 1, . . . , 2m+1 there is one and only one marked signed word w∗

of length (m + 1) derived by insertion such that fmaj∗ w∗ = fmajw + j.
On the other hand, “fdes” is not modified if r is inserted to the right

of w, or if r or r is inserted into a descent xi > xi+1. Furthermore, “fdes”
increases by one, if x1 > 0 (resp. x1 < 0) and r (resp. r) is inserted to the
left of w. For all the other insertions “fdes” increases by 2.

Hence, all the marked signed words w∗ from B∗
m+1r , such that fdes w∗ =

k are derived by insertion from three sources:
(i) the set {w ∈ Bm : fdes w = k} and the contribution is:

(1 + q + · · ·+ qmr+k)Bm,k(q);
(ii) the set {w ∈ Bm : fdes w = k − 1} and the contribution is:

qmr+kBm,k−1(q);
(iii) the set {w ∈ Bm : fdes w = k − 2} and the contribution is:

(qmr+k + · · ·+ q2|m|+1)Bm,k−2(q).
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Remark 2. Let m := 1n and Bn(t, q) = Bm(t, q), so that Bn(t, q)
is now the generating polynomial for the set of signed permutations of
order n. Then (7.3), (7.4) and (7.5) become

(7.7)
(1 + t)Bn(t, q)

(t2; q2)n+1
=

∑
s≥0

ts(1 + q + · · ·+ qs)n

(7.8) (1− q)Bn(t, q) = (1− t2q2n)Bn−1(t, q)− q(1− t)(1 + tq)Bn−1(tq, q).
(7.9) Bn,k(q) = (1 + q + · · ·+ qk)Bn−1,k(q)

+ qkBn−1,k−1(q) + (qk + qk+1 + · · ·+ q2n−1)Bn−1,k−2(q).

The last three relations have been derived by Brenti et al. [ABR01], Chow
and Gessel [ChGe04], Haglund et al. [HLR04].

Concluding remarks. The statistical study of the hyperoctahedral
group Bn was initiated by Reiner ([Re93a], [Re93b], [Re93c], [Re95a],
[Re95b]). It had been rejuvenated by Adin and Roichman [AR01] with
their introduction of the flag-major index, which was shown [ABR01] to
be equidistributed with the length function. See also their recent papers on
the subject [ABR05], [ReRo05]. Another approach to Theorems 1.1 and 1.2
would be to make use of the Cauchy identity for the Schur functions, as
was done in [ClFo95b].

Acknowledgements. We should like to thank Christian Krattenthaler
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Université Louis Pasteur et CNRS
7, rue René-Descartes
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