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Abstract. One form of the inclusion-exclusion principle asserts that if A and B
are functions of finite sets then the formulas A(S) =

∑
T⊆S B(T ) and B(S) =∑

T⊆S(−1)|S|−|T |A(T ) are equivalent. If we replace B(S) by (−1)|S|B(S) then
these formulas take on the symmetric form

A(S) =
∑
T⊆S

(−1)|T |B(T )

B(S) =
∑
T⊆S

(−1)|T |A(T ).

which we call symmetric inclusion-exclusion. We study instances of symmetric
inclusion-exclusion in which the functions A and B have combinatorial or probabilis-
tic interpretations. In particular, we study cases related to the Pólya-Eggenberger
urn model in which A(S) and B(S) depend only on the cardinality of S.

1. Inclusion-exclusion

Let A and B be two functions defined on a set D of finite sets. We assume that if
S ∈ D and T ⊆ S then T ∈ D. Then the inclusion-exclusion principle asserts that
the following are equivalent:

A(S) =
∑
T⊆S

B(T ).

B(S) =
∑
T⊆S

(−1)|S|−|T |A(T ).
(1)
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The special case in which A(S) and B(S) depend only on |S| is especially important:
for two sequences (An) and (Bn), the following are equivalent:

An =
n∑

k=0

(
n

k

)
Bk

Bn =
n∑

k=0

(−1)n−k

(
n

k

)
Ak

(2)

It is very easy to find pairs of functions with combinatorial interpretations that
satisfy (1): we may choose B to be an arbitrary function with a combinatorial inter-
pretation. Then since (1) expresses A in terms of B with positive coefficients, A will
also have a combinatorial interpretation. Similarly, it is easy to find instances of (2)
with combinatorial interpretations.

In terms of exponential generating functions, (2) gives the familiar formulas

FA(x) = exFB(x)

FB(x) = e−xFA(x),

where

FA(x) =
∞∑

n=0

An
xn

n!
and FB(x) =

∞∑
n=0

Bn
xn

n!
.

Now in (1), let us replace B(T ) with (−1)|T |β(T ) and A(S) with α(S), and multiply
the second equation by (−1)|S|. We obtain

α(S) =
∑
T⊆S

(−1)|T |β(T )

β(S) =
∑
T⊆S

(−1)|T |α(T ).
(3)

The corresponding substitution in (2) gives

αn =
n∑

k=0

(−1)k

(
n

k

)
βk

βn =
n∑

k=0

(−1)k

(
n

k

)
αk.

(4)

In terms of exponential generating functions, (4) is the unfamiliar-looking

Fα(x) = exFβ(−x)

Fβ(x) = exFα(−x)
(5)

We will call functions or sequences A and B that satisfy (1) and (2) asymmetric
inclusion-exclusion pairs and we will call instances of (3) and (4) symmetric inclusion-
exclusion pairs. The goal of this paper is to study symmetric inclusion-exclusion pairs
with combinatorial or probabilistic interpretations. We shall see that for the case in
which the domain of the functions α and β in (3) is the set of subsets of a finite set,
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or if the sequences (αn) and (βn) in (4) are finite (i.e., αn and βn are defined only
for n ≤ N , for some N), there is a very simple construction of symmetric inclusion-
exclusion pairs analogous to starting with an arbitrary function B in (1) or with
an arbitrary sequence (Bn) in (2). We also give a very simple probabilistic setting
for (3) in which the cardinalities of the sets in the domain of α and β are unbounded.
Finding a probabilistic interpretation of (4) with infinite sequences does not seem so
straightforward. We discuss some examples, related to the Pólya-Eggenberger urn
model, of infinite sequences satisfying (4), but we have not found a general theory of
such sequences.

2. Difference Tables

There is a close connection between asymmetric inclusion-exclusion pairs and sym-
metric inclusion-exclusion pairs. We illustrate with the special case of the derange-
ment numbers. We take An = n!, so Bn =

∑n
k=0(−1)n−k

(
n
k

)
k! is the nth derangement

number. We can compute Bn from An by using a difference table, in which the num-
bers An = n! appear in the zeroth row and each number in a row below the zeroth
row is the number above it to the right minus the number above it to the left.

1 1 2 6 24 120

0 1 4 18 96

1 3 14 78

2 11 64

9 53

44

Then the numbers Bn = 1, 0, 1, 2, 9, 44, . . . appear in the zeroth diagonal. Now let us
rotate this triangular array 60◦ counterclockwise, obtaining

120

24 96

6 18 78

2 4 14 64

1 1 3 11 53

1 0 1 2 9 44

In this array, every number above the bottom row is the sum of the two numbers
below it. Let us define the numbers αi = (5 − i)! to be the numbers in the left
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diagonal and let us define the numbers βi = 120, 96, 78, . . . to be the numbers in the
right diagonal. It is not hard to check that the sequences (αn) and (βn) satisfy (4) for
n ≤ 5. We also note that these sequences have combinatorial interpretations: αi is the
number of permutations of {1, 2, 3, 4, 5}, in which 1, 2, . . . , i (or any i numbers from
{1, 2, 3, 4, 5}) are all fixed points and βi is the number of permutations of {1, 2, 3, 4, 5}
in which 1, 2, . . . , i (or any i numbers from {1, 2, 3, 4, 5}) are all nonfixed points.

The general situation is described by the following theorem, which can be proved
directly by a straightforward computation that we omit, or as a consequence of The-
orem 2 below.

Theorem 1. Let B0, B1, . . . , BN be arbitrary and let αn and βn for 0 ≤ n ≤ N be
defined by

αN−n =
n∑

k=0

(
n

k

)
Bk (6)

βN−n =
n∑

k=0

(
n

k

)
BN−k. (7)

Then the sequences (αn) and (βn) satisfy (4) for 0 ≤ n ≤ N .

We have a similar result that allows us to construct instances of (2) with combi-
natorial interpretations. The proof is also a straightforward verification, which we
omit.

Theorem 2. Let ∆ be a finite set, and let B be a function defined on the subsets
of ∆. Let the functions α and β be defined on subsets of ∆ by

α(S) =
∑
T⊆S

B(T )

β(S) =
∑
T⊆S

B(T ),

where the complements are with respect to ∆. Then the functions α and β satisfy (3).

We note that Theorem 1 is equivalent to the case of Theorem 2 in which B(T )
depends only on the cardinality of T .

Theorems 1 and 2 allow us to construct instances of (3) and (4) with combinatorial
interpretations. However, in any example constructed in this way, the cardinalities
of the sets involved are bounded and cannot in general be extended to unbounded
cardinalities.

For example, if we want to extend the triangular array given before Theorem 1
by adding a row at the bottom consisting of nonnegative real numbers, the 0 in the
bottom row forces both numbers below it be 0, and the next row is then forced to
have three consecutive 0’s. We then have the array
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120

24 96

6 18 78

2 4 14 64

1 1 3 11 53

1 0 1 2 9 44

1 0 0 1 1 8 36

1 0 0 0 1 0 8 28

to which it is impossible to add another nonnegative row at the bottom.
In the next section we discuss a setting for (3) in which the sets may have unbounded

cardinalities and the functions α and β are probabilities rather than integers.

3. General symmetric inclusion-exclusion

We consider a probability space containing sets Ei, where i ranges over an index
set ∆, which in our examples will be the set of positive integers. Thus we have a
probability function P , defined on all sets generated from the Ei by complements and
finite unions and intersections, with the property that if S and T are disjoint then
P (S ∪ T ) = P (S) + P (T ). (The usual definition of a probability function requires
nonnegativity and countable additivity, and that the probability of the whole space
is 1, but these conditions are not necessary for our results.) For every finite subset
S ⊆ ∆ we set

α(S) = P
( ⋂

i∈S

Ei

)
(8)

β(S) = P
( ⋂

i∈S

Ei

)
. (9)

Theorem 3. The functions α and β defined by (8) form a symmetric inclusion-
exclusion pair; i.e.,

α(S) =
∑
T⊆S

(−1)|T |β(T )

β(S) =
∑
T⊆S

(−1)|T |α(T ).
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Proof. By symmetry, it is enough to prove the second formula. Without loss of gen-
erality, we may assume that S = {1, 2, . . . ,m}. A well-known form of the inclusion-
principle (see, e.g., [8, p. 6]) asserts that

P (E1 ∪ E2 ∪ · · · ∪ Em)

=
∑

1≤i≤m

P (Ei) −
∑

1≤i<j≤m

P (Ei ∩ Ej) + · · ·+ (−1)m−1P (E1 ∩ · · · ∩ Em).

This is equivalent to the desired formula. �

We note that if ∆ is finite, Theorem 3 may be derived from Theorem 2 by taking

B(T ) = P

(( ⋂
i∈∆−T

Ei

) ⋂ ( ⋂
i∈T

Ei

))
.

In the general case, we can deduce Theorem 3 from Theorem 2 by restricting to a
finite subset of ∆ that contains S.

The most interesting examples of Theorem 3 are those in which α(S) and β(S)
depend only on the cardinalities of S. Before discussing these examples, we give an
example which is not of this type. We consider the set of infinite sequences (r1, r2, . . . )
of real numbers between 0 and 1, and we assign probabilities in the obvious way to
subsets defined by a finite number of inequalities among the ri. Let us take Ei to
be the set of sequences satisfying ri < ri+1. Then for any set S of positive integers,
α(S) is the probability that ri < ri+1 for all i ∈ S. To give a formula for α(S), we
express S as a disjoint union of blocks of consecutive integers with gaps in between:
S = V1 ∪ V2 ∪ · · · ∪ Vm, where Vi = {ui, ui + 1, . . . , ui + si − 1} and ui+1 > ui + si.
Then

α(S) =
1

(s1 + 1)! (s2 + 1)! · · · (sm + 1)!
,

and by symmetry, β(S) = α(S).

4. A simple example

We now give a very simple example of Theorem 3 in which α(S) depends only on
the cardinality of S, so that we have an instance of (4). We flip a coin infinitely many
times. Each flip comes up heads with probability p and tails with probability 1 − p.
For i ∈ P = {1, 2, 3, . . . } we let Ei be the event that the ith flip is a head. Then for
any finite subset S ⊆ P

α(S) = P
( ⋂

i∈S

Ei

)
= p|S|

β(S) = P
( ⋂

i∈S

Ei

)
= (1− p)|S|

Then Theorem 3 gives

(1− p)n =
n∑

k=0

(−1)k

(
n

k

)
pk
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and (5) is the trivial formula e(1−p)x = exe−px. The example of the previous section,
when all of the si are equal to 1, is equivalent to the case p = 1/2 of this example.

5. The Pólya-Eggenberger urn model

In the previous example, the events Ei were independent, which makes the situation
easy to analyze, but not very interesting. Here we give a more interesting case of
symmetric inclusion-exclusion sequences in which the Ei are not independent. It is
based on a classical probabilistic model called the Pólya or Pólya-Eggenberger urn
model [1, p. 120–121].

We have an urn that initially contains r red balls and b black balls. At each step
we choose a ball at random from the urn. (So the probability of picking a red ball at
the first step is r/(r + b) and the probability of choosing a black ball is b/(r + b).)
We then replace the ball we have picked and add another ball of the same color to
the same urn. We repeat this procedure forever.

The model is easily adapted to the case in which r and b are positive real numbers
that are not necessarily integers. Often in descriptions of the model in the literature, c
balls are added rather than one, but adding only one ball gives simpler hypergeometric
formulas, and the case of adding c balls at each step with an initial inventory of r red
and b black balls is equivalent to adding one ball at each step with an initial r/c red
balls and b/c black balls.

An easy induction argument shows that the probability that the first m + n balls
are any particular sequence of m red and n black balls is

(r)m(b)n

(r + b)m+n

,

where (u)n = u(u + 1) · · · (u + n− 1).
By ball i, we shall mean the ball chosen at the ith step. Then a consequence of the

previous formula is that for any disjoint sets of positive integers R = {i1, i2, . . . , im}
and B = {j1, j2, . . . , jn}, the probability that the balls with numbers in R are red and
the balls with numbers in B are black depends only on m and n, and is therefore

(r)m(b)n

(r + b)m+n

. (10)

We note that this urn model is equivalent to a lattice path model in the plane,
where a particle starts at the origin, and from the point (i, j) it moves right with
probability (r + i)/(r + b + i + j) and up with probability (b + j)/(r + b + i + j).
Then the probability that any particular path ending at (m, n) has been taken is
(r)m(b)n/(r + b)m+n.

Now let Ei be the event that ball i is red, so Ei is the event that ball i is black.
Then with the notation of Section 3, for any set S of positive integers, α(S) is the
probability that all the balls with numbers in S are red, and

α(S) =
(r)|S|

(r + b)|S|
.
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Similarly, β(S) is the probability that ball i is black for all i in S, and

β(S) =
(b)|S|

(r + b)|S|
.

So if we take S to be a set of size n, Theorem 3 gives

(b)n

(b + r)n

=
n∑

k=0

(−1)k

(
n

k

)
(r)k

(b + r)k

,

and the same identity with b and r switched.
This identity is a form of the Chu-Vandermonde summation theorem. The corre-

sponding exponential generating function identity,
∞∑

n=0

(b)n

(b + r)n

xn

n!
= ex

∞∑
n=0

(−1)n (r)k

(b + r)k

xn

n!
,

is the well-known 1F1 transformation

1F1

(
b

b + r

∣∣∣ x

)
= ex

1F1

(
r

b + r

∣∣∣ −x

)
,

where the hypergeometric series is defined by

pFq

(
u1, . . . , up

v1, . . . , vq

∣∣∣∣ x

)
=

∞∑
n=0

(u1)n · · · (up)n

(v1)n · · · (vq)n

xn

n!
. (11)

More generally, we can take m urns, where the ith urn starts with ri red balls and
bi black balls. At each step, we choose a ball at random from each urn, replace it,
and add another ball of the same color. What is the probability that if we do this n
times, at each step we choose at least one black ball? We let Ei be the event that at
the ith step all the balls chosen are red. Then for any finite set S ⊆ P , α(S) is the
probability that for the steps in S, all of the balls chosen at are red. If |S| = n, this
probability is

(r1)n

(r1 + b1)n

(r2)n

(r2 + b2)n

· · · (rn)n

(rm + bm)n

.

So the probability that in n steps at least one black ball is chosen at each step is

β(S) =
n∑

k=0

(−1)k

(
n

k

)
(r1)k

(r1 + b1)k

(r2)k

(r2 + b2)k

· · · (rn)k

(rm + bm)k

, (12)

for |S| = n, which may be written as the hypergeometric series

m+1Fm

(
−n, r1,

r1 + b1,

r2,

r2 + b2,

· · · ,

· · · ,

rm

rm + bm

∣∣∣∣ 1

)
. (13)

As a corollary, we get that this hypergeometric series is positive, as long as the ri

and bi are positive real numbers. It is not difficult to prove this result analytically,
using the integral representation

(r)k

(r + b)k

=
Γ(r + b)

Γ(r)Γ(b)

∫ 1

0

xk+r−1(1− x)b−1 dx;



SYMMETRIC INCLUSION-EXCLUSION 9

However, the combinatorial approach gives a stronger result:

Theorem 4. For each nonnegative integer n, the hypergeometric series (13) can
be expressed as a quotient of polynomials in the variables r1, . . . , rm, b1, . . . bm with
positive coefficients.

Proof. We may assume that the variables are positive real numbers, so that the proba-
bilistic interpretation given above applies. Then we can compute the probability (12)
in another way by summing the probabilities of all possible outcomes in which at
least one black ball is chosen at each step, and (10) implies that each such probability
is a rational function of the desired form, and so, therefore, is their sum. �

In the case m = 2, the sum described in the proof of Theorem 4 is simple enough
to write out explicitly. We can describe the colors of the two balls chosen at each
step as (R,B), (B, R), or (B, B), where R denotes red and B denotes black. The
number of sequences of allowable choices in which (R,B) occurs i times, (B, R) occurs
j times, and (B, B) occurs k times is the trinomial coefficient (i + j + k)/(i! j! k!).
The probability of such a sequence is, by (10),

(r1)i(b1)j+k

(r1 + b1)i+j+k

(r2)j(b2)i+k

(r2 + b2)i+j+k

,

and thus we have the identity

3F2

(
−n, r1,

r1 + b1,

r2

r2 + b2

∣∣∣∣ 1

)
=

∑
i+j+k=n

n!

i! j! k!

(r1)i(b1)j+k

(r1 + b1)i+j+k

(r2)j(b2)i+k

(r2 + b2)i+j+k

. (14)

A slightly different approach allows us to express the double sum on the right side
of (14) as the single sum

n∑
i=0

(
n

i

)
(r1)i(b1)n−i(b2)i

(r1 + b1)n(r2 + b2)i

. (15)

For each possible sequence of i red and n− i black balls chosen from the first urn, the
probability of this sequence is (r1)i(b1)n−i/(r1 + b1)n by (10). For the choices from
the second urn to be compatible, whenever a red ball is chosen from the first urn a
black ball must be chosen from the second urn, but when a black ball is chosen from
the first urn, the color of the ball from the second urn is unrestricted. Thus given
a sequence of i red and n − i black balls chosen from the first urn, the probability
that the choices from the second urn are compatible with those from the first urn is
(b2)i/(r2 + b2)i. Summing over all possible choices for the first urn gives (15).

Expressing (15) as a hypergeometric series, we may write the identity we have
proved as the 3F2 transformation

3F2

(
−n, r1,

r1 + b1,

r2

r2 + b2

∣∣∣∣ 1

)
=

(b1)n

(r1 + b1)n
3F2

(
−n, r1,

1− b1 − n,

b2

r2 + b2

∣∣∣∣ 1

)
,

which is equivalent to formula (3.1.1) of [5].
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A special case of the sum in (12) deserves mention. Suppose that r1 = r2 = · · · =
rm = r and b1 = b2 = · · · = bm = 1. Then since

(r)k

(r + 1)k

=
r

r + k
,

the sum is

Um,n(r) =
n∑

k=0

(−1)k

(
n

k

) (
r

r + k

)m

.

One of the interesting properties of Um(r) is the generating function(
r + n

n

) ∞∑
m=0

Um,n(r)
(z

r

)m

=
z∏r+n

i=r (1− z/i)

which is easily verified by partial fraction expansion.
These numbers (up to a constant factor) have appeared in several places in the

literature. The case r = 1 of these numbers has been studied by Smiley [7], who men-
tions a combinatorial interpretation equivalent to ours and gives further references.
The case r = 2 was considered by Foata, Han, and Lass [4] in connection with a
coupon-collecting problem, and the general case was considered by Laforest [6] and
by Flajolet et al. [2, 3] in the study of quadtrees. A combinatorial connection be-
tween the coupon-collecting and quadtree interpretations and that discussed here is
not apparent.
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