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COMBINATORIAL OPERATORS FOR KRONECKER POWERS OF
REPRESENTATIONS OF Sn

ALAIN GOUPIL1 AND CEDRIC CHAUVE2

Dans ce monde il n’existe que deux tragédies :
ne pas obtenir ce que l’on veut et obtenir ce
que l’on veut. La dernière est un vrai drame.

Oscar Wilde

En mathématiques, quand on obtient ce qu’on veut, on en fait un coquillage pour tenter de
conserver un moule de la pensée éphémère qui l’a engendré. Nous dédions cet article à Xavier-
Gérard Viennot et à ses coquillages pleins de reliefs.

Abstract. We present combinatorial operators for the expansion of the Kronecker
product of irreducible representations of the symmetric group Sn. These combina-
torial operators are defined in the ring of symmetric functions and act on the Schur
functions basis. This leads to a combinatorial description of the Kronecker powers
of the irreducible representations indexed with the partition (n− 1, 1) which special-
izes the concept of oscillating tableaux in Young’s lattice previously defined by S.
Sundaram. We call our specialization Kronecker tableaux. Their combinatorial anal-
ysis leads to enumerative results for the multiplicity of irreducible representations in
the Kronecker powers of the forms χ(n−1,1)⊗k

and P⊗k where P is the permutation
representation of Sn.

1. Introduction

The subject of the present work is the investigation of the Kronecker product, some-
times called inner tensor product, of irreducible representations of the symmetric group
Sn. Given two linear representations

A : Sn → Aut(V )
σ 7→ A(σ)

B : Sn → Aut(W )
σ 7→ B(σ)

which associate linear operators to permutations σ ∈ Sn, the Kronecker product of A
and B, denoted A⊗B, is the representation of Sn defined by

A⊗B : Sn → Aut(V ⊗W )
σ 7→ A(σ)⊗B(σ)

which is the action on the tensor product V ⊗W of vector spaces V and W by means
of the tensor product A(σ)⊗B(σ) of the linear operators A(σ) and B(σ).

1Work partially supported by a grant from NSERC.
2Work partially supported by a grant from UQÀM.
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The irreducible representations of Sn are the representations which are indecom-
posable as direct sums of representations. They are indexed with the partitions λ of
n:

Aλ : Sn → Aut(V )
σ 7→ Aλ(σ).

The Kronecker product Aλ ⊗ Aµ of two irreducible representations of Sn is in general
not an irreducible representation of Sn and the fundamental problem of expanding it
as a direct sum of irreducible representations

Aλ ⊗ Aµ =
∑
α`n

tαλ,µA
α

goes back to the foundation of the representation theory. This problem was studied
by Murnaghan [10, 11], Littlewood [8] and more recently by Lascoux [7], Garsia and
Remmel [6], Thibon et al. [14, 15] and others (see [1] and references therein).

To obtain the decomposition coefficients tαλ,µ, one can use the characters of the cor-

responding representations. The character of a representation A of Sn is the map χA

which sends permutations σ ∈ Sn to the traces of A(σ):

χA : Sn → C
σ 7→ tr(A(σ)).

The fact that the character of the Kronecker product A ⊗ B of two representations is
obtained by multiplying the traces of the linear operators A(σ) and B(σ):

χA⊗B : Sn → C
σ 7→ tr(A(σ)) tr(B(σ))

(1)

is a straightforward consequence of the definition of tensor product of linear operators.
Hence one can use property (1) of characters and the character table, indexed by integer
partitions of n (see Table 1 for example) to compute the characters of a Kronecker
product of two irreducible representations.

Let us recall that character values χA(σ1), χA(σ2) on two permutations σ1, σ2 in the
same conjugacy class Cµ are always equal. Therefore we use the notation χλ

µ for the

value of the irreducible character χλ on any element of the conjugacy class Cµ.

Example 1. Let Table 1 be the table of the irreducible characters of S4.

λ\µ (4) (3, 1) (2, 2) (2, 12) (14)
(4) 1 1 1 1 1

(3, 1) −1 0 −1 1 3
(2, 2) 0 −1 2 0 2
(2, 12) 1 0 −1 −1 3
(14) −1 1 1 −1 1

Table 1. Irreducible characters χλ
µ of S4.

The character of the Kronecker product A(3,1) ⊗ A(3,1) of the irreducible represen-
tation A(3,1) with itself is obtained by multiplying each element of the row-vector
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(−1, 0,−1, 1, 3) in Table 1 with itself and we obtain

χ(3,1)⊗(3,1) = (1, 0, 1, 1, 9)

Since Table 1 contains the row-vectors of all possible irreducible characters and that
(1, 0, 1, 1, 9) is obviously not one of these rows, it is immediate that the character repre-
sented by (1, 0, 1, 1, 9) is not irreducible. But we observe that the identity χ(3,1)⊗(3,1) =
χ(4) + χ(3,1) + χ(2,1,1) + χ(2,2) is true by adding the rows of Table 1 corresponding to the
partitions in the right hand side. �

More generally, the problem of computing the coefficients tαλ,µ has a solution when

one accepts to use the character table [χλ
µ] of Sn:

tαλ,µ = χλ ⊗ χµ|χα =
∑
γ`n

|Cγ|
n!

χλ
γχ

µ
γχ

α
γ .(2)

Identity (2) follows from the orthonormality of the characters χλ with respect to the
standard scalar product in the group algebra of Sn and from (1). But since the coeffi-
cients tαλ,µ are positive integers, we find equation (2) unsatisfactory and the goal of this
paper is to contribute to other avenues for computing the coefficients tαλ,µ.

Our contribution is to expand kth tensor powers χ(n−1,1)⊗k
for arbitrary positive inte-

gers k. Our main tools are operators on the ring of symmetric functions which reproduce
tensor products of irreducible representations when they act on Schur functions. Then

we develop a combinatorial model to represent the tensor powers χ(n−1,1)⊗k
. One out-

come of this combinatorial model is the following exponential generating function for

the multiciplity of χλ in χ(n−1,1)⊗k
:

(3)
∑
k≥|λ|

χ(nk−1,1)⊗k|
χλk

xk

k!
=

fλ

|λ|!
eex−x−1(ex − 1)|λ|,

where, λ = (λ2, λ3, . . .) is an integer partition of weight |λ|, and for every k ≥ |λ|,
nk ≥ k + λ2 and λk is the integer partition obtained by adding the part nk − |λ| to
λ. Now the permutation representation P derived from the action of Sn on the set
{1, 2, . . . , n} satisfies χP = χ(n−1,1) + χ(n) where χ(n) is the character of the identity
representation. So we also obtain a nice generating function for the multiciplity in
(χP )⊗k

(4)
∑
k≥|λ|

(χP )
⊗k|

χλk

xk

k!
=

fλ

|λ|!
eex−1(ex − 1)|λ|.

2. Combinatorial operators

2.1. Symmetric functions. Let Q[Sn] be the group algebra of the symmetric group
over the field Q of rational numbers and let Zn be the center of this group algebra. The
irreducible characters of Sn can be seen as elements of Zn when one writes

χλ =
∑

σ∈Sn

χλ(σ)σ,
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and the pointwise multiplication of two elements a =
∑

σ∈Sn
aσσ and b =

∑
σ∈Sn

bσσ
of Q[Sn] is defined by

a · b =
∑

σ∈Sn

(aσbσ)σ.

In Example 1 we have seen that pointwise multiplication of characters gives the char-
acter of Kronecker product of the corresponding representations: χλ · χµ = χλ⊗µ.

Let x = {x1, x2, . . .} be a set of indeterminates, Λ = ΛQ[x] the ring of symmetric
functions in x1, x2, . . . over the field Q and Λn the restriction to homogeneous sym-
metric functions of degree n. Two important sets of symmetric functions are the ho-
mogeneous symmetric functions and the Schur symmetric functions. Given a partition
λ = (λ1, . . . , λm), one defines hλ(x) =

∏m
i=1 hλi

(x), where hr(x) is the rth homogeneous
symmetric function, and one denotes by sλ(x) the Schur symmetric function associated
to λ (see [9]). The sets {hλ(x)}λ`n and {sλ(x)}λ`n are linear basis of Λn. The Frobenius
map F : Zn → Λn is a vector space isomorphism which sends the irreducible charac-
ters χλ to the Schur functions sλ : F(χλ) = sλ. Schur functions can be expanded as
determinants of homogeneous functions:

(5) sλ = det(hλi−i+j)1≤i,j≤n ,

where h0 = 1 and hr = 0 if r < 0. The Littlewood–Richardson coefficients (denoted by
LR) are defined as the coefficients in the expansion of the ordinary product of two or
more Schur functions in the basis of Schur functions:

sν(1)sν(2) · · · sν(r) =
∑

µ

LRµ

ν(1),ν(2),...,ν(r)sµ.

The adjoint operator to multiplication by sγ in Λ with respect to the standard scalar
product in Λ is denoted s⊥γ and its action on the Schur function sλ is as follows:

s⊥γ sλ = sλ/γ =

{∑
α LRλ

γ,αsα if γ ⊆ λ,

0 otherwise,
(6)

〈sγf, g〉 = 〈f, s⊥γ g〉 for all f, g ∈ Λ.(7)

Now let us define in Λn the operation f�g corresponding to pointwise multiplication
in Q[Sn] by means of the Frobenius map:

f � g = F(F−1(f) · F−1(g)) for all f, g, ∈ Λn.

We shall call this operation inner product of symmetric functions, and we have in
particular

(8) sλ � sµ =
∑

α

tαλ,µsα,

where the coefficients tαλ,µ are the same than in equation (2). We can expand the inner
product hλ � sµ in the basis {sα} as follows (see also [9, 1.7, Example 23 (d)]):

hλ � sµ(x) =
∑

{ν(1)`λ1,ν(2)`λ2,...,ν(k)`λk}

LRµ

ν(1)ν(2)···ν(k)sν(1) · · · sν(k)(9)

=
∑

{ν(2)`λ2,...,ν(k)`λk}

(sν(2) · · · sν(k))(s⊥ν(2) · · · s⊥ν(k))sµ.(10)



COMBINATORIAL OPERATORS FOR KRONECKER PRODUCTS 5

To prove identity (9) in the language of λ-rings, it suffices to notice that (hλ�sµ)[X] =
hλ[XY]|sµ[Y]. Then (9) follows from the fact that

hλ[XY] =
∑

µ

 ∑
{ν(1)`λ1,...,ν(k)`λk}

LRµ

ν(1)···ν(k)sν(1) [X] · · · sν(k) [X]

 sµ[Y].

Identity (10) follows from (9) and (6).

2.2. The operators Uλ.

Definition 1. Let λ = (λ1, . . . , λm) ` n be a partition of n, with λ1 ≥ λ2 ≥ . . . ≥ λm,
and λ the truncated partition of λ defined by λ = (λ2, . . . , λm). One denotes by Uλ the
operator from Λn to Λn defined as follows:

a): Expand the determinant

(11)

∣∣∣∣∣∣∣∣
1 1 . . . 1

hλ2−1 hλ2 . . . hλ2+r−2
...

... . . .
...

hλr−r+1 hr−r+2 . . . . . . hλr

∣∣∣∣∣∣∣∣
b): Replace each term hα = hα1hα2 · · ·hαm in the expansion of (11) by∑

ν(1)`α1,...,ν(m)`αm

(sν(1) · sν(m))(s⊥ν(1) · · · s⊥ν(m))

to obtain the operator Uλ.

Theorem 1. For any partitions λ and µ of n, we have

Uλsµ = sλ � sµ

=
∑
α`n

tαλ,µsα.

Proof. This is a straightforward consequence of equations (5), (8) and (10). �

Example 2. The Kronecker product χ(n−1,1)⊗χµ is obtained by applying the operator
U(1) on sµ which is obtained by expanding the determinant in Definition 1 a) and then
writing the hλ in terms of Schur functions using Definition 1 b):∣∣∣∣ 1 1

h0 h1

∣∣∣∣ = h1 − 1 ⇒ U(1) = s(1)s
⊥
(1) − 1

Similarly the operator U(2) needed for the computation of χ(n−2,2)⊗χµ is obtained with
the determinant∣∣∣∣ 1 1

h1 h2

∣∣∣∣ = h2 − h1 ⇒ U(2) = s(2)s
⊥
(2) + s(1,1)s

⊥
(1,1) − s(1)s

⊥
(1)

�

Remark 1. The fact that the computation of χλ ⊗ χµ is independent of the largest
part of λ was already observed by Murnaghan [11] and also described by Thibon [15],
but the definition of the operators Uλ seems to be new.
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3. A combinatorial model for χ(n−1,1)⊗k and some consequences

We are now ready to present a combinatorial model for the multiplicity of irreducible
representations in any Kronecker power χ(n−1,1)⊗k, in terms of paths in Young’s lattice.
From Example 2, it is immediate that the expansion of the Kronecker power χ(n−1,1)⊗k is
obtained by the application of the operator U(1)

k = (s(1)s
⊥
(1)−1)k on the Schur function

s(n). In the remaining of this section we develop a combinatorial interpretation of this
process, followed by some enumerative consequences.

When λ = (λ1, . . . , λm) is an integer partition of n, we call n the weight of λ and we
write |λ| = n. We recall that the unique Ferrers diagram associated to λ is formed of
m stacked rows of cells, ordered from bottom to top in increasing order and such that
the ith row contains λi cells. A cell of a diagram λ located at the right end of a row
and having no cell above it is called a corner of λ. For example, in the following Ferrers
diagram, corresponding to the partition (4, 4, 2, 1), the corners are indicated by •.

•
•

•

The unique corner of a Ferrers diagram located on a longest row is called the first corner
of the diagram.

It follows immediately from the definition of the operator s⊥(1) that, for a Ferrers

diagram λ, s⊥(1)(sλ) is the sum of the Schur functions indexed by the Ferrers diagrams

obtained by removing a single corner from λ. Symmetrically, s(1)(sλ) is the sum of the
Schur functions indexed by the Ferrers diagrams obtained by adding to λ a new cell
that becomes a corner of the new diagram. Hence s(1)s

⊥
(1)(sλ) is the sum of the Schur

functions indexed with the Ferrers diagrams that are obtained from λ by first removing
a corner from λ, which gives a diagram denoted λ′, then adding a corner to λ′. One
says that every diagram, or equivalently partition, λ′ 6= λ indexing a Schur function
occurring in the sum s(1)s

⊥
(1)(sλ) differs from λ by the position of a corner. It should

be noticed that the multiplicity of sλ in the sum s(1)s
⊥
(1)(sλ) is at least 1. Hence, as

U(1) = s(1)s
⊥
(1) − 1, one can define U(1) as s(1)s

⊥
(1)(sλ) minus one occurrence of sλ.

Example 3. U(1)(s(3,3,1)) = s(3,3,1) + s(4,2,1) + s(3,2,1,1) + s(3,2,2) + s(4,3), and the partitions
(4, 2, 1), (3, 2, 1, 1), (3, 2, 2) and (4, 3) differ from (3, 3, 1) by the position of a corner.
The multiplicity of s(3,3,1) is 1 because there are two corners in (3, 3, 1), and thus only
two ways to obtain (3, 3, 1) from itself by removing then replacing a corner, one of these
occurrences being not taken into account due to the −1 term in the definition of U(1).
�

We now define the main combinatorial object that we will need in order to encode
the action of U(1), iterated k times, on a Schur function sµ.

Definition 2. Given a positive integer k and partitions λ and µ of same weight, a
Kronecker tableau K of length k, initial shape µ and final shape λ is a sequence ν0 =
µ, ν1, . . . , νk = λ of Ferrers diagrams where, for every pair of consecutive diagrams νi

and νi+1, either νi+1 differs from νi by the position of a corner, or νi+1 = νi and one
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corner of νi+1, other than its first corner, is distinguished. One denotes by KT k
µ,λ the

set of Kronecker tableaux of length k, initial shape µ and final shape λ.

Example 4. The following Kronecker tableau — where a distinguished corner is indi-
cated by a × — belongs to KT 9

(5),(3,2)

× ×

Proposition 1. Let k and n be two positive integers and λ a partition of n. Then

(12) χ(n−1,1)⊗k|χλ = |KT k
(n),λ|.

Proof. The definition of U(1) as an operator on Schur functions can be translated in the
combinatorial framework of partitions and Ferrers diagrams, due to the fact that Schur
functions are indexed by partitions. Hence, the sum of Schur functions U(1)

k(sn) can
be seen as a formal sum of Ferrers diagrams. The number of occurrences of a diagram
λ in this formal sum of diagrams is then given by the number of ways to obtain λ from
(n) by iterating k times the combinatorial operation associated to U(1). The identity
follows immediately from this fact and from the definition of Kronecker tableaux, where
the restriction that the first corner of a diagram can not be distinguished in the next
diagram accounts for the −1 term of U(1) = s(1)s

⊥
(1) − 1. �

Proposition 1 establishes a link between the multiplicity of the irreducible character
χλ in some Kronecker power and sequences of Ferrers diagrams seen as paths in Young’s
lattice (the lattice of Ferrers diagrams ordered by inclusion). We rely on this fact
to obtain enumerative results about the multiplicity of irreducible representations in
the Kronecker power χ(n−1,1)⊗k. The main tool we use is a combinatorial construction
defined for a family of paths in Young’s lattice called oscillating tableaux and introduced
by Sundaram [13], in a different algebraic context (see also the work of Delest, Dulucq
and Favreau [3, 5] for a purely combinatorial point of view).

Briefly, oscillating tableaux are paths in Young’s lattice, that is sequences of Ferrers
diagrams, starting at ∅ and such that two consecutive diagrams differ by the addition
or removal of exactly one corner.

Example 5. Here is an oscillating tableau of length 7 and final shape (2, 1), that
contains five additions of corner and two removal of corner (steps 4 and 7).

∅
�

In Lemmas 1 and 2 below, we consider a class of Kronecker tableaux that can be
related to oscillating tableaux. This allows to use a variant of the combinatorial con-
struction defined in [13, 3] that will be central in the proof of our main enumerative
result, Proposition 2.

Lemma 1. Let n and k be positive integers and λ a partition of n such that n ≥ k+λ2.
There is a bijection between Kronecker tableaux of KT k

(n),λ and sequences µ0, . . . , µk

of k Ferrers diagrams such that µ0 = ∅, µk = λ and, for every pair µi and µi+1 of
consecutive diagrams, either µi+1 is obtained from µi by the addition or removal of one
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corner, or µi+1 differs from µi by the position of a corner, or µi+1 = µi and µi+1 has
one distinguished corner.

Proof. Let K be a Kronecker tableau of KT k
(n),λ such that n ≥ k + λ2. Due to this

last condition, the first corner of every Ferrers diagram of K, except possibly the last
diagram, is on its first row. Then, by removing the first row of every diagram of K
one obtains the sequence µ0, . . . , µk. Conversely, consider a sequence of k + 1 Ferrers
diagrams µ0 = ∅, . . . , µk = λ. By adding, for every diagram µi, a first row of length
n− |µi|, one obtains a Kronecker tableau of KT k

(n),λ. �

The combinatorial construction we describe below relies partly on the Robinson-
Schensted-Knuth (RSK) insertion and deletion algorithms, and we first recall some basic
facts about standard tableaux and these algorithms (see [12] for example for details on
these algorithms).

• Given a positive integer n and a Ferrers diagram α with at most n cells, a partial
standard tableau of shape α and labels in [n] is a labelling of the cells of α with
distinct integers chosen from {1, . . . , n}, such that the labels are increasing in
rows (from left to right) and columns (from bottom to top).

• Let S be a partial standard tableau. Given an integer x, the RSK insertion
algorithms inserts x into S, creating a tableau S ′ whose shape differs from the
shape of S by the addition of a corner and labels are the labels of S plus x.
Given a corner of S, the RSK deletion algorithm removes this corner and moves
some labels of cells of S, this process ending when a label is ejected from the
first row of the tableau.

Lemma 2. Let n and k be two positive integers and λ a partition of n such that
n ≥ k + λ2. There is a bijection between the set KT k

(n),λ and the set of pairs (T, π),

where T is a partial standard tableau of shape λ with labels in {1, 2, . . . , k} and π is
a permutation of k such that: every cycle of π that is not a fixed point is decreasing,
every fixed point of π is also the label of a cell of T and every label of T is either the
greatest element of a cycle of π or a fixed point of π.

Proof. Let K = ν0, . . . , νk be a Kronecker tableau of length k, initial shape (n) and
final shape λ, such that n ≥ k + λ2. Let µ0, . . . , µk be the sequence of Ferrers diagrams
corresponding to K obtained by the construction of Lemma 1.

One can associate to µ0, . . . , µk a sequence of partial standard tableaux (T0 = ∅, . . . ,
Tk = T ) with entries in {1, 2, . . . , k} and a permutation π, such that the shape of Ti is
µi for every i and in each cycle of π the elements can be presented in decreasing order.
We proceed as follows. Start with setting π as the identity permutation on {1, . . . , k},
and for i from 1 to k:
1. If µi is obtained from µi−1 by the addition of a corner, then add to Ti−1 this corner,
labelled with i, to obtain Ti.
2. If µi is obtained from µi−1 by the removal of a corner, then delete this corner from
Ti−1, using the RSK deletion algorithm. If j is the integer ejected from Ti−1 by the
RSK deletion algorithm, then multiply π by the transposition (i, j).
3. If µi differs from µi−1 by the position of a corner, or µi = µi−1 and µi−1 has a
distinguished corner (therefore µi and µi−1 have the same weight), then delete this
corner from Ti−1 using again the RSK deletion algorithm, then add the corner needed
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to obtain µi and label it with i. If j is the ejected label then multiply π by the
transposition (i, j).

The fact that in the permutation π all non fixed point cycles are decreasing follows
from the fact that in every transposition (i, j) considered in the construction above one
has i > j.

The reverse construction starts with a partial standard tableau Tk = T with shape µk

and a permutation π of the set {1, . . . , k} with each non fixed point cycle in decreasing
order such that each entry of T is the greatest element of a cycle of π (including the
fixed points). Then perform the following steps, for i from k to 1:
1. If no cell of Ti is labelled with i, there exists j < i such that π(i) = j. Then insert
the integer j into the tableau Ti using the RSK insertion algorithm to obtain Ti−1 and
define µi−1 as the shape of Ti−1.
2. If a cell of Ti is labelled with i, then remove the cell labelled i: by induction this cell
is a corner and this removal gives a partial standard tableau denoted U .
2.a. If furthermore there exists j < i such that π(i) = j, then insert the integer j into
the tableau U , using the RSK insertion algorithm, to obtain Ti−1, and define µi−1 as
the shape of Ti−1, distinguishing the corner added during this insertion if it takes the
same position than the corner removed from Ti.
2.b. Otherwise, after removing i from Ti, multiply π by the transposition (i, j), and
define µi−1 as the shape of Ti−1.

The fact that these two constructions define a bijection follows immediately from its
close relationship with the construction on oscillating tableaux defined by Sundaram
[13] and Delest, Dulucq and Favreau [3, 5]. �

Example 6. The following Kronecker tableau belonging to KT 12
(6),(2,2,2)

×

corresponds to the sequence of partial standard tableaux µ0, . . . , µk

∅ 1 2 2 3
4
2 3

4
2

4
2 6

4 7
2 6

8
4
2 7

8
4 7

8 10
4 7

8
4 10

8 12
4 10

and to the pair

T = 8 12
4 10

, π = (11, 7)(9, 2)(8, 6)(5, 3)(2, 1) · [(1), (2), . . . (12)]

= (4)(5, 3)(8, 6)(9, 2, 1)(10)(11, 7)(12).

�

To conclude this section, we derive from the above bijection an explicit formula and
a generating function for the coefficients χ(n−1,1))⊗k|χλ when n ≥ k + λ2.
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Proposition 2. Let k and n be two positive integers and λ a partition of n such that
n ≥ k + λ2. Then

(13) χ(n−1,1)⊗k|χλ = fλ

|λ|∑
m1=0

( k

m1

) b(k−m1)/2c∑
m2=|λ|−m1

(
m2

|λ| −m1

)
p2(k −m1, m2)

 ,

where fλ is the number of standard tableaux of shape λ and p2(k−m1, m2) is the number
of set partitions of a set of k −m1 distinct integers into m2 parts of size at least 2.

Proof. From Proposition 1, it is sufficient to enumerate the number of Kronecker tabl-
eaux of length k, initial shape (n) and final shape λ. As n ≥ k + λ2, it follows from
Lemma 2 that this reduces to the enumeration of some couples (T, π) where T is a partial
standard tableau of shape λ and π is a permutation on the set {1, . . . , k}. Formula (13)
follows if one denotes by m1 the number of fixed points of π and m2 the number of
cycles of size at least 2 in π. �

Remark 2. For integers n and k, the numbers p2(n, k) are known as associated Stirling
numbers of second kind (reference A008299 in [17], see also [2, p. 222]). Such numbers
are defined by the following recurrence: p2(n, k) = 0 if n < 2k and p2(n, k) = kp2(n −
1, k) + (n− 1)p2(n− 2, k − 1) if n ≥ 2k. The computation of p2(n, k) can also be done
by extracting the coefficient of ykxn/n! in eyp(x) where p(x) = ex − x− 1.

Corollary 1. Let ` be a positive integer, λ = (λ2, . . . , λm) an integer partition of ` and
(nk)k≥` an infinite sequence of number such that nk ≥ k + λ2 for every k ≥ `. Then

(14)
∑
k≥`

χ(nk−1,1)⊗k|
χλk

xk

k!
=

fλ

`!
ep(x)(ex − 1)`,

where, for every k ≥ `, λk is the integer partition obtained by adding the part nk − ` to
λ.
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Proof. It follows from the fact that nk ≥ k + λ2, Lemma 1, Propositions 1 and 2, that

∑
k≥`

χ(nk−1,1)⊗k|
χλk

xk

k!
= fλ

∑
k≥`

∑̀
m1=0

xk

k!

(
k

m1

) b(k−m1)/2c∑
m2=`−m1

(
m2

`−m1

)
p2(k −m1, m2)


= fλ

∑̀
m1=0

xm1

m1!

∑
k≥`

b(k−m1)/2c∑
m2=`−m1

(
m2

`−m1

)
p2(k −m1, m2)

xk−m1

(k −m1)!


= fλ

∑̀
m1=0

xm1

m1!

( ∑
m2≥`−m1

(
m2

`−m1

)∑
q≥0

p2(q, m2)
xq

q!

)

= fλ
∑̀
m1=0

xm1

m1!

( ∑
m2≥`−m1

(
m2

`−m1

)
p(x)m2

m2!

)

= fλ
∑̀
m1=0

xm1

m1!

p(x)`−m1

(`−m1)!

(∑
m≥0

p(x)m

m!

)

= fλ
∑̀
m1=0

xm1

m1!

p(x)`−m1

(`−m1)!
ep(x)

=
fλ

`!
ep(x)(ex − 1)`.

�

Remark 3. J.-Y. Thibon observed in [16] that it is possible to obtain an algebraic
proof for the generating function (14) using operators on symmetric functions defined
in [14] and in references therein. His proof starts by observing that the left hand side
of (14) can be written as exp⊗[x(H(1)h1 − H(1))] where H(x) :=

∑
n≥0 hnx

n and he
expands this expression as follows:

exp⊗[x(H(1)h1 −H(1))] = exp⊗[xH(1)h1]⊗ exp⊗[−xH(1)]

= e−xH(1) exp⊗[h1(e
x − 1)]

= H(1)E(−1)⊥e−x exp⊗[(h1 + 1)(ex − 1)]

= exp⊗[(ex − x− 1)]〈exp⊗[(ex − 1)h1]〉

= ep(x)
∑
k≥0

(ex − 1)k

k!
〈hk

1〉

= ep(x)
∑
k≥0

(ex − 1)k

k!

∑
λ`k

fλ〈sλ〉 ,

where E(x) :=
∑

n≥0 enx
n and 〈f〉 = H(1)E(−1)⊥f .

Let us call P the permutation representation derived from the group action of Sn

on the set {1, 2, . . . , n} (see [12]) which is simply the well known representation of
permutations as permutation matrices. The representation P is not irreducible and it
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is the direct sum of two irreducible representations: P = A(n−1,1)⊕A(n) so that we have
χP = χ(n−1,1) + χ(n).

Corollary 2. Under the same conditions as in Corollary 1 we have

(15)
∑
k≥|λ|

(χP )
⊗k|

χλk

xk

k!
=

fλ

`!
eex−1(ex − 1)`,

Proof. ∑
k≥|λ|

(χP )
⊗k|χλ

xk

k!
=
∑
k≥|λ|

(χ(n−1,1) + 1)
⊗k|χλ

xk

k!

=

∑
k≥|λ|

(χ(n−1,1))
⊗k|χλ

xk

k!

∑
k≥|λ|

xk

k!


=

fλ

|λ|!
eex−x−1(ex − 1)|λ| × ex

=
fλ

|λ|!
eex−1(ex − 1)|λ|.

�

Remark 4. Observe that it follows from our combinatorial construction that every
irreducible representation of Sn has a non zero multiciplity in (A(n−1,1))⊗k for k suffi-
ciently large. Notice also that the generating functions that compute the multiciplity
of a χλ in (14) and (15) do not depend on λ but only on the weight of λ.

4. Conclusion

We have presented in this note a combinatorial interpretation of the multiplicity of

any irreducible representation in a Kronecker power χ(n−1,1)⊗k
in terms of sequences of

Ferrers diagrams (Kronecker tableaux) that leads, when n is large enough with respect
to k and λ, to an enumeration formula and a generating function. Moreover, we now
have a combinatorial model for the expansion of χµ⊗k for any µ given by the differential
operators Uµ. However, at this point, the problem of transforming this model into
enumerative results in terms of a relationship between n, k, µ and λ is still open.

Our approach could also be extended to the more general case of the computation of

χ(n−1,1)⊗k ⊗ χµ|χλ for arbitrary µ. This would require the use of a generalization of the
oscillating tableaux of Sundaram which already exists and are called skew oscillating
tableaux in [4]. However, this construction leads to an intricate expression for the
enumeration of Kronecker tableaux of initial shape µ with more than one part, and
we were not able to find a compact generating function similar to the one given in
Corollary 1.
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Université Bordeaux I (France), 1991.
[6] A. Garsia and J. Remmel. Shuffles of permutations and the Kronecker product. Graphs Combin.,

1(3): 217–263, 1985.
[7] A. Lascoux. Produits de Kronecker de représentations du groupe symétrique. In Séminaire
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3P8, Montréal, QC, Canada

E-mail address: chauve@lacim.uqam.ca


