
Séminaire Lotharingien de Combinatoire 54 (2007), Article B54m

GRAPH WEIGHTS ARISING FROM MAYER’S THEORY OF

CLUSTER INTEGRALS

G. Labelle, P. Leroux and M. G. Ducharme

LaCIM, Université du Québec à Montréal
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Abstract. We study graph weights (i.e., graph invariants) which arise naturally
in Mayer’s theory of cluster integrals in the context of a non-ideal gas. Vari-
ous choices of the interaction potential between two particles yield various graph
weights w(g). For example, in the case of the Gaussian interaction, the so-called
Second Mayer weight w(c) of a connected graph c is closely related to the graph
complexity, i.e., the number of spanning trees, of c. We give special attention to
the Second Mayer weight w(c) which arises from the hard-core continuum gas in
one dimension. This weight is a signed volume of a convex polytope P(c) natu-
rally associated with c. Among our results are the values w(c) for all 2-connected
graphs c of size at most 6, in Appendix B, and explicit formulas for three infi-
nite families: complete graphs, (unoriented) cycles and complete graphs minus an
edge.

Introduction.

Graph weights can be defined as functions on (simple, finite) graphs taking scalar
or polynomial values and which are invariant under isomorphisms, i.e., under vertex
relabellings. Since most graphical concepts share this invariance property, examples
of graph weights abound. For a graph g, α(g) = the independence number of g
and χg(λ) = the chromatic polynomial of g are examples of graph weights. Another
example is given by the graph complexity of G, denoted by γ(g), which is defined as
the number of maximal spanning forests of g.

In the present paper, we study graph weights which arise naturally in Mayer’s
theory of cluster integrals in the context of a non-ideal gas in a vessel V ⊆ IRd.
Various choices of the dimension d and of the interaction potential ϕ(r) between
two particles at distance r yield various graph weights w(g). In the thermodynamic
limit, the gas pressure is closely related to the exponential generating function Cw(z)
of connected graphs c weighted by the so-called Second Mayer weight w(c). There
has been continued interest from the physicists for Mayer and virial expansions.
See for example Clisby and McCoy [6] and the references therein. While physicists
are interested in summing the weights of all connected or 2-connected graphs of a
given order, the present paper focuses on individual graph contributions and their
combinatorial significance.
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In the first section, we review Mayer’s theory following the lines of Uhlenbeck and
Ford [31] and Leroux [16]. See also Thompson [30]. Special emphasis is put on the
existence conditions of the thermodynamic limit which defines the second Mayer
weight w(c) of a connected graph c and on its property of block multiplicativity.
A complete proof for the existence of the thermodynamic limit, not found in [31]
and [16] is given in Appendix A. Also reviewed are the functional relations between
weighted connected graphs and 2-connected graphs.

The example of the Gaussian interaction, is studied in Section 2. In this case, the
weight w(c) involves three block multiplicative parameters of the connected graph
c, namely the number of vertices minus 1, the number of edges e(c) and the graph
complexity γ(c) which is the number of spanning trees of c. The proof of this known
result is reviewed here. It uses the multidimensional Gaussian integral and the
Theorem of Kirchhoff relating γ(c) to the determinant of a matrix K associated to
c. Moreover, we give an extension of the Gaussian weight which refines γ(c) in order
to reflect the degree sequence of the spanning subtrees of c.

The last section is devoted to the Second Mayer weight w(c) which arises from
the hard-core continuum gas in one dimension. This weight is a signed volume of
a convex polytope P(c) naturally associated with c. It is known that in this case,
the generating function Cw(z) (the pressure) is equal to the Lambert function L(z)
which is defined by the functional equation L(z) exp(L(z)) = z. We give a combina-
torial proof of this result. This implies that the total weight of all connected graphs
over a set of size N is (−N)N−1 and that of all 2-connected graphs is −N(N − 2)!.
Naturally, it raises the question of finding a combinatorial explanation of these for-
mulas and of computing or understanding better the weight of individual connected
graphs and perhaps expressing it in terms of other graph invariants. We have only
partial answers to these questions to offer. First, we have computed the volume
Vol(P(c)) of all 2-connected graphs c of size at most 6, together with the Ehrhart
polynomial, using the fact that the vertices of the polytope P(c) have integer co-
ordinates. This data is given in Appendix B. The weight of any connected graph
c whose blocks have size at most 6 can then be deduced by block multiplicativity.
Secondly, we have found explicit formulas for three infinite families of connected
graphs namely complete graphs, (unoriented) cycles and complete graphs minus an
edge. An alternate useful tool, a decomposition of the polytope P(c) into a certain
number of (N − 1)-dimensional simplexes, of volume 1/(N − 1)! is exploited in the
final subsection.

Acknowledgements. This paper has benefited from discussions with numerous
colleagues, in particular at the Banff International Research Station Workshop on
Statistical Mechanics of Polymer Models in May 2003 and at the 54th Séminaire
Lotharingien de Combinatoire, Lucelle, France, in April 2005, where this work was
presented. We would like to acknowledge particularly the contribution of George
Andrews, Mireille Bousquet-Mélou, David Brydges, Frédéric Chapoton, Bodo Lass,
Alan Sokal, Xavier Viennot, Herbert Wilf and the two referees.
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1. A review of Mayer’s theory of cluster integrals

1.1. The grand canonical partition function. In the context of a non-ideal gas
with N particles in a vessel V included in IRd, we represent the particles’ positions
by vectors ~x1, . . . , ~xN . If we consider that the system is free from external influences,
the partition function is defined as

Z(V, T, N) =
1

N !λdN

∫

V

· · ·

∫

V

exp

(
−β
∑

i<j

ϕ(|~xi − ~xj |)

)
d~x1 . . . d~xN , (1)

where λ and β depend on the temperature T and where the interaction between
two particles at distance r is expressed by a potential function ϕ(r) as illustrated in
Figure 1a).

f
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Figure 1. a) the function ϕ(r) b) the function f(r)

We also define the grand canonical partition function as the generating series of
the partition functions:

Zgr(V, T, z) =

∞∑

n=0

Z(V, T, N)(λdz)N , (2)

where z is called the fugacity or the activity of the system. The generating function
identities that we consider are in the sense of formal power series in the activity
z. For issues of convergence, see Ruelle [24]. The system’s macroscopic parameters
can be described using the grand canonical partition function. In particular, the
pressure P , the mean number of particles N̄ and the density ρ can be written as

P

kT
=

1

V
log Zgr(V, T, z), N̄ = z

∂

∂z
log Zgr(V, T, z) and ρ :=

N̄

V
, (3)

where V is also used as the volume of the vessel.

1.2. Mayer’s idea. In order to study these functions, Mayer (1940) sets

1 + fij = exp (−βϕ(|−→xi −
−→xj |)), (4)

where fij = f(|−→xi −
−→xj |). The general form of Mayer’s function

f(r) = exp(−βϕ(r)) − 1, (5)
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compared to the potential function ϕ(r), is shown in Figure 1. Since
∏

1≤i<j≤N

(1 + fij) =
∑

g∈G[N ]

∏

{i,j}∈g

fij , (6)

where G[N ] denotes the set of all (simple) graphs over the set of vertices [N ] =
{1, 2, . . . , N}, the partition function Z(V, T, N) becomes

Z(V, T, N) =
1

N !λdN

∫

V N

exp

(
−β
∑

i<j

ϕ(|−→xi −
−→xj |)

)
d−→x1 · · · d

−→xN

=
1

N !λdN

∫

V N

∏

1≤i<j≤N

(1 + fij) d−→x1 · · · d
−→xN

=
1

N !λdN

∑

g∈G[N ]

∫

V N

∏

{i,j}∈g

fij d−→x1 · · · d
−→xN

=
1

N !λdN

∑

g∈G[N ]

W (g), (7)

where the weight W (g) of a graph g is given by the integral

W (g) =

∫

V N

∏

{i,j}∈g

fijd
−→x1 · · · d

−→xN . (8)

This is the First Mayer weight of a graph g. It should be clear that W (g) is invariant
under graph isomorphisms, since any relabelling defined by a vertex bijection also
induces a change of variables whose Jacobian is the determinant of the corresponding
permutation matrix and which transforms one integral into the other.

In terms of W (g), the grand-canonical function becomes

Zgr(V, T, z) =

∞∑

N=0

Z(V, T, N)(λdz)N

=
∞∑

N=0

1

N !λdN

∑

g∈G[N ]

W (g)(λdz)N

=
∞∑

N=0

1

N !

∑

g∈G[N ]

W (g)zN

= GW (z), (9)

the exponential generating series of graphs weighted by the function W .

Proposition 1. W (g), the First Mayer Weight of a simple graph g, is multiplicative
on the connected components of g. In other words, for c1, c2, . . . , cm the m connected
components of g, we have

W (g) = W (c1)W (c2) . . .W (cm).
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Proof. Since the connected components of g are disjoint, we can label the vertices
in such a way that 1 to k1 are in the component c1, k1 + 1 to k2 in c2, and so on
until km−1 + 1 to km = N in cm. We then have

W (g) =

∫

V N

∏

{i,j}∈g

fijd~x1 . . . d~xN

=

∫

V N

∏

{i,j}∈c1

fij

∏

{i,j}∈c2

fij . . .
∏

{i,j}∈cm

fijd~x1 . . . d~xN

=

∫

V k1

∏

{i,j}∈c1

fijd~x1 . . . d~xk1 ×

∫

V k2−k1

∏

{i,j}∈c2

fijd~xk1+1 . . . d~xk2×

· · · ×

∫

V km−km−1

∏

{i,j}∈cm

fijd~xkm−1+1 . . . d~xN

= W (c1) · W (c2) · . . . · W (cm). (10)

�

Since W is multiplicative on connected components, the exponential formula can
be used:

GW (z) = exp(CW (z)), (11)

where C denotes the species (class) of connected graphs, so that

log GW (z) = CW (z)

=

∞∑

N=1

1

N !

∑

c∈C[N ]

W (c)zN . (12)

Corollary 2. The pressure of the system can be expressed in terms of the exponential
generating function of connected graphs weighted by W . More precisely, we have

P

kT
=

1

V
log Zgr(V, T, z) =

1

V
CW (z).

�

1.3. The thermodynamic limit w(c). Let c be a connected graph over
{1, 2, . . . , N}. The Second Mayer weight w(c) is defined as the limit

w(c) = lim
V →∞

1

V
W (c)

= lim
V →∞

1

V

∫

V N

∏

{i,j}∈c

fij d~x1 . . . d~xN . (13)

Here, V going to infinity has the following meaning. The vessel V ∈ IRd must
contain a ball B(0, R) centered at the origin, with radius R ∈ ]0,∞). V goes to
infinity means that R goes to infinity. Let us recall that the symbol V denotes both
the vessel and the volume.
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The following proposition gives us the conditions on Mayer’s function f for w(c)
to exist.

Proposition 3. If the function f : [0,∞) → IR is integrable and bounded and if
∫ ∞

0

rd−1|f(r)| dr < ∞, (14)

for example if |f(r)| = O(1/rd+ǫ), r → ∞, for some ǫ > 0, then for any fixed

~xN ∈ IRd, the function F~xN
: IRd·(N−1) → IR, defined by

F~xN
(~x1, . . . , ~xN−1) =

∏

{i,j}∈c

f(|~xi − ~xj |) =
∏

{i,j}∈c

fij (15)

is integrable over (IRd)N−1 and its integral is independent of ~xN . Moreover the limit
(13) exists and is equal to

w(c) =

∫

(IRd)N−1

∏

{i,j}∈c; ~xN=~0

fij d~x1 . . . d~xN−1. (16)

Proof. See Appendix A. �

We will often use equation (16) as an alternate definition for w(c). It also follows
from the proof of Proposition 3 that the rooting at the vertex N , for which ~xN is
set equal to 0 in (16), can be replaced by any other vertex J . For example, with
J = 1, the formula becomes

w(c) =

∫

(IRd)N−1

∏

{i,j}∈c; ~x1=~0

fij d~x2 . . . d~xN . (17)

In the thermodynamic limit, the pressure is given by

P

kT
= lim

V →∞

1

V
log Zgr(V, T, z)

= lim
V →∞

1

V
CW (z)

=
∞∑

N=1

1

N !

∑

c∈C[N ]

lim
V →∞

1

V
W (c)zN

=
∞∑

N=1

1

N !

∑

c∈C[N ]

w(c)zN .

In other words,
P

kT
= Cw(z). (18)

Proposition 4. In the thermodynamic limit, the pressure of the system is given
directly in terms of the exponential generating function of connected graphs weighted
by the Second Mayer Weight w(c), according to formula (18).
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A 2-connected graph is defined as a connected graph that stays connected if any
one of its vertices is removed. This includes the complete graph on two vertices K2.
A block in a connected graph is a maximal 2-connected subgraph. A cutpoint in a
connected graph is a vertex whose removal disconnects the graph. Any connected
graph c can be uniquely decomposed into 2-connected graphs (the blocks of c) which
are linked together by the cutpoints of c in a tree-like fashion (see [1], p.266). This
decomposition partitions the edges of c. A leaf-block b is a block of c which is linked
to the rest of the graph by only one cutpoint p. In that case, the graph c \ b, which
is obtained from c by removing all edges and all vertices of b except the cutpoint p,
remains connected.

Proposition 5. The second Mayer weight w is block-multiplicative. More precisely,
for any connected graph c whose blocks are b1, b2, . . . , bm, we have

w(c) = w(b1)w(b2) . . . w(bm). (19)

Proof. The proof is by induction on the number of blocks in c. If c is composed of
exactly one block, the multiplicativity is trivial. Let us suppose that the property is
true for all connected graphs composed of m blocks, and let us consider a connected
graph c composed of m + 1 blocks. Its vertices are labelled from 1 to N . We choose
in c a leaf-block that we denote by b, and call S the set of its vertices. Without loss
of generality, we can assume that the cutpoint linking b to c is labelled N , and that
S = {1, 2, . . . , k, N}, |S| = k + 1. Let us name b1, b2, . . . , bm the other blocks of c.
We then have, using (16),

w(c) =

∫

IRd(N−1)

∏

{i,j}∈c; ~xN=~0

fij d~x1d~x2 . . . d~xN−1

=

∫

IRd(N−1)

∏

{i,j}∈b; ~xN=~0

fij

∏

{i,j}∈c\b; ~xN=~0

fij d~x1d~x2 . . . d~xN−1

=

∫

IRdk

∏

{i,j}∈b; ~xN=~0

fij d~x1d~x2 . . . d~xk

×

∫

IRd(N−k−1)

∏

{i,j}∈c\b; ~xN=~0

fij d~xk+1d~xk+2 . . . d~xN−1

= w(b) · w(c \ b). (20)

Since c \ b is made of m blocks, the induction hypothesis can be used and we have

w(c) = w(b) · w(b1) · w(b2) · . . . · w(bm), (21)

proving that the w(c) function is block-multiplicative. �

1.3.1. The virial expansion. In order to better explain the thermodynamic behaviour
of non ideal gases, Kamerlingh Onnes proposed, in 1901, a series expansion of the
form

P

kT
= ρ + γ2(T )ρ2 + γ3(T )ρ3 + · · · , (22)
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where ρ = N
V

is the density, called the virial expansion. A benefit of Mayer’s theory
is a formal derivation of this expansion and an interpretation of the virial coefficients
γn(T ), n ≥ 2, as the total weight of all (labelled) 2-connected graphs with n vertices
(see [31] and [16]):

γn(T ) = −
(n − 1)

n!
|B[n]|w. (23)

1.4. Functional equation for weighted connected graphs. The block-multi-
plicativity of w(c) allows us to establish a functional relation between the species Cw

of weighted connected graphs, and Bw, of weighted 2-connected graphs. But first,
let us recall a few notions in the theory of species.

For any species F , the derivative F ′ of F is the species whose structures on any
set U are F -structures on the set U∪{∗}, where ∗ is a non-labelled external element.
See [1] for more information about species. The rooting operation F 7→ F • consists
of choosing a “root” (i.e., any element) in the set on which the F -structure is built.
It can be defined as

F • = X · F ′, (24)

where X denotes the species of one-element sets. Notice that in terms of exponential
generating series we have F ′(z) = d

dz
F (z) and F •(z) = zF ′(z).

Theorem 6 below, and its weighted version theorem 7, can be found in various
forms in the mathematical and physical literature (see [1], [9], [10], [11], [12], [15],
[17], [21], [22], [25], [31]).

Theorem 6. Let B be a particular class of 2-connected graphs and CB the species
of connected graphs with all blocks in B. Then we have the combinatorial functional
equation

C′
B = E(B′(C•

B)), (25)

where E denotes the species of sets, and, in terms of exponential generating func-
tions,

C′
B(z) = exp (B′(C•

B(z))) . (26)

Figure 2. C′
B = E(B′(C•

B))
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Proof. Figure 2 will help us understand the isomorphism between the two classes of
structures. On the left hand side of the figure we have a C′

B-structure, which is a
CB-structure over a set U ∪ {∗}. On the right hand side, the ∗ vertex has been split
between the blocks to which it belongs. The vertices in pale colour are different
from the others because they are forming B′-structures with the ∗ vertices. Also
each of these pale colour vertices is the root of a C•

B-structure, circled by a dotted
line. We thus see that the B′-structures are built on a set of C•

B-structures.
Therefore we have a bijection between the C′

B-structures on U and sets of B′(C•
B)-

structures on U . Since this construction commutes with any relabelling, we have
a species isomorphism which is expressed by (25). Formula (26) then follows auto-
matically. �

Multiplying (25) by X gives

C•
B = X · E(B′(C•

B)). (27)

In terms of the exponential generating functions, we obtain the perhaps more famil-
iar expression

C•
B(z) = z · exp (B′(C•

B(z))) . (28)

Theorem 7. Let w be a block-multiplicative weight function on connected graphs
with all blocks in a particular species B. Then we have

C•
B,w = X · E

(
B′

w(C•
B,w)

)
. (29)

Proof. The same proof as in Theorem 6 can be used. One has only to check that the
weight of a global C′

B-structure is equal to the product of the weights of the individual
structures that appear in the corresponding E

(
B′

w(C•
B,w)

)
-structure. This is ensured

by the block-multiplicativity of w. �

When we take the generating functions, formula (29) becomes

C•
B,w(z) = z exp

(
B′

w(C•
B,w(z))

)
. (30)

Note that the series y = C•
B,w(z) is a solution of the functional equation

y = z exp (B′
w(y)) , (31)

and the Lagrange inversion formula can be used to express the coefficients of y in
terms of those of R(t) := exp(B′

w(t)).

2. The Gaussian model

2.1. Relation between the Gaussian model and graph complexity. Let

fij = − exp(−α‖~xi − ~xj‖
2), α > 0, (32)

which corresponds to a soft repulsive potential at constant temperature. In this
case, the function

f(r) = − exp(−αr2) (33)
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satisfies the hypothesis of Proposition 3 and the second Mayer weight w(c) can be
explicitly computed for any connected graph c (see [31]). Here we give a complete
proof and an extension of this result.

The graph complexity γ(c) of a connected graph c is equal to the number of
spanning subtrees of c. Let e(c) denote the number of edges of c.

Theorem 8. In dimension d, the second Mayer weight

w(c) = lim
V →∞

1

V

∫

V n

∏

{i,j}∈c

− exp(−α‖~xi − ~xj‖
2)d~x1 . . . d~xn (34)

of a connected graph c with n vertices, has value

w(c) = (−1)e(c)
(π

α

) d(n−1)
2

γ(c)−
d
2 . (35)

Proof.

w(c) = lim
V →∞

1

V

∫

V n

∏

{i,j}∈c

− exp(−α‖~xi − ~xj‖
2)d~x1 . . . d~xn

= (−1)e(c) lim
V →∞

1

V

∫

V n

∏

{i,j}∈c

exp(−α‖~xi − ~xj‖
2)d~x1 . . . d~xn.

Without loss of generality, we can consider the vessel V as a d-dimensional hypercube
centered at the origin, of the form of the Cartesian product [−D, D]d of intervals.
Let us set ~xi = (xi1, xi2, . . . , xid). We have

w(c) = (−1)e(c) lim
D→∞

1

(2D)d

∫

[−D,D]dn

∏

{i,j}∈c

exp
(
− α[(xi1 − xj1)

2

+ (xi2 − xj2)
2 + . . . + (xid − xjd)

2]
)
dx11dx12 . . . dx1ddx21 . . . dxnd

= (−1)e(c)

[
lim

D→∞

1

2D

∫

[−D,D]n

∏

{i,j}∈c

exp(−α(xi1 − xj1)
2)dx11dx21 . . . dxn1

]d

, (36)

since the components of the vectors ~xi are independent of each other and appear
symmetrically in the Gaussian weight (32). Applying (16) and removing the unnec-
essary second lower index 1, we find

w(c) = (−1)e(c)



∫

IRn−1

∏

{i,j}∈c; xn=0

exp
(
−α(xi − xj)

2
)
dx1 · · · dxn−1




d

= (−1)e(c)



∫

IRn−1

exp


−α

∑

{i,j}∈c; xn=0

(xi − xj)
2


 dx1 · · · dxn−1




d

.
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Let K = K(c) be the Kirchhoff matrix, of size (n− 1)× (n− 1), of the connected
graph c, defined by

kij =





−1 if {i, j} ∈ c,
d(i) if i = j,
0 otherwise.

Note that the degree d(i) takes into account edges attached to the “missing” vertex
n. It is easily verified that

∑

{i,j}∈c; xn=0

(xi − xj)
2 = XKXT , (37)

for X = (x1, x2, . . . , xn−1), so that K is positive definite and we obtain, for the
weight function,

w(c) = (−1)e(c)

[∫

IRn−1

exp(−αXKXT )dx1 . . . dxn−1

]d

. (38)

We then can use the following classical multidimensional Gaussian integral:

Proposition 9. Let P be a p× p positive definite symmetric matrix. Then we have
∫

IRp

exp(−XPXT )dX = π
p
2 det(P )−

1
2 .

�

With P = αKand p = n − 1 we obtain

w(c) = (−1)e(c)
[
(π)

n−1
2 det(αK)−1/2

]d

= (−1)e(c)

[(π

α

)n−1
2

det(K)−1/2

]d

. (39)

We now use the spanning tree theorem of Kirchhoff (see [20]).

Theorem 10 (Kirchhoff). Let K be the Kirchhoff matrix of the connected graph c.
Then, the number γ(c) of spanning trees of c satisfies γ(c) = det(K).

�

We finally obtain

w(c) = (−1)e(c)
(π

α

) d(n−1)
2

γ(c)−
d
2 , (40)

concluding the proof of Theorem 8. �

2.2. An extension of the Gaussian potential. Following a suggestion of partic-
ipants (G. Andrews and H. Wilf) at the 54th Séminaire Lotharingien de Combina-
toire in Lucelle, France, in April 2005, we can generalize this result to include the
degree distribution of the vertices of the spanning subtrees. Let T (c) be the set of
all spanning subtrees of the connected graph c, and let dt(i) be the degree of the
vertex i in the spanning subtree t.
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Theorem 11. With the potential function fij defined as

fij = − exp
(
−αyiyj‖~xi − ~xj‖

2
)
, (41)

where the yi’s are positive variables, the second Mayer weight function in d dimen-
sions

w(c) = lim
V →∞

1

V

∫

V n

∏

{i,j}∈c

− exp(−αyiyj‖~xi − ~xj‖
2)d~x1 . . . d~xn (42)

of a connected graph c with vertices {1, 2, . . . , n}, has value

w(c) = (−1)e(c)
(π

α

)d(n−1)
2


∑

t∈T (c)

y
dt(1)
1 y

dt(2)
2 . . . ydt(n)

n




− d
2

. (43)

Proof. It suffices to define the matrix K by

kij =





−yiyj if {i, j} ∈ c,
yi

∑
{i,h}∈c yh if i = j,

0 otherwise.

As before, we have

w(c) = lim
V →∞

1

V

∫

V n

∏

{i,j}∈c

− exp(−αyiyj‖~xi − ~xj‖
2)d~x1 . . . d~xn

= (−1)e(c)

[∫

IRn−1

exp(−αXKXT )dx1 · · · dxn−1

]d

= (−1)e(c)

[(π

α

)n−1
2

det(K)−1/2

]d

. (44)

But Lovász shows (see [18], problem 4.10) that for such a matrix K,

det(K) =
∑

t∈T (c)

y
dt(1)
1 y

dt(2)
2 . . . ydt(n)

n ; (45)

therefore, (43) is established. �

Remark. It is possible to further extend this result by setting

fij = − exp
(
−wi,j‖~xi − ~xj‖

2
)
, (46)

where the wi,j’s are general (positive) weights associated to edges. In this case the
weight of a connected graph c gives the edge enumerator of spanning subtrees of
c. Indeed, invoking a more general form of Kirchhoff’s formula (see, for example
Sylvester [29], Borchardt [3] and Chaiken and Kleitman [5], we find that

w(c) = (−1)e(c) (π)
d(n−1)

2


∑

t∈T (c)

∏

{i,j}∈t

wi,j




− d
2

. (47)
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3. The hard-core continuum gas in one dimension

Consider N hard particles of diameter 1 on a line segment, of the form [−D, D].
The hard-core constraint translates into the interaction potential χ(|xi − xj | ≥ 1)
(with ϕ(r) = ∞, if r < 1, and ϕ(r) = 0, if r ≥ 1) and the Mayer function fij is
defined by

1 + fij = χ(|xi − xj | ≥ 1)

⇔ fij = −χ(|xi − xj | < 1). (48)

The hypothesis of Proposition 3 is verified for the function

f(r) = −χ(r < 1), (49)

allowing us to write the weight function w(c) of a connected graph c as

w(c) = (−1)e(c)

∫

IRN−1

∏

{i,j}∈ c ; xN=0

χ(|xi − xj | < 1) dx1 . . . dxN−1. (50)

With this potential, the pressure can still be expressed in terms of the exponential
generating function of the weighted species of connected graphs, as in (18):

P

kT
= Cw(z). (51)

3.1. Global formulas. It is known (see [4]) that for the hard-core gas, the pressure
of the system is given by

P

kT
= L(z), (52)

where L(z) denotes the Lambert function, defined by the functional equation

L(z) exp(L(z)) = z. (53)

Here, we give a combinatorial proof of this result.

Proposition 12. In the thermodynamic limit D → ∞, the pressure P
kT

of the
continuous unidimensional hard-core gas model is given by (52).

Proof. Note that the Lambert function satisfies L(z) = −T (−z), where T (z) is the
exponential generating function of labelled rooted trees. Let us consider the particles
on a segment of the form [0, 2D]. Then, since the N ! possible relative positions of
the xi give rise to integrals of equal value, the grand-canonical partition function
can be written as

Zgr(D, z) =
∑

N≥0

zN

N !

∫

[0, 2D]N

∏

i<j

χ(|xi − xj | ≥ 1)dx1dx2 · · · dxN

=
∑

N≥0

zN

∫ 2D

0

dx1

∫ 2D

x1+1

dx2 · · ·

∫ 2D

xN−1+1

dxN . (54)

Now the integral in (54) is the volume of the simplex

0 ≤ x1 ≤ x2 − 1 ≤ x3 − 2 ≤ · · · ≤ xN − N + 1 ≤ 2D − N + 1,
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and has value (2D − N + 1)N/N !. See for example Section 4.2 of [30] on the one-
dimensional Tonks gas. It follows that

Zgr(−D,−z) =
∑

N≥0

(N + 2D − 1)NzN/N ! , (55)

which is the exponential generating function of structures which consist of functions
of the form f : U → U +V , where U is a finite set (of varying size N), V is a fixed set
of size |V | = 2D − 1 and + denotes the disjoint union. By considering the saggital
graph of such functions, obtained by taking the oriented edges (u, f(u)), u ∈ U ,
we see that the connected components consist of either connected endofunctions on
subsets U ′ of U or rooted trees on U ′ pointing to an element of V . Thus there
are 2D − 1 kinds of connected components of the sort “rooted trees”. Let fN

be the number of connected endofunctions on an N -element set and let F (z) =∑
N≥0 fnz

N/n! be their generating function. Then we have

Zgr(−D,−z) = exp (F (z) + (2D − 1)T (z)) (56)

and, reverting back to D and z and taking the thermodynamic limit,

P

kT
= lim

D→∞

1

2D
log Zgr(D, z)

= lim
D→∞

1

2D
(F (−z) − (2D + 1)T (−z))

= −T (−z) = L(z),

which concludes the proof. �

Corollary 13. Let N be an integer ≥ 1; the total weight |C[N ]|w of the set of all
connected graphs over the set [N ] = {1, 2, . . . , N} of vertices is given by

∑

c∈C[N ]

w(c) = (−N)N−1. (57)

Proof. This follows immediately from the fact that

Cw(z) =
P

kT
= −T (−z)

by extracting coefficients. �

We now invoke the functional equation (29) in the case where B is the species of
all 2-connected graphs and hence CB = C, the species of all connected graphs, with
the weight function w given by (50):

C•
w(z) = z exp (B′

w(C•
w(z))) . (58)

Proposition 14. For the total weight of 2-connected graphs, we have

Bw(z) = z log(1 − z). (59)

Conversely, formula (59) implies that Cw(z) = L(z).
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Proof. It is clear from (58) that any one of the functions Cw(z) and Bw(z) determines
uniquely the other, since Cw(z) is of the form z + . . . and B′

w(z) = −2z + . . . . Hence
it suffices to prove that

L•(z) = z exp (B′(L•(z)) , (60)

where the function B(z) is defined by

B(z) = z log(1 − z), (61)

in order to establish the Proposition. It is easily seen that

B′(z) = log(1 − z) −
z

1 − z
,

and that L•(z) = zL′(z) satisfies

L•(z) =
L(z)

1 + L(z)
,

upon differentiation of (53). We then have

z exp(B′(L•(z))) = z exp

(
log(1 − L•(z)) −

L•(z)

1 − L•(z)

)

= z(1 − L•(z)) exp

(
−L•(z)

1 − L•(z)

)

= z

(
1 −

L(z)

1 + L(z)

)
exp

(
− L(z)

1+L(z)

1 − L(z)
1+L(z)

)

= z
1

1 + L(z)
exp(−L(z))

=
L(z)

1 + L(z)

= L•(z),

which proves (60). �

Proposition 15. Let N be an integer ≥ 2; the total weight |B[N ]| of the set of all
2-connected graphs with N vertices is given by

∑

c∈B[N ]

w(c) = −N(N − 2)! (62)

Proof. This follows immediately from (59) by extracting coefficients. �

Corollary 16. The virial expansion for the hard core one-dimensional gas is given
by

P

kT
=

ρ

1 − ρ
. (63)

Proof. Using equations (23) and (62), we see that γn(T ) = 1, for all n ≥ 2 and the
result follows. �
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Question 1: Are there direct combinatorial proofs of (57) and (62), independently
of Proposition 12 ?

Question 2: Can we compute the individual weights w(c) of given connected graphs
c and interpret them in terms of other graph invariants?

3.2. The Ehrhart polynomial. While trying to answer these questions, we have
made the following observation. Except for the sign, the weight

w(c) = (−1)e(c)

∫

IRN−1

∏

{i,j}∈c ;xN=0

χ(|xi − xj | < 1) dx1 . . . dxN−1 (64)

can be seen as the volume of a convex polytope P(c) in IRN bounded by the con-
straints |xi − xj | ≤ 1, for {i, j} ∈ c, with xN = 0. We can compute this volume
using Ehrhart polynomials (see [28]).

Theorem 17 (Ehrhart). Let P be a convex polytope of dimension d in IRm, with
vertices having integer coordinates. Let nP = {nα : α ∈ P} denote the n-fold
expansion of P, and I(P, n), the number of points with integer coordinates which
lie inside nP. Then I(P, n) is a polynomial function of n of degree d whose leading
coefficient is the volume Vol(P) of P.

�

In order to apply Ehrhart’s theorem, we have to prove the following:

Proposition 18. Let c be a connected graph with its N vertices labelled {1, 2, . . . , N},
and define the convex polytope P(c) ⊂ IRN by

P(c) =
{
X ∈ IRN | xN = 0 and |xi − xj | ≤ 1 ∀ {i, j} ∈ c

}
, (65)

where X = (x1, . . . , xN ). Then the vertices of P(c) have integer coordinates.

Proof. Notice that P(c) is of dimension N − 1. Every vertex of P(c) is at the
intersection of N − 1 faces of the polytope. Each equation of the form |xi − xj | =
1, {i, j} ∈ c, generates two faces: one that satisfies the equation xi − xj = 1, and
the other which satisfies xj − xi = 1, corresponding to the two possible orientations
of the edge {i, j}. We can express all these equations in the matrix form

X Ω = (1, 1, . . . , 1), (66)

where Ω is the incidence matrix of the oriented graph obtained from c by replacing
each edge by the two corresponding opposite oriented edges. The result then follows
from the fact that this matrix is totally unimodular, i.e., all its subdeterminants
have values 0, ±1. See [26]. �

It follows that the volume of P(c) and the weight

w(c) = (−1)e(c) Vol(P(c)) (67)

can be obtained by computing the Ehrhart polynomial I(P(c), n). Notice that the
n-fold expansion of P(c) is given by

nP(c) =
{
X ∈ IRN | xN = 0 and |xi − xj | ≤ n ∀{i, j} ∈ c

}
. (68)
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For all 2-connected graphs c having N vertices, with N ≤ 6, we have carried
out the computation of the Ehrhart polynomial I(P(c), n) and hence the volume
Vol(P(c)), by counting the number of points with integer coordinates in the n-fold
expansion nP(c), for n = 2, . . . , 6. See Appendix B for the results. The weight of
any connected graph c all of whose blocks have size at most 6 can then be deduced
by block multiplicativity. The individual weights w(c) for 2-connected graphs c of
size up to 5 were already known. See Riddell and Uhlenbeck [23], p. 2063, for
example.

3.3. Particular weight values. The numerical results have led us to conjecture
and then prove a formula for the weight w(KN) of the complete graph with N
vertices (N ≥ 2). In this section, we also give two formulas for the weight w(CN) of
the N -cycle (N ≥ 3). The weight w(KN\e) for the complete graph minus an edge
(N ≥ 3) is given in the following section.

3.3.1. The complete graph KN .

Proposition 19. For the complete graph KN , we have

w(KN) = (−1)(
N
2 )N. (69)

Proof. Starting with formula (50), we have

w(KN) = (−1)(
N
2 )
∫

IRN−1

∏

{i,j}∈KN ; xN=0

χ(|xi − xj | < 1) dx1 · · · dxN−1

= (−1)(
N
2 )
∫ 1

−1

· · ·

∫ 1

−1

∏

1≤i<j≤N−1

χ(|xi − xj | < 1) dx1 · · · dxN−1. (70)

Replacing each xi by xi + 1, for i = 1, . . . N − 1, yields

|w(KN)| =

∫ 2

0

· · ·

∫ 2

0

∏

1≤i<j≤N−1

χ(|xi − xj | < 1) dx1 · · · dxN−1

= (N − 1)!

∫

A

∏

1≤i<j≤N−1

χ(xi − xj < 1) dx1 · · · dxN−1, (71)

where A denotes the region 0 ≤ x1 ≤ · · · ≤ xN−1 ≤ 2, by symmetry. Let us make
the change of variables

yi = xi+1 − xi, for 1 ≤ i ≤ N − 2,

yN−1 = 2 − xN−1, (72)

which is equivalent to

xi = 2 − yi − · · · − yN−1, for 1 ≤ i ≤ N − 2,

xN−1 = 2 − yN−1. (73)

The domain of integration A is transformed into the region B defined by yi ≥
0, for i = 1, . . . , N − 1, and

y1 + · · ·+ yN−1 ≤ 2.
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Moreover, in this region, the integrand of (71) is not zero, and has value 1, if and
only if

y1 + y2 + · · · + yN−2 < 1.

We can decompose the region B into the subregions B1, where y1 + · · ·+ yN−1 ≤ 1,
and B2, where 1 ≤ y1 + · · ·+ yN−1 ≤ 2 and (71) becomes

|w(KN)| = (N − 1)!

∫

B

χ(y1 + · · · + yN−2 < 1) dy1 · · ·dyN−1

= (N − 1)!

∫

B1⊎B2

χ(y1 + · · ·+ yN−2 < 1) dy1 · · · dyN−1

= (N − 1)!

(∫

IRN−1
+

χ(y1 + · · · + yN−1 < 1) dy1 · · · dyN−1

+

∫

IRN−2
+

(∫ 2−y1−···−yN−2

1−y1−···−yN−2

dyN−1

)
χ(y1 + · · ·+ yN−2 < 1) dy1 · · · dyN−2

)

= (N − 1)!

(
1

(N − 1)!
+

1

(N − 2)!

)

= 1 + N − 1 = N.

�

3.3.2. The Cycle graph CN .

Proposition 20. For the (unoriented) cycle CN with N vertices, we have

w(CN) = (−1)N 2N

2π

∫ ∞

−∞

(
sin t

t

)N

dt. (74)

Proof. Starting with (50), let us make the change of variables

ti = xi − xi+1, for 1 ≤ i ≤ N − 1,

of Jacobian 1. The conditions |xi−xi+1| ≤ 1 corresponding to the edges {i, i+1} of
CN give |ti| ≤ 1 and the condition |x1 − xN | ≤ 1 corresponding to the edge {1, N}
yields |t1 + · · ·+ tN−1| ≤ 1. Then, writing χ(x) := χ(|x| ≤ 1) for simplicity, we have

w(CN) = (−1)N

∫

IRN−1

∏

{i,j}∈CN ;xN=0

χ(xi − xj) dx1 . . . dxN−1

= (−1)N

∫

IRN−1

χ(t1 + t2 + · · · + tN−1)χ(t1) · · ·χ(tN−1) dt1 · · · dtN−1

= (−1)N Vol {T ∈ IRN−1 | − 1 ≤ T ≤ 1, −1 ≤ 〈 T, 1 〉 ≤ 1 } , (75)

where T = (t1, . . . , tN−1), 1 = (1, . . . , 1) and 〈X, Y 〉 denotes the scalar product.
Let U1, U2, . . . , UN−1 be independent identically distributed uniform random vari-

ables on the interval [−1, 1], with common density function u(x) = 1
2
χ(x) and let

S = U1 + · · · + UN−1. Then, by (75),

w(CN) = (−1)N 2N−1 Prob(−1 ≤ S ≤ 1). (76)
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The density function s(x) of S is given by the (N − 1)-fold convolution product

s = u∗(N−1) = u ∗ · · · ∗ u (N − 1 factors),

where

(f ∗ g)(x) :=

∫ ∞

−∞

f(ξ)g(x− ξ) dξ.

We deduce from (76) that

w(CN) = (−1)N 2N−1

∫ 1

−1

s(ξ) dξ

= (−1)N 2N−12

∫ ∞

−∞

s(ξ)u(ξ) dξ

= (−2)N

∫ ∞

−∞

u∗(N−1)(ξ)u(0 − ξ) dξ

= (−2)N u∗N(0). (77)

Since the Fourier transform û(t) of u(x) is given by

û(t) =

∫ ∞

−∞

u(x)e−itxdx =
1

2

∫ 1

−1

e−itxdx =
sin t

t
(78)

and f̂ ∗ g(t) = f̂(t) · ĝ(t), we get

û∗N(t) = (û(t))N =

(
sin t

t

)N

. (79)

Taking the inverse Fourier transform on both sides, we deduce that

u∗N(x) =
1

2π

∫ ∞

−∞

û∗N(t)eitxdt

=
1

2π

∫ ∞

−∞

(
sin t

t

)N

eitxdt (80)

and (74) follows via the substitution x = 0. �

Corollary 21. We have the asymptotic estimate

w(CN) ∼ (−2)N

(
3

2πN

) 1
2
(

1 −
3

20N
−

13

1120N2
+ . . .

)
(81)

as N → ∞.

Proof. Make the local substitution sin t
t

= exp(−u2) around the origin and integrate
term by term. �

Proposition 22. For the cycle CN with N vertices, we also have

w(CN) =
(−1)N

(N − 1)!

⌊N−1
2

⌋∑

i=0

(−1)i

(
N

i

)
(N − 2i)N−1. (82)
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Proof. Note first that the density function u(x) = 1
2
χ(|x| ≤ 1) satisfies

u =
1

2
(δ−1 − δ1) ∗ H(x) (a.e.), (83)

where δa and H are defined by

(δa ∗ f)(x) = f(x − a), H(x) =





1, if x > 0,
1/2, if x = 0,
0, if x < 0.

Using (77), (83), commutativity of the convolution product and the binomial theo-
rem, we obtain

w(CN) = (−1)N ((δ−1 − δ1)
∗N ∗ H∗N)(0)

= (−1)N

(
N∑

i=0

(−1)i

(
N

i

)
δ2i−N ∗

(x+)N−1

(N − 1)!

) ∣∣∣∣ x = 0

=
(−1)N

(N − 1)!

N∑

i=0

(−1)i

(
N

i

)
((x + N − 2i)+)N−1

∣∣∣∣ x = 0

=
(−1)N

(N − 1)!

⌊N−1
2

⌋∑

i=0

(−1)i

(
N

i

)
(N − 2i)N−1,

since H∗N(x) = (x+)N−1/(N − 1)!, where x+ := H(x)x. �

Combinatorial proof of Proposition 22 for N even. We can give a combinatorial
proof of (82) when N is even, based on the geometric properties of the Eulerian
numbers An,k (n ≥ 1, 1 ≤ k ≤ n). They can be defined by the Worpitzky formula
(see [8])

An,k =
∑

0≤i≤k−1

(−1)i(k − i)n

(
n + 1

i

)
. (84)

These numbers admit a geometric interpretation using the volume of a closed region
of IRn (see [8] and the note [27] following it):

An,k/n! = Vol { Y ∈ IRn | 0 ≤ Y ≤ 1, k − 1 ≤ 〈 Y, 1 〉 ≤ k }, (85)

where 0 and 1 denote the constant vectors with entries 0 and 1, respectively.
Starting with (75) let us make the transformation

zi := ti + 1, for 1 ≤ i ≤ N − 1

and set Z = (z1, . . . , zN−1) and 2 = (2, . . . , 2). Then we see that

w(CN) = (−1)NVol {Z ∈ IRN−1 | 0 ≤ Z ≤ 2, N − 2 ≤ 〈Z, 1 〉 ≤ N }. (86)
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If N is even, we can simplify the expression (86) further by setting yi := zi/2. We
then find, using (85) and (84),

w(CN) = (−1)N 2N−1 Vol { Y ∈ IRN−1 | 0 ≤ Y ≤ 1, N/2 − 1 ≤ 〈 Y, 1 〉 ≤ N/2 }

= (−1)N 2N−1 1

(N − 1)!
AN−1,N/2

= (−1)N 2N−1

(N − 1)!

∑

0≤i≤N/2−1

(−1)i(N/2 − i)N−1

(
N

i

)

=
(−1)N

(N − 1)!

∑

0≤i≤N/2−1

(−1)i(N − 2i)N−1

(
N

i

)
, (87)

which establishes (82). �

Remark. For N odd (or general), by analogy with the Eulerian numbers, it is tempt-
ing to define numbers Bn,k by the formula

Bn,k/n! = Vol {Z ∈ IRn | 0 ≤ Z ≤ 2, k − 1 ≤ 〈Z, 1 〉 ≤ k } (88)

so that (N − 1)! w(CN) = BN−1,N−1 + BN−1,N . There remains to interpret these
numbers combinatorially and to use them to establish (82) in complete generality.

3.4. Graph homomorphisms. As observed by Bodo Lass [13], it is possible to
evaluate the volume of the polytope P(c) by decomposing it into a certain number
ν(c) of subpolytopes which are all simplices of volume 1/(N−1)!. Each subpolytope
is obtained by fixing the integral parts and the relative positions of the fractional
parts of the coordinates x1, . . . , xN of points X ∈ P(c). The number of such config-
urations will then yield ν(c) and we will have Vol(P(c)) = ν(c)/(N − 1)!.

In order to make this correspondence more precise, we consider the following
fractional representation of real numbers

IR → ([0, 1] × ZZ) : x 7→ (ξx, hx), (89)

where hx = ⌊x⌋ is the integral part of x and ξx = x − hx is the (positive) fractional
part of x, so that x = ξx + hx. For example,

0.25 7→ (0.25, 0), 3.75 7→ (0.75, 3) and − 1.25 7→ (0.75,−2).

See Figure 3. Notice that 0 ≤ ξx < 1. However, for x = 0, it will be convenient to
use the special representation 0 7→ (1.0,−1), as if 0 was infinitesimally negative.

In this representation, the condition |x − y| < 1 for two real numbers x and y
translates into “ξx 6= ξy and assuming ξx < ξy, then hx = hy or hx = hy + 1”. This
can be visualized as follows: the slope of the line segment between x and y should be
either null or negative. See Figure 3 where the interval (x− 1, x + 1) is represented
by the thick segments.

Now consider a connected graph c with vertex set V = [N ] = {1, 2, . . . , N}, and
let X = (x1, . . . , xN ) be a point in the polytope P(c). Let us write xi 7→ (ξi, hi) for
the fractional representation of the coordinate xi of X, i = 1, . . . , N . Recall that
xN = 0 so that ξN = 1.0 and hN = −1, with our convention.
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−2

2

0

1

3

−1

y 7→ (ξy, hy)

x 7→ (ξx, hx)

3.75 7→ (0.75, 3)

0.25 7→ (0.25, 0)

0 7→ (1.0,−1)

−1.25 7→ (0.75,−2)

Figure 3. Fractional representation of real numbers

The volume of P(c) is not changed by removing all hyperplanes {xi−xj = k}, for
k ∈ ZZ. Hence, we can assume that all the fractional parts ξi are distinct. We form
a subpolytope of P(c) by keeping the “heights” h1, h2, . . . , hN fixed as well as the
relative positions (total order) of the fractional parts ξ1, ξ2, . . . , ξN . Let h : V → ZZ

denote the height function i 7→ hi and β : V → [N ] be the permutation of [N ]
for which β(i) gives the rank of ξi in this total order. Note that β(N) = N . For
example, if N = 5 and ξ3 < ξ4 < ξ2 < ξ1 < ξ5, then β(1) = 4, β(2) = 3, β(3) = 1,
β(4) = 2 and β(5) = 5, i.e., β = (4, 3, 1, 2, 5).

The corresponding subpolytope will be denoted by P(h, β). Let us choose a
canonical point X = Xh,β of P(h, β), say the centroid, obtained by setting ξi =
β(i)/N , i = 1, . . . , N . Using the fractional coordinates to represent this canonical
point Xh,β of P(h, β), and drawing a dotted line segment between xi and xj for
each edge i, j of the graph c, we obtain a configuration in the plane which can
be seen as an homomorphic image of c and which characterizes the subpolytope
P(h, β). For example, with N = 5 and c = C5, the 5-cycle, we can take h =
(0, 1, 1, 0,−1) and β = (4, 3, 1, 2, 5) as above. This indeed defines a subpolytope
P(h, β) of P(C5), for which Xh,β = (0.8, 1.6, 1.2, 0.4, 0). Figure 4 illustrates the
corresponding configuration, where the homomorphic image of C5 appears clearly.

Proposition 23. Let c be a connected graph with vertex set V = [N ] and consider
a function h : V → ZZ and a bijection β : V → [N ] satisfying β(N) = N . Then the
pair (h, β) determines a valid subpolytope P(h, β) of P(c) if and only if the following
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1

−1

0

x4

x3

x5

x2

x1

1

Figure 4. Fractional representation of a simplicial subpolytope of P(C5)

condition is satisfied:

for any edge {i, j} of c, β(i) < β(j) implies hi = hj or hi = hj + 1. (90)

Proof. Let Xh,β = (x1, . . . , xN) denote the canonical point associated with (h, β),
i.e., where xi = hi + ξi, with ξi := β(i)/N , i = 1, . . . , N . Then the pair (h, β)
determines a valid subpolytope P(h, β) of P(c) if and only if the point Xh,β is in
P(c). But the condition (90) expresses exactly that |xi − xj | < 1, whenever {i, j} is
an edge of c, that is, the defining condition of P(c). �

Proposition 24. Let c be a connected graph and let (h, β) be such that β(N) = N
and condition (90) is satisfied. Then the volume of the associated subpolytope P(h, β)
is equal to 1/(N − 1)!.

Proof. The simplest case is when β is the identity, i.e., when 0 < ξ1 < ξ2 < · · · <
ξN−1 < 1, and all levels h1, h2, . . . , hN−1 are 0. Since xN = 0, this corresponds to
the standard (N − 1)-dimensional simplex whose volume is 1/(N − 1)!. But it is
clear that the same is true for any β and that all the other subpolytopes P(h, β) are
translates of these, hence also (N − 1)-simplexes, of volume 1/(N − 1)!. �

Proposition 25. Let c be a connected graph and let ν(c) be the number of pairs
(h, β) such that the condition (90) is satisfied. Then the volume of the polytope P(c)
defined by (65) is given by

Vol(P(c)) = ν(c)/(N − 1)!. (91)

Proof. It is clear that the polytope P(c) is the disjoint union of all its subpolytopes
P(h, β) and the result follows from Proposition 24. �

Proposition 25 can be used to compute the weight of some infinite families of
graphs, since w(c) = (−1)e(c)Vol(P(c)). As a first example, we give an alternate

proof of the formula (69): w(KN) = (−1)(
N
2 )N . Indeed, since all edges are present

in the complete graph, any of the (N − 1)! permutations beta for which β(N) = N
can occur, by symmetry, and there are only N possible height sequences h◦β(−1), of
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the form (0, . . . , 0,−1, . . . ,−1), from (0, . . . , 0,−1) to (−1, . . . ,−1), which give rise
to legal configurations (h, β). Hence ν(KN ) = N(N − 1)! and the result follows.

Another example is the following, due to Bodo Lass:

Proposition 26. [13] For N ≥ 3, let KN\e denote the complete graph on N vertices
from which an arbitrary edge has been removed. Then we have

w(KN\e) = (−1)(
N
2 )−1

(
N +

2

(N − 1)

)
. (92)

Proof. We can assume that the missing edge is e = {1, N}. Note that all the
configurations (h, β) of KN are also valid here. In addition, there are two other
possibilities for h : a) set h1 = 1, hN = −1 and all other hi = 0, so that β(1) must
be 1, and b) h1 = −2 and all other hi = −1, so that β(1) must be N − 1. In both
cases β can be extended in (N − 2)! ways. �

Finally, an elegant description of all the compatible configurations can be given
for the cycle graph CN on [N ], with edge set {{i, i + 1}(mod N) | i = 1, . . . , N}.
Indeed, following the cycle, the sequence of heights

h∗ = (hN = −1, h1, h2, . . . , hN−1, hN = −1) (93)

defines a path of Motzkin type, i.e., where the only permitted “moves” are rises
(by 1), levels and descents (by 1), denoted by r, l and d, respectively. Starting and
ending at height −1, the path h∗ can thus be encoded by a generalized Motzkin
word µ in the letters r, l, d. As an example, for the configuration of Figure 4, we
have

h∗ = (−1, 0, 1, 1, 0,−1) and µ = rrldd .

Notice that the first step cannot be a descent and the last step, a rise. But the path
is allowed to attain heights below -1. Thus the legal configurations of CN can be
classified according to the corresponding words µ and the compatible permutations
β can be given a simple description in terms of µ. Details are left to the reader.

Remark. Olivier Bernardi [2] has partially answered Question 1 given at the end of
Section 3.1. Using the subpolytope representations of this section, he has described
an involution which establishes (57), namely that the sum of all weights w(c) of
connected graphs c over an N -element set is (−N)N−1.
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matics, 42 (1981), 1–82.
[12] Jacques Labelle, “Applications diverses de la théorie combinatoire des espèces de
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1983, 500 pp.

[15] Pierre Leroux, “Methoden der Anzahlbestimmung für einige Klassen von Graphen,”
Bayreuther Mathematische Schriften, 26 (1988), 1–36.

[16] Pierre Leroux, “Enumerative problems inspired by Mayer’s theory of cluster inte-
grals.” The Electronic Journal of Combinatorics, 11 (2004), R32.

[17] Pierre Leroux and Brahim Miloudi, “Généralisation de la formule d’Otter,” Annales
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Appendix A. Proof of Proposition 3

First we have to show that the function

F~xN
(~x1, ~x2, . . . , ~xN−1) =

∏

{i,j}∈c

f(|~xi − ~xj |) (94)

is integrable. In order to prove this, we need to show that F~xN
is measurable and

that

I~xN
:=

∫

IRd(N−1)

|F~xN
(~x1, . . . , ~xN−1)|d~x1 · · · d~xN−1 < ∞. (95)

Since f is integrable, it is measurable and the function f(|~xi − ~xj |) is measurable
for all i, j ≤ N . This implies that the product F~xN

is measurable. In order to prove
that I~xN

< ∞, let us choose a spanning subtree a of the connected graph c. Since
f is bounded, we can denote its bound by

A = sup
r≥0

|f(r)| < ∞. (96)

We then have

I~xN
=

∫

IRd(N−1)

∏

{i,j}∈a

|f(|~xi − ~xj |)|
∏

{i,j}∈c\a

|f(|~xi − ~xj |)|d~x1 · · · d~xN−1

≤ A|c\a|

∫

IRd(N−1)

∏

{i,j}∈a

|f(|~xi − ~xj |)|d~x1 · · · d~xN−1. (97)

Under the change of variables

~zi = ~xi − ~xN , i = 1, . . . , N − 1, (98)

we have, for i, j 6= N ,

~xi − ~xj = ~xi − ~xN + ~xN − ~xj = ~zi − ~zj.

Since ~xN is fixed, the Jacobian of this transformation is 1 and (97) becomes

I~xN
≤ A|c\a|

∫

IRd(N−1)

∏

{i,j}∈a; i,j<N

|f(|~zi − ~zj |)|
∏

{i,N}∈a

|f(|~zi|)|d~z1 · · · d~zN−1.

Let us give the edges of a an orientation towards the “root” N . Consider the function
σ : {1, . . . , N − 1} → {1, . . . , N} such that σ(i) is the end of the arrow going out of
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vertex i. We can write

I~xN
≤ A|c\a|

∫

IRd(N−1)

∏

σ(i)<N

|f(|~zi − ~zσ(i)|)|
∏

{i,N}∈a

|f(|~zi|)|d~z1 . . . d~zN−1. (99)

Let us consider the linear transformation

T :

{
~yi = ~zi − ~zσ(i), σ(i) 6= N
~yi = ~zi, σ(i) = N

(100)

Let us also denote by T the corresponding (N − 1) × (N − 1) matrix. This means
that for Y = (~y1, . . . , ~yN−1) and Z = (~z1, . . . , ~zN−1), we have Y = TZ and if we
denote by

Yi = (y1i, y2i, . . . , y(N−1) i), Zi = (z1i, z2i, . . . , z(N−1) i), i = 1, . . . , d,

the vectors made of the i-th components of every vector ~yj and ~zj , for j = 1, . . . , N−
1, we also have Yi = TZi. For the Jacobian, we have

∣∣∣∣
∂(~z1, . . . , ~zN−1)

∂(~y1, . . . , ~yN−1)

∣∣∣∣ =
1

| det(T )|d
.

But T is the incidence matrix of the tree a, implying that | det(T )| = 1. Applying
the transformation to (99), we obtain

I~xN
≤ A|c\a|

∫

IRd·(N−1)

N−1∏

i=1

|f(|~yi|)|d~y1 . . . d~yN−1

= A|c\a|

(∫

IRd

|f(|~y|)|d~y

)N−1

.

Hence, it suffices to show that
∫

IRd

|f(|~y|)|d~y < ∞

to prove the integrability of F~xN
. Going to spherical coordinates with radius r = |~y|,

we have d~y = rd−1drdS because the surface element dS on the sphere of radius 1,
S(0, 1), is multiplied by rd−1 when the point ~y is at distance r from the origin. Since
the surface of S(0, 1) is finite, we find

∫

IRd

|f(|~y|)|d~y =

∫

S(0,1)

dS

∫ ∞

0

rd−1|f(r)|dr

=

∫

S(0,1)

dS

(∫ 1

0

rd−1|f(r)|dr +

∫ ∞

1

rd−1|f(r)|dr

)

≤

∫

S(0,1)

dS

(∫ 1

0

|f(r)|dr +

∫ ∞

1

rd−1|f(r)|dr

)

≤

∫

S(0,1)

dS

(
A +

∫ ∞

0

rd−1|f(r)|dr

)

< ∞,
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using (14). Therefore F~xN
is integrable. Moreover, the transformation (98) shows

that its integral is independent of ~xN .
We now can prove the existence of the thermodynamic limit and show that

w(c) := lim
V →∞

1

V

∫

V N

∏

{i,j}∈c

fij d~x1 · · · d~xN

=

∫

IRd(N−1)

∏

{i,j}∈c; ~xN=~0

fijd~x1 · · · d~xN−1, (101)

where fij = f(|~xi − ~xj |). Let us consider the vessel V like a ball with radius R
centered at the origin, denoted by B(0, R). More precisely,

V = B(0, R) = {~x ∈ IRd | |~x| ≤ R}.

We denote its volume by K(d)Rd. The thermodynamic limit can then be written as

lim
R→∞

1

K(d)Rd

∫

B(0,R)N

∏

{i,j}∈c

fij d~x1 . . . d~xN .

Let us study the function

ǫ(R,~xN ) :=

∫

IRd(N−1)

∏

{i,j}∈c

fij d~x1 · · · d~xN−1 −

∫

B(0,R)N−1

∏

{i,j}∈c

fij d~x1 · · · d~xN−1

=

∫

IRd(N−1)\B(0,R)N−1

∏

{i,j}∈c

fij d~x1 · · ·d~xN−1

under the condition that |~xN | < R. If we show that

lim
R→∞

1

K(d)Rd

∫

B(0,R)

|ǫ(R,~xN)|d~xN = 0, (102)

the identity (101) will directly follow since then

lim
R→∞

1

K(d)Rd

∫

B(0,R)N

∏

{i,j}∈c

fij d~x1 · · · d~xN

= lim
R→∞

1

K(d)Rd

∫

B(0,R)



∫

B(0,R)N−1

∏

{i,j}∈c

fij d~x1 · · ·d~xN−1


 d~xN

= lim
R→∞

1

K(d)Rd

∫

B(0,R)



∫

IRd(N−1)

∏

{i,j}∈c

fij d~x1 · · · d~xN−1 − ǫ(R,~xN )


 d~xN

= lim
R→∞

1

K(d)Rd

∫

B(0,R)

d~xN

∫

IRd(N−1)

∏

{i,j}∈c

fij d~x1 · · · d~xN−1 − 0

=

∫

IRd(N−1)

∏

{i,j}∈c; ~xN=~0

fij d~x1 · · · d~xN−1,

applying the translation ~xi := ~xi − ~xN , for i = 1, . . . , N − 1.
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Now let A be defined by (96) and let again a be a spanning subtree of c, rooted
at the vertex N . We have

|ǫ(R,~xN )| =

∣∣∣∣∣∣

∫

IRd(N−1)\B(0,R)N−1

∏

{i,j}∈c

fij d~x1 · · · d~xN−1

∣∣∣∣∣∣

≤

∫

IRd(N−1)\B(0,R)N−1

∏

{i,j}∈c

|fij| d~x1 · · · d~xN−1

=

∫

IRd(N−1)\B(0,R)N−1

∏

{i,j}∈a

|fij |
∏

{i,j}∈c\a

|fij | d~x1 · · · d~xN−1

≤ A|c\a|

∫

IRd(N−1)\B(0,R)N−1

∏

{i,j}∈a

|fij | d~x1 · · · d~xN−1

= A|c\a|

∫

IRd(N−1)\B(0,R)N−1

∏

{i,j}∈a

i,j 6=N

|fij|
∏

{i,N}∈a

|fiN | d~x1 · · ·d~xN−1.

We change the variables as in (98), considering ~xN as constant, and we define

D(R,~xN) := IRd(N−1) \ (B(0, R)N−1 − ~xN−1
N ), (103)

where B(0, R)N−1 − ~xN−1
N denotes the part B(0, R)N−1 translated by −~xN−1

N =

−(~xN , ~xN , . . . , ~xN) ∈ IRd(N−1). Then we can write

|ǫ(R,~xN )| ≤ A|c\a|

∫

D(R,~xN )

∏

{i,j}∈a; i,j 6=N

|f(|~zi − ~zj |)|
∏

{i,N}∈a

|f(|~zi|)| d~z1 . . . d~zN−1.

As before, we orient the edges of a towards the root N and define a function σ such
that σ(i) denotes the destination of the arrow that comes out of vertex i. We have

|ǫ(R,~xN)| ≤ A|c\a|

∫

D(R,~xN )

∏

σ(i)6=N

|f(|~zi − ~zσ(i)|)|
∏

σ(i)=N

|f(|~zi|)| d~z1 . . . d~zN−1. (104)

Applying the linear transformation T of (100) to (104), we find

|ǫ(R,~xN )| ≤ A|c\a|

∫

T (D(R,~xN ))

N−1∏

i=1

|f(|~yi|)| d~y1 . . . d~yN−1, (105)

with

T (D(R,~xN )) = T
(
IRd(N−1)

)
\ T

(
B(0, R)N−1 − ~xN−1

N

)

= IRd(N−1) \ T
(
B(0, R)N−1 − ~xN−1

N

)
.

Since |~xN | < R, the topological region B(0, R)N−1−~xN−1
N contains the origin. Since

T is continuous, this implies that T (B(0, R)N−1−~xN−1
N ) contains a Cartesian product
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of balls B(0, γ · (R − |~xN |))
N−1, centered at the origin, where γ > 0 only depends

on T . Thus we have

|ǫ(R,~xN)| ≤ A|c\a|

∫

IRd·(N−1)\B(0,γ·(R−|~xN |))N−1

N−1∏

i=1

|f(|~yi|)| d~y1 . . . d~yN−1

= A|c\a|

[(∫

IRd

|f(|~y|)| d~y

)N−1

−

(∫

B(0,γ·(R−|~xN |))

|f(|~y|)| d~y

)N−1
]

.

Since rd−1f(r) is integrable, we can set

α =

∫

IRd

|f(|~y|)|d~y < ∞ and β =

∫

B(0,γ·(R−|~xN |))

|f(|~y|)|d~y < ∞.

Notice that α ≥ β. Since

αN−1 − βN−1 = (α − β)(αN−2 + αN−3β + . . . + αβN−3 + βN−2)

≤ (α − β)(αN−2 + αN−2 + . . . + αN−2)

= (α − β)(N − 1)αN−2,

we have

|ǫ(R,~xN )| ≤ A|c\a|(N − 1)αN−2

[∫

IRd

|f(|~y|)|d~y −

∫

B(0,γ·(R−|~xN |))

|f(|~y|)|d~y

]
. (106)

Let us denote by k the constant k = A|c\a|(N − 1)αN−2. Integrating both sides of
(106) with respect to ~xN and dividing by the volume of the ball B(0, R) yields

1

K(d)Rd

∫

B(0,R)

|ǫ(R,~xN )|d~xN

≤ k ·
1

K(d)Rd

∫

B(0,R)

[∫

IRd

|f(|~y|)|d~y −

∫

B(0,γ(R−|~xN |))

|f(|~y|)|d~y

]
d~xN

= k
1

K(d)Rd

∫

B(0,R)

∫

IRd

|f(|~y|)|d~yd~xN

− k
1

K(d)Rd

∫

B(0,R)

∫

B(0,γ(R−|~xN |))

|f(|~y|)|d~yd~xN

= k

∫

IRd

|f(|~y|)|d~y − k
1

K(d)Rd

∫

B(0,R)

∫

B(0,γ(R−|~xN |))

|f(|~y|)|d~yd~xN

Let us change the order of integration of the second integral. Its domain of integra-
tion is

{(~y, ~xN)| 0 ≤ |~xN | < R and 0 ≤ |~y| < γ(R − |~xN |)}.

If we let ~xN vary, we have, for a fixed ~y,

0 ≤ |~y| < γ · (R − |~xN |) ⇔ 0 ≤
|~y|

γ
< R − |~xN |

⇔ 0 ≤ |~xN | < R −
|~y|

γ
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and we obtain

1

K(d)Rd

∫

B(0,R)

|ǫ(R,~xN )|d~xN

≤ k

∫

IRd

|f(|~y|)|d~y −
k

K(d)Rd

∫

B(0,γR)

∫

B(0,R− |~y|
γ

)

d~xN |f(|~y|)|d~y

= k

∫

IRd

|f(|~y|)|d~y −
k

K(d)Rd

∫

B(0,γR)

K(d)

(
R −

|~y|

γ

)d

|f(|~y|)|d~y

= k

(∫

IRd

|f(|~y|)|d~y −

∫

B(0,γR)

(
1 −

|~y|

γR

)d

|f(|~y|)|d~y

)

→ 0

as R ↑ ∞ by the Lebesgue dominated convergence theorem. This is easily seen
by taking an increasing sequence of radii Rn ↑ ∞ and considering the sequence of
measurable functions

(
1 −

|~y|

γRn

)d

|f(|~y|)|χ(~y ∈ B(0, γRn), n = 0, 1, 2, . . .

which are dominated by the integrable function |f(|~y|)| and converges pointwise to
|f(|~y|)|.

This establishes (102), and concludes the proof. �

Appendix B. Table for 2-connected graphs of size at most 6

Key:

number degree sequence of c

graph c
Ehrhart Pol. in base ni nb of labellings nb of spanning subtrees

Ehrhart Pol. in base
(
n

i

)
polytope’s volume volume× (n − 1)!

With 2 vertices:

2 (1,1)

v v
2n + 1 1 1

1
(
n
0

)
+ 2
(
n
1

)
2 2

With 3 vertices:
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3 (2,2,2)

v

v

v�
�
�T

T
T

3n2 + 3n + 1 1 3

1
(n
0

)
+ 6
(n
1

)
+ 6
(n
2

)
3 6

With 4 vertices:

4.1 (2,2,2,2)

v

v

v

v
16
3 n3 + 8n2 + 14

3 n + 1 3 4

1
(n
0

)
+ 18

(n
1

)
+ 48

(n
2

)
+ 32

(n
3

)
16
3 32

4.2 (3,3,2,2)

v

v

v

v

�
�

��
14
3 n3 + 7n2 + 13

3 n + 1 6 8

1
(n
0

)
+ 16

(n
1

)
+ 42

(n
2

)
+ 28

(n
3

)
14
3 28

4.3 (3,3,3,3)

v

v

v

v

�
�

��@
@

@@

4n3 + 6n2 + 4n + 1 1 16

1
(n
0

)
+ 14

(n
1

)
+ 36

(n
2

)
+ 24

(n
3

)
4 24

With 5 vertices:

5.1 (2,2,2,2,2)

v

v

v

vv

�
�Z

Z
B
BB �

��

115
12 n4 + 115

6 n3 + 185
12 n2 + 35

6 n + 1 12 5

1
(
n
0

)
+ 50

(
n
1

)
+ 280

(
n
2

)
+ 460

(
n
3

)
+ 230

(
n
4

)
115
12 230

5.2 (3,3,2,2,2)

v

v

v

vv

�
�Z

Z
B
BB �

��
�
�
�
� 49

6 n4 + 49
3 n3 + 83

6 n2 + 17
3 n + 1 60 11

1
(
n
0

)
+ 44

(
n
1

)
+ 240

(
n
2

)
+ 392

(
n
3

)
+ 196

(
n
4

)
49
6 196

5.3 (3,3,2,2,2)

v

v

v

vv

Z
Z

B
BB �

��
�
�
�
� 8n4 + 16n3 + 14n2 + 6n + 1 10 12

1
(n
0

)
+ 44

(n
1

)
+ 236

(n
2

)
+ 384

(n
3

)
+ 192

(n
4

)
8 192
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5.4 (4,4,2,2,2)

v

v

v

vv

Z
Z

B
BB �

��
�
�
�
�

�
�

��
15
2 n4 + 15n3 + 27

2 n2 + 6n + 1 10 20

1
(n
0

)
+ 42

(n
1

)
+ 222

(n
2

)
+ 360

(n
3

)
+ 180

(n
4

)
15
2 180

5.5 (4,3,3,2,2)

v

v

v

vv

�
�Z

Z
B
BB �

��
�
�
�
�B
B
B
B

29
4 n4 + 29

2 n3 + 51
4 n2 + 11

2 n + 1 60 21

1
(n
0

)
+ 40

(n
1

)
+ 214

(n
2

)
+ 348

(n
3

)
+ 174

(n
4

)
29
4 174

5.6 (3,3,3,3,2)

v

v

v

vv

�
�Z

Z
B
BB �

��Z
Z

ZZ�
�
�
� 41

6 n4 + 41
3 n3 + 73

6 n2 + 16
3 n + 1 30 24

1
(n
0

)
+ 38

(n
1

)
+ 202

(n
2

)
+ 328

(n
3

)
+ 164

(n
4

)
41
6 164

5.7 (4,4,3,3,2)

v

v

v

vv

�
�Z

Z
B
BB �

��Z
Z

ZZ�
�
�
�B
B
B
B

19
3 n4 + 38

3 n3 + 35
3 n2 + 16

3 n + 1 30 40

1
(n
0

)
+ 36

(n
1

)
+ 188

(n
2

)
+ 304

(n
3

)
+ 152

(n
4

)
19
3 152

5.8 (4,3,3,3,3)

v

v

v

vv

�
�Z

Z
B
BB �

��
�
�
�
�B
B
B
B

6n4 + 12n3 + 11n2 + 5n + 1 15 45

1
(
n
0

)
+ 34

(
n
1

)
+ 178

(
n
2

)
+ 288

(
n
3

)
+ 144

(
n
4

)
6 144

5.9 (4,4,4,3,3)

v

v

v

vv

�
�Z

Z
B
BB �

��Z
Z

ZZ�
�
�
�B
B
B
B

11
2 n4 + 11n3 + 21

2 n2 + 5n + 1 10 75

1
(n
0

)
+ 32

(n
1

)
+ 164

(n
2

)
+ 264

(n
3

)
+ 132

(n
4

)
11
2 132

5.10 (4,4,4,4,4)

v

v

v

vv

�
�Z

Z
B
BB �

��Z
Z

ZZ�
�
�
�

�
�

��
B
B
B
B

5n4 + 10n3 + 10n2 + 5n + 1 1 125

1
(n
0

)
+ 30

(n
1

)
+ 150

(n
2

)
+ 240

(n
3

)
+ 120

(n
4

)
5 120

With 6 vertices, ordered according to the number of edges:
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6.1 (2,2,2,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

88

5
n5 + 44 n4 + 46 n3 + 25 n2 + 37

5
n + 1 60 6

1
(
n

0

)
+ 140

(
n

1

)
+ 1470

(
n

2

)
+ 4500

(
n

3

)
+ 5280

(
n

4

)
+ 2112

(
n

5

)
88

5
2112

7.1 (3,3,2,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

72

5
n5 + 36 n4 + 118

3
n3 + 23 n2 + 109

15
n + 1 180 15

1
(
n

0

)
+ 120

(
n

1

)
+ 1218

(
n

2

)
+ 3692

(
n

3

)
+ 4320

(
n

4

)
+ 1728

(
n

5

)
72

5
1728

7.2 (3,3,2,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

"
"

"

439

30
n5 + 439

12
n4 + 118

3
n3 + 269

12
n2 + 211

30
n + 1 360 14

1
(
n

0

)
+ 120

(
n

1

)
+ 1232

(
n

2

)
+ 3748

(
n

3

)
+ 4390

(
n

4

)
+ 1756

(
n

5

)
439

30
1756

7.3 (3,3,2,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

b
b

b
419

30
n5 + 419

12
n4 + 38 n3 + 265

12
n2 + 211

30
n + 1 180 16

1
(
n

0

)
+ 116

(
n

1

)
+ 1180

(
n

2

)
+ 3580

(
n

3

)
+ 4190

(
n

4

)
+ 1676

(
n

5

)
419

30
1676

8.1 (4,4,2,2,2,2)

v

v

v v

v

v
T
T

T
T

"
"

""
"

"
64

5
n5 + 32 n4 + 112

3
n3 + 24 n2 + 118

15
n + 1 15 32

1
(
n

0

)
+ 114

(
n

1

)
+ 1104

(
n

2

)
+ 3296

(
n

3

)
+ 3840

(
n

4

)
+ 1536

(
n

5

)
64

5
1536

8.2 (4,4,2,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�
��

"
"

"

194

15
n5 + 97

3
n4 + 36 n3 + 65

3
n2 + 106

15
n + 1 180 28

1
(
n

0

)
+ 110

(
n

1

)
+ 1100

(
n

2

)
+ 3320

(
n

3

)
+ 3880

(
n

4

)
+ 1552

(
n

5

)
194

15
1552

8.3 (4,3,3,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

"
"

"

37

3
n5 + 185

6
n4 + 104

3
n3 + 127

6
n2 + 7 n + 1 360 32

1
(
n

0

)
+ 106

(
n

1

)
+ 1052

(
n

2

)
+ 3168

(
n

3

)
+ 3700

(
n

4

)
+ 1480

(
n

5

)
37

3
1480

8.4 (4,3,3,2,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

127

10
n5 + 127

4
n4 + 106

3
n3 + 85

4
n2 + 209

30
n + 1 720 29

1
(
n

0

)
+ 108

(
n

1

)
+ 1080

(
n

2

)
+ 3260

(
n

3

)
+ 3810

(
n

4

)
+ 1524

(
n

5

)
127

10
1524
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8.5 (4,3,3,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

"
"

"

188

15
n5 + 94

3
n4 + 104

3
n3 + 62

3
n2 + 34

5
n + 1 360 30

1
(
n

0

)
+ 106

(
n

1

)
+ 1064

(
n

2

)
+ 3216

(
n

3

)
+ 3760

(
n

4

)
+ 1504

(
n

5

)
188

15
1504

8.6 (3,3,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

188

15
n5 + 94

3
n4 + 104

3
n3 + 62

3
n2 + 34

5
n + 1 180 30

1
(
n

0

)
+ 106

(
n

1

)
+ 1064

(
n

2

)
+ 3216

(
n

3

)
+ 3760

(
n

4

)
+ 1504

(
n

5

)
188

15
1504

8.7 (3,3,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

"
"

"b
b

b

361

30
n5 + 361

12
n4 + 100

3
n3 + 239

12
n2 + 199

30
n + 1 180 32

1
(
n

0

)
+ 102

(
n

1

)
+ 1022

(
n

2

)
+ 3088

(
n

3

)
+ 3610

(
n

4

)
+ 1444

(
n

5

)
361

30
1444

8.8 (3,3,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��T

T
TT

176

15
n5 + 88

3
n4 + 100

3
n3 + 62

3
n2 + 104

15
n + 1 90 36

1
(
n

0

)
+ 102

(
n

1

)
+ 1004

(
n

2

)
+ 3016

(
n

3

)
+ 3520

(
n

4

)
+ 1408

(
n

5

)
176

15
1408

8.9 (3,3,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

b
b

b

117

10
n5 + 117

4
n4 + 98

3
n3 + 79

4
n2 + 199

30
n + 1 360 35

1
(
n

0

)
+ 100

(
n

1

)
+ 996

(
n

2

)
+ 3004

(
n

3

)
+ 3510

(
n

4

)
+ 1404

(
n

5

)
117

10
1404

9.1 (5,5,2,2,2,2)

v

v

v v

v

v

�
�

T
T �

�
"

"
"

b
b

b

T
T
TT

62

5
n5 + 31 n4 + 110

3
n3 + 24 n2 + 119

15
n + 1 15 48

1
(
n

0

)
+ 112

(
n

1

)
+ 1074

(
n

2

)
+ 3196

(
n

3

)
+ 3720

(
n

4

)
+ 1488

(
n

5

)
62

5
1488

9.2 (5,4,3,2,2,2)

v

v

v v

v

v
T
T

T
T

�
�

�
�
��

"
"

"

b
b

b
349

30
n5 + 349

12
n4 + 100

3
n3 + 251

12
n2 + 211

30
n + 1 360 52

1
(
n

0

)
+ 102

(
n

1

)
+ 998

(
n

2

)
+ 2992

(
n

3

)
+ 3490

(
n

4

)
+ 1396

(
n

5

)
349

30
1396

9.3 (5,3,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

"
"

"

b
b

b
169

15
n5 + 169

6
n4 + 32 n3 + 119

6
n2 + 101

15
n + 1 360 55

1
(
n

0

)
+ 98

(
n

1

)
+ 964

(
n

2

)
+ 2896

(
n

3

)
+ 3380

(
n

4

)
+ 1352

(
n

5

)
169

15
1352
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9.4 (4,4,4,2,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

"
"

"

b
b

b
113

10
n5 + 113

4
n4 + 32 n3 + 79

4
n2 + 67

10
n + 1 120 54

1
(
n

0

)
+ 98

(
n

1

)
+ 966

(
n

2

)
+ 2904

(
n

3

)
+ 3390

(
n

4

)
+ 1356

(
n

5

)
113

10
1356

9.5 (4,4,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

"
"

"
11 n5 + 55

2
n4 + 94

3
n3 + 39

2
n2 + 20

3
n + 1 180 56

1
(
n

0

)
+ 96

(
n

1

)
+ 942

(
n

2

)
+ 2828

(
n

3

)
+ 3300

(
n

4

)
+ 1320

(
n

5

)
11 1320

9.6 (4,4,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

169

15
n5 + 169

6
n4 + 32 n3 + 119

6
n2 + 101

15
n + 1 360 55

1
(
n

0

)
+ 98

(
n

1

)
+ 964

(
n

2

)
+ 2896

(
n

3

)
+ 3380

(
n

4

)
+ 1352

(
n

5

)
169

15
1352

9.7 (4,4,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��T

T
TT

163

15
n5 + 163

6
n4 + 94

3
n3 + 119

6
n2 + 34

5
n + 1 180 60

1
(
n

0

)
+ 96

(
n

1

)
+ 934

(
n

2

)
+ 2796

(
n

3

)
+ 3260

(
n

4

)
+ 1304

(
n

5

)
163

15
1304

9.8 (4,4,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

b
b

b
161

15
n5 + 161

6
n4 + 94

3
n3 + 121

6
n2 + 104

15
n + 1 90 64

1
(
n

0

)
+ 96

(
n

1

)
+ 926

(
n

2

)
+ 2764

(
n

3

)
+ 3220

(
n

4

)
+ 1288

(
n

5

)
161

15
1288

9.9 (4,4,3,3,2,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

"
"

"
T
T
TT

161

15
n5 + 161

6
n4 + 92

3
n3 + 115

6
n2 + 33

5
n + 1 720 61

1
(
n

0

)
+ 94

(
n

1

)
+ 920

(
n

2

)
+ 2760

(
n

3

)
+ 3220

(
n

4

)
+ 1288

(
n

5

)
161

15
1288

9.10 (4,3,3,3,3,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

�
�
��

"
"

"
T
T
TT

51

5
n5 + 51

2
n4 + 88

3
n3 + 37

2
n2 + 97

15
n + 1 360 69

1
(
n

0

)
+ 90

(
n

1

)
+ 876

(
n

2

)
+ 2624

(
n

3

)
+ 3060

(
n

4

)
+ 1224

(
n

5

)
51

5
1224

9.11 (4,3,3,3,3,2)

v

v

v v

v

v

�
�

T
T

T
T

�
�

"
"

"b
b

b

103

10
n5 + 103

4
n4 + 88

3
n3 + 73

4
n2 + 191

30
n + 1 360 66

1
(
n

0

)
+ 90

(
n

1

)
+ 882

(
n

2

)
+ 2648

(
n

3

)
+ 3090

(
n

4

)
+ 1236

(
n

5

)
103

10
1236
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9.12 (4,3,3,3,3,2)

v

v

v v

v

v

�
�

T
T

T
T

�
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