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ON GENERATING SERIES OF COLOURED PLANAR TREES
ROLAND BACHER AND GILLES SCHAEFFER

ABSTRACT. We generalize and reprove an identity of Parker and Loday. It
states that certain pairs of generating series associated to coloured plane
rooted trees are mutually reciprocal series.

1. INTRODUCTION

In [1] Carlitz, Scoville and Vaughan consider finite words over a finite al-
phabet A such that all pairs of consecutive letters belong to a fixed subset
L C Ax A. They show (Theorems 6.8 and 7.3 of [1]) that suitably defined
pairs of signed generating series counting such words associated to £L C A x A
and to its complementary set £ = A x A\ L are inverses of each other. Their
result was generalized in the first part of Parker’s thesis [5] who showed an
analogous result for suitable classes of finite trees having coloured vertices.
Loday in [3], motivated by questions concerning combinatorial realizations of
operads, rediscovered Parker’s result and gave a new proof based on homolog-
ical arguments.

This paper presents a combinatorial interpretation and a further generaliza-
tion of Parker’s and Loday’s result.

A typical example of our identity can be described as follows: associate to
two complex matrices

Mlz(CCL Z) and MQZ(i ?)

formal power series Gy, Go, G, Go of the form X2+. .. defined by the algebraic
systems of equations

G1 = (X + (lGl + bGQ)(X + Cl{Gl + ﬁGz)
Gg = (X + CG1 + dGz)(X + ’)/Gl + 5G2)

and
{ Gi = (X +(1+a)Gi+ (140G (X + (1+a)G1+ (14 )Ga)
Go = (X4+(14+0)G+(1+d)G)( X+ (1+79)G+(146)G3)
Our main result states then that the formal power series ¢ = X —G; — G5 and

=X+ G1+ Gy satisfy the identity ¢ o1 = X. They define thus reciprocal
branches of holomorphic algebraic functions in a neighbourhood of the origin.
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A tedious proof of this result can be given by computing a minimal poly-
nomial P(p, X) = >3, i pij¢'X? = 0 for ¢ and by checking that we have
P(X, ) =32, i pij X"/ = 0. Since this identity is algebraic, the field of com-
plex numbers can be replaced by an arbitrary commutative ring. Our proof
is instead based on a simple combinatorial argument showing that the series
G=G+Gyand G =Gy + Gy satisfy the relation G=Go (X + @)

The sequel of this paper is organized as follows: the next section states
the main result in purely algebraic terms over a not necessarily commutative
ring. Parker’s and Loday’s result is the special case of weight-matrices with
coefficients in {0, —1} and of colours having a common degree k (corresponding
to k—regular trees). Parker’s thesis contains also a generalization to colours
of different degrees (corresponding to trees which are no longer necessarily
regular). Our main result removes the restriction on the coefficients. It is also
more elementary (at least in a commutative setting) since the statement avoids
combinatorial descriptions (although they are crucial to our proof).

It follows from our formulation that all involved generating functions are
algebraic in a commutative setting and over a finite alphabet. Section 3 fixes
notations concerning trees and proves the main result. The proof avoids homo-
logical arguments and is thus more elementary than the proof of [3]. Section 4
contains a combinatorial proof of a related identity. As an application of our
main result (Corollary 2.4), we describe formulas for the reversion (or inversion
under composition) of formal power series in Section 5. Section 6 describes
briefly a further generalization involving several variables associated to trees
having vertices of different types. Section 7 contains the computations for ex-
ample (i) of [3], using notations close to the notations of [3]. We display the
defining polynomial of the relevant (algebraic) generating function and discuss
briefly its asymptotics.

2. MAIN RESULT

In the sequel, K denotes a fixed, not necessarily commutative ring. All
variables, formal power series, etc., are also non-commutative. This condition
can be weakened, especially over a commutative ring K where one can also
work in a totally commutative setting.

Consider a (not necessarily finite) set .4, called the alphabet, together with
a degree function d : A — N. We denote by Y4 a set of (non-commutative)
variables indexed by elements o € A and by X a supplementary (non-commu-
tative) variable. We denote by K[[X, Y4]] the obvious ring of non-commutative
formal power series. An element of K[[X,Y4]] is a (generally infinite) sum of
monomials of the form

r1Z1re s - T4

with 7, € K and Z; € Y, U {X}.
Consider also a sequence

w(l),w(2),--- c KA
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of weight-matrices with coefficients w(k), s € K indexed by (o, 3) € A x A.
These data define recursively a set {Galaca C K[[X,Y4]] of formal power
series indexed by A such that

Go =Y, (X +) w(l)a,gGﬂ) (X +y° w(z)aﬂgﬁ> .

BeA BeEA
o (XD wld(0)asGr)
BeA
for all o € A.

Remark 2.1. A coefficient w(k), s with & > d(«) of the k-th weight-matrix
w(k) is never used and can thus be left unspecified.

Remark 2.2. The formal power series G, are well-defined: if d(a) = 0 we
get G, = Y, and there is nothing to do. For d(a) > 0, we consider all
variables X, Y, graded of degree 1. The series G, can now be computed by
“bootstrapping”: set G = Y, as an approximation which is correct up to
degree 1. An approximation {G*},c4 correct up to degree k for all a € A
produces now an approximation

G<’;+1 =Y., <X + Z w(l)aﬁGg> e (X + Z w(d(&))aﬁGE>
peA BeA
which is exact at least up to degree k + 1.

Similarly, we consider also the set {Gg}aca C K[[X,Y4]] of formal power
series defined by

G, = Y, (X +y @+ w(1)aﬁ)ég> <X +y (1 w(z)aﬁ)@ﬁ> .

BeA BeA
. (X +3 1+ w(d(a))a,g)c;ﬁ) .
BeA
Setting G = > . 4G and G = Y e G, our main result is as follows.

Theorem 2.3. We have

where oy indicates composition of formal power series with respect to X (every
occurrence of X in G is replaced by the formal power series X + G ).

Corollary 2.4. We have
(X - ox (X +G) =X .

Proof. Rewrite the identity of Theorem 2.3 as G — G ox (X +G)+ X = X in
order to get

~

G—Gox X+ +X=X+G)-Gox (X+G)=(X-Q)ox (X+G).
O
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Remark 2.5. (i) Theorem 2.3 and Corollary 2.4 continue to hold for commuta-
tive variables Y. However, the variable X cannot commute with non-central
elements of K.

(i) All specializations (say to elements of K) of variables Y,, with a € A of
degree d(a) > 2 are possible in a setting of formal power series. Specializations
of Y, for a of degree d(a) = 0 or 1 lead easily to difficulties and convergence
problems.

(iii) The main result of [1] corresponds to d~'(1) = A. In this case,
Corollary 2.4 boils down to a simple product in K since X — G and X + G are
of the form ¢X, 1 X with ¢ € K[[Y,]] invertible.

(iv) A straightforward generalization involving variables Xy associated
to vertez-types will be presented in Section 6.

Remark 2.6. One can also consider the following slightly more general version:
let (Aa)aca be an additional vector associating a weight A, € K to each colour
a € A. Theorem 2.3 and Corollary 2.4 (which correspond to the case A\, = 1
for all o € A) remain valid with G =)~ __ 4, A\oGo and G = Y e AoGa. The
case where there exists a vector (i )aca such that p,A, =1 for all @ € A can
be reduced to the case treated in this paper by considering variables Y, = A\, Y,
and weight-matrices with coefficients W (k)a,5 = w(k)a glts-

Remark 2.7. Loday and Parker use slightly different notations. Loday’s result
in the case where all elements of A have degree 2 corresponds to Y, = —1 for
all € A, t = —X with

Jo = —Go = (—t + Z La,ﬁQﬂ) (-t + Z Ra,ﬁQﬁ)

BeA BEA

where the matrices L = —w(1), R = —w(2) are in {0, 1}}(V>*¥A By Corol-
lary 2.4, the reciprocal series of —t + 3" _ 4 go is then given by —(X + G) =
—X 4+ > e Ja Where

ga = _éa = (X - Z(l - La,ﬁ>ga> (X - Z(l - Ra,ﬁ)ﬁa)

BeA pea
- <_X +y - La,ﬁ)ga> (—X +) (11— Ra,g)§a> :
BeA peA
3. TREES

A rooted tree T is either given by the empty set {} representing the trivial
rooted tree reduced to its root or is recursively defined by a non-empty set

T = {TS}SGS

where T} are rooted trees attached to the sons (also called children or direct
descendants) S of the root vertex. Such a tree T' can be identified with a di-
rected graph I'(T") having a distinguished vertex r, called the root, by joining
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the root vertex r to its sons using a directed edge originating in r and termi-
nating at the root r, of the rooted graph I'(T}) issued from its son indexed by
s € 8. In the sequel, we often identify a vertex v of T' (or, more precisely, of
['(T')) with the tree T, rooted in v which consists of v and all its descendants.
A rooted tree T is finite if I'(T') is a finite graph and locally finite if every
vertex has only a finite number of sons.

A plane rooted tree is recursively defined by a finite or (enumerably) infinite
sequence

T: (Tl,TQ,...)

of plane rooted trees 11,715, .... A plane rooted tree is thus a rooted tree such
that every vertex has a finite or enumerable number of completely ordered
sons. The empty sequence () represents the trivial plane rooted tree.

In the sequel, a tree denotes always a finite plane rooted tree.

3.1. Coloured trees. Consider an alphabet A together with a degree function
d: A — N inducing a partition

A= [j Ay
k=0

defined by Ay = d~*(k).

An A-coloured tree or coloured tree is either given by the empty sequence
() or is recursively defined as (o; 11, ..., Tq@)) where a € A of degree d(«) is
the colour of the root r and where the coloured trees T1, ..., Ty) are attached
to the d(a) sons of r. We call the coloured tree () represented by the empty
sequence trivial. A coloured tree (a) reduced to a root with a colour o € Ay
of degree 0 is not considered as trivial. Every leaf (vertex without sons) of a
rooted tree is thus either trivial (the subtree issued from the leaf is the trivial
tree reduced to its uncoloured root) or coloured by an element in d~*(0) C A
of degree 0. A leaf coloured by o € Ay = d~1(0) C A is an ordinary leaf.

FIGURE 1. A coloured tree

Figure 1 shows the coloured tree

(8; (Q; 0, (P3(2)), (P (B (), (), (p))), ()
having three trivial leaves and three ordinary leaves (coloured p,q and r).
It has colours in A = {p,q,r, P,Q, R} of degree d(p) = d(q) = d(r) = 0,
d(P)=1, d(Q) =2, d(R) = 3.
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Let w(1),w(2), - - - € K**4 be a sequence of weight-matrices as in Section 2.
The energy e(T') € K[X,Y4] of a coloured tree T is the monomial defined by
e(T) = X if T is trivial and is recursively by

6(T) - Yael,Oz(Tl)eQ,a(TQ) T 6d(oz),oz(iz—jd(a))
for a non-trivial tree T = (a; 11, ..., Ty)), where ey o(Tx) = e(T}) = X if Tj,
is trivial and where ey o = w(k)a,g,e(Tk) if the tree Ty = (Br; T, - - - Thoaesy))
(attached to the k-th son of the root in T') is non-trivial and has root colour
D

Remark 3.1. (i) Coefficients w(k), s with & > d(a) are never used (cf. Re-
mark 2.1).

(ii) Coloured trees as appearing in this paper do in general not correspond
to graph-theoretic colourings of the underlying trees: adjacent vertices of a
coloured tree can share a common colour. This can of course be avoided:
weight-matrices such that w(k)a,. = 0 for all £ € N and for all a € A give the
energy 0 to all trees with improper colourings in a graph-theoretic sense.

The energy e(T') of the coloured tree T represented in Figure 1 is given by

YR w(1)R7QYQXU}(2)Q7PYPUJ(1)RQYQ
w(Q)R,prw(1)p7RYRXw(2)R’TK«w(3)R,pY;D X .

The generating function (or partition function) Ger for the set CT of
coloured trees is now defined as

Ger = Y e(T) € K[[X,Ya]] .
TeCT
Denoting by
CTo={(o;Th, ..., Ty)|Th, -, Ta) €CT} CCT

the subset of all non-trivial coloured trees with root colour «, we introduce
also restricted generating functions

Go= Y_ e).
TECT o
The partition

cT ={0y J 7
acA
shows the identity

Ger =X+ Gq.
acA
Proposition 3.2. We have

Go = VX + 3 w()asGs) (X + 3 w(2)asGs) -+
BeA BeA

- (X +3 w(d(a))a,ﬂ%) .
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Proof. The proof is by induction on the total degree of the variables Y. The
formula yields the correct value G, =Y, for a € A of degree d(a) = 0. We
suppose thus Proposition 3.2 correct up to degree n in Y4.

The contribution e(T) to G, of a coloured tree (a;T4,...,Tya) € CT4
containing n + 1 coloured vertices factorizes uniquely as

6(0&; T17 cee 7Td(a)) =Y.61--- éd(a)

where the contribution éj, associated to the k-th son T}, of the root, is given
by X if T, = () is trivial and by w(k)ag.e(Tk) if T = (Br; Tha, - - - Thoaesy)) €
C7T g, is non-trivial with root colour ;. The total degree of the product
€1 €q(a) in Yy is exactly n and each such product of total degree n in Y4
consisting of d(«) monomials with the k-th factor in X + > 5, w(k)asGs
corresponds bijectively to a unique tree in C7 ,, and contributes a monomial of
degree n + 1 in Y4 to G,. This proves the result. O

3.2. Composed coloured trees and proofs. A composed coloured tree is
a pair (T, M) where T is a coloured tree, and M C & a subset of marked
edges containing all edges with endpoint a trivial leaf of T. The set CC7 of
composed coloured trees contains the trivial tree () = ((),0). Every other
element (T, M) € CCT can be written uniquely as (A; By, ..., B,) where A €
C7T is a non-trivial coloured tree having a trivial leaves and where By, ..., B,
are (perhaps trivial) composed coloured trees with the root of By glued to the
k-th trivial leaf of A. The set M of marked edges is the union of all marked
edges in By, ..., B,, together with all a edges of A ending at a trivial leaf of
A.

FIGURE 2. A composed coloured tree

Figure 2 shows the composed coloured tree with colours {p, ¢, r, P, @, R} and
6 marked edges represented by dotted segments which is recursively encoded

by
((Bs (@50.(P50)). 0,0): 0 (@), (P 0% ((B: 0, (0, ®)): ) 0)

We define the energy e(7T') of a composed coloured tree by e(T) = X if T is
trivial and recursively by

e(A;By,...,B,) = e(A) ox (e(By),...,e(By))



8 ROLAND BACHER AD GILLES SCHAEFFER

otherwise, where the composition ox with respect to X indicates that the k-th
occurrence of X in the monomial e(A) (encoding the energy of the ordinary,
non-composed coloured tree A) has to be replaced by the energy e(By) of the
composed coloured tree B, attached to the k-th trivial leaf of A.

The energy e(T") of the composed coloured tree T represented in Figure 2 is
given by

YR w(l)R,QYQXU)(Q)Q7pYPYZI YPYRXU)(Q)RWK’IU(B)R’Z,Y;, X

and can also be obtained by removing all factors corresponding to marked
edges from the energy of the associated non-composed coloured tree depicted
in Figure 1.

Denoting by G, = > recer, ¢(T) the partition function associated to the

set CCT ,, of all composed coloured trees with a root of colour «;, we have the
following result involving the partition function

GCCTIX—FZGQI Z G(T)

acA TecCT
of the set CCT containing all composed coloured trees.
Proposition 3.3. We have
Ga = Ga Ox GCCT

where the composition ox indicales that every occurrence of X in G, has to
be replaced by the generating series Geer associated to all composed coloured
trees.

Proof. This reflects simply the recursive definition of the energy of a non-trivial
composed coloured tree T'= (A; By, ..., B,) € CCT ., with root colour o. [

The following result, analogous to Proposition 3.2, characterizes the formal
power series Go = Y pecer. €(T) recursively.

Proposition 3.4. We have

éa = Ya (éccq’ + Z w(l)aﬁé’ﬁ> . (éCCT + Z w(d(a))a’ﬁ@ﬁ)

BEA BEA

where Geer = X + Y oA G,

Proof. The energy e(T') of a composed coloured tree (T, M) with
T=(a;Th,...,Tya)) €CT,

a coloured tree and M a suitable subset of marked edges in T, is recursively
given by

Yow(Dape(Tr, Mi) - 0(d(@))apy) €(Taa), M)
where w(k)qg, = 1 if the edge relating the root of T" to its k-th son is marked

(and [ may be undefined in this case) and where wW(k),,5, = w(k)q,g, other-
wise with [, denoting the colour of the k-th son of the root. In the marked
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case, €(Ty, Mj) can be an arbitrary monomial of Geer. In the case of an
ordinary edge ending at a son of colour f, the energy e(7}, Mj) can be an
arbitrary monomial of Gg,. Summing over all possibilities, we get

~

Go =Y Ei ..., Eyq)
where Ek = GCCT + ZﬁEA w(k:)aﬁ@ﬁ. Ul

Proof of Theorem 2.3. Proposition 3.2 shows that the formal power series G,
appearing in Theorem 2.3 coincide with the generating series » ;.7 e(T)
(denoted by the same letter G,) associated to C7 .

The identity GCCT =X —i—zae A @a and Proposition 3.4 show that the formal

power series (G, involved in Theorem 2.3 coincide with the generating series
> recer, €(T) associated to CCT .
Summing the equality of Proposition 3.3 over a € A ends the proof. O

4. A COMBINATORIAL PROOF OF Gy = G ox (X — Y5, Gp)

The equality Gy = G ox (X + 2 sea ég) of Proposition 3.3 has a “dual”
formulation as follows.

Proposition 4.1. We have
Ga :GQOX (X—ZGQ) .

This section is devoted to a direct combinatorial proof of this proposition.
Summing the identity of Proposition 4.1 over o € A yields

G=Gox (X -0Q)

which is the “dual” statement of Theorem 2.3. This identity is of course
equivalent to Theorem 2.3 or to Corollary 2.4.

Proof of Proposition 4.1. Let M be the set of marked edges of a non-trivial
composed coloured tree (7, M). A marked edge is trivial if it contains a
trivial (uncoloured) leaf. We denote by M* C M the set of all trivial edges
and by M° = M\ M" the complementary set of ordinary marked edges in
M. The skeleton SK(T, M) of a non-trivial composed coloured tree (T, M)
is the plane rooted tree with uncoloured vertices obtained by forgetting all
colours and contracting all unmarked edges and all trivial marked edges in
(T, M). Edges of SKC(T', M) are thus in bijection with ordinary marked edges
of (T, M) and vertices of SK(T, M) correspond to (non-composed) coloured
trees involved in the recursive definition of (7, M) = (A4; By, ..., Baw)). The
(non-composed) coloured tree A corresponds thus to the root 7 of the skeleton
SK(T, M). Sons of 7 correspond to the ordinary coloured trees involved in
the subset {B;,,...,B;,} C {Bi,..., By} of all composed coloured trees in
{Bi, ..., Ba)} which are non-trivial, etc.



10 ROLAND BACHER AD GILLES SCHAEFFER
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FIGURE 3. A skeleton of a composed coloured tree

Figure 3 depicts the skeleton of the composed coloured tree represented in
Figure 2. Its four vertices (labelled 1, ..., 4 for the convenience of the reader)
correspond to the following four coloured trees:

(R; (Q;0,(P;0)),0,0) for the root vertex 1

(q) for vertex 2
(P;0) for vertex 3
(R; (), (), (p)) for vertex 4

An edge E of the skeleton SKC(T', M) is trivial if E contains a leaf. We
denote by TESK(T, M) the set of all trivial edges in the skeleton SKC(T', M) of
a non-trivial composed coloured tree (T, M). A signed composed coloured tree
is a non-trivial composed coloured tree (7', M) together with a sign-function
s: TESK(T,M) — {£1}. The set TESK of trivial edges in the skeleton
depicted in Figure 3 for example consists of the two edges {1,2} and {3,4}.

We define the energy of a signed composed coloured tree (T, M, s) as

e(T M, s)=eT . M) J[ sE)

E€TESK(T,M)

with e(7T, M) denoting the energy of the composed coloured tree (7', M) ob-
tained by forgetting the sign-function s. The definition of e(7, M, s) implies
that the 287ESK(TM) energies (corresponding to all possibilities for the sign
function s) coming from a fixed composed coloured tree (7, M) cancel pairwise
out and sum thus up to 0 if §(7ESK(T, M)) > 0. If §(TESK(T, M)) = 0, the
underlying composed coloured tree is of the form (T, M) = (4;(),(),..-,())
and corresponds to a non-composed coloured tree since all its marked edges
are trivial. There is thus only one possibility for the sign function (defined on
the empty set) giving rise to a signed energy corresponding to the energy e(A)
of the coloured tree A. Denoting by SCCT, the set of all signed composed
coloured trees with root colour a we have thus

Yo T M s)= > e(T) =G .
(T, M,s)ESCCT o TeCT o

On the other hand, the definition of the energy e(7T, M, s) of a signed com-
posed coloured tree shows easily that we have
Y T, M, s) =Gaox (X =) Gy).
(T, M,5)€SCCT o BeA

This completes the proof of Proposition 4.1. [l
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5. INVERSION OF POWER SERIES

We work in this section over a commutative ring K and set Y, = 1 for all
ae A

For a natural integer [ > 1, we consider the alphabet
A={1,...,1} x{2,3,4,...} CN?

with degree function d(i,j) = j > 2 and weight-matrices w(k) having coeffi-
clents

alk); ifi=1,
w(k)a,j),(i',j'):{o ’

where a(k); € K are arbitrary. This choice of weight-matrices leads to re-

otherwise,

stricted partition functions G(;;(X) and CAT’(M-)(X ) which are independent
of 4. Thus the formal power series G.(X) = > 7=, G(; ;(X) and G.(X) =
> e G(i,j) (X) are well-defined and given by the equations

G.(X) = YT (X + alk),G.(x))

G.(x) =3 1] (X +(1+ oz(k;)j)é*(X)> .

Corollary 2.4 shows that we have formally
(X —IG(X)) o (X +1G(X)) = (X +1G(X)) o (X —IG.(X)) = X .

Comparing coefficients of X* yields algebraic identities and the above identity
holds thus for all | € K. This gives recipes (other than the celebrated Lagrange
inversion formula) for computing the reciprocal or reverse series of power series
having the form X +1X?%+... with [ # 0. For an arbitrary formal power series
y(z) = ax + B2? + ... (with o € K invertible), one can use a homographic
transformation and set

Y(:B)Z?J( “ xa2 >=$—1x2+...

2
ﬁ‘i‘l@ I—i‘m

for I # 0 such that 8 + la® # 0. The reciprocal formal power series (or
compositional inverse) g of y is then given by

~

Q Y

2 9 a?
0+ la Y‘f“m

Y=

where Y is the reciprocal formal power series of Y =z — l2? + .. ..

Remark 5.1. The method outlined above is especially interesting for reversing
formal power series of the form X — IG(X) with G(X) € X?K][[X]] a formal
power series having a double root at the origin and [ a parameter.
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Remark 5.2. One could of course also work with slightly more general weight-
matrices defined by
alk); ifi=17,
w(k) i) .5 = ’ :
B(k); otherwise,
where a(k);, 3(k); € K. The restricted partition functions G(;;(X) and

@(i,j) (X) are again independent of i and the associated formal power series
Go(X) =22, Gy (X) and Go(X) = 372, G,y (X) are defined by

G.(X) = Z [T (X + (alk); + (1 = 1)B(K);)G-(X))

G.(X) = ST (X + (+alh); + (1= 1)BH),;)GL(X)) -

=2 k=1

<

The evaluations &(k); = a(k); + (I — 1)5(k); transform these equations into
the former equations.

5.1. A few examples. Setting o(k); = 1forallj > 2andforallk, 1 <k < j,
we get the equation
a (X +G.)?
1 (X +G)
with solution
1-32x—+v1—6x+2?
B 4

The formal power series Y = X — [G, satisfies thus the algebraic equation
P(X,Y) =0 where

PX,)Y)=(X-Y)(I-(1+DX+Y)—(1+DX -Y)* .

Similarly, Y = X 4G, (where G, = %) satisfies P(Y, X) = 0. The

G, =22+ 323 + 1124 +452° + 19725 + ... .

specialization [ = —1 leads to
1+ X —vV1-6X+ X2
y = & - LSS S ' IS SR TD

(cf. Sequence A1003 in [2]) and
2

~

YV =X-— =X-X-X'-X'— ...
1-X
The choice a(k); = 1 if k =1 and a(k); = 0 otherwise leads to G, = 1522)(
with V = X — G, = X 582X vo0t of (X —YV)(1 - X) — (I +1)X - Y)X.

The specialization [ = —1 yields Y = X + X2 4+2X3 +4X* +8X°+ 16X +. ..
with reciprocal series

o 142X —V/1+4X2
Y = + 5 + = X—X?2+X*—2X04+5X8 —14Xx0 440X .

closely related to Catalan numbers (cf. A108 in [2]).
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Similarly, a(k); = 1 for £ <2 and 0 otherwise leads to
(X +G.)?  1-3X—T—6X +5X

1-X 2
= X?2+4+3X%4+10X*+36X5+ 137X6 +543X7 + ...
(cf. A2212 of [2]) with Y = X — IG, root of
(1-X)(X-Y)—(I+1)X —Y)?.

More generally, considering a periodic sequence a(1);,7 = 2,3,... and set-
ting either a(k); = 0 for k > 2 or a(k); = a(1); yields a formal power series
G, which is algebraic.

G.

6. A GENERALIZATION INVOLVING DIFFERENT VERTEX-TYPES

Consider a set V7 of vertez-types and an alphabet A (with a degree function
d: A — N as in Section 2) together with an application vt : A — VT
associating to each element of A its vertex-type.

A coloured tree with vertex-types in V7 is a coloured tree T together with
an application t : TL(T) — VT from the set TL(T) of its trivial leaves
into V7. We can thus associate a vertex-type 7(v) € V7T to every vertex v
of such a tree: if v is a trivial leaf, we set 7(v) = t(v). If v is an ordinary
leaf of colour o € A, we set 7(v) = vt(a). For the sake of simplicity, we will
henceforth identify the functions ¢,vt and 7 with 7. (This identification is
slightly abusive: the three functions are defined on different sets.)

We denote by Xy7 a set of variables indexed by V7 and define the energy
e(T) of a coloured tree T with vertex-types in VT as X, if T is a trivial tree
reduced to its root r (which is a trivial leaf) of vertex-type 7(r) and as the
usual, recursively defined, product otherwise.

FIGURE 4. A coloured tree with vertex types

The energy of the tree represented in Figure 4 (with vertex types {1,2}) for
example is given by

YAw(1)A,BYBX2U)(3)A,DYDX1w<2)D,CYC .

Composed coloured trees with vertex types are defined in the obvious way.
Their energy is again the energy of the associated ordinary coloured tree, after
removing the contribution of all marked edges.

We denote by C7 , the set of all non-trivial coloured trees with a root r of
vertex-type 7 = 7(r) (and having thus its colour in the subset vt~1(7) C A).
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The set CCT ; is defined analogously. Its elements are all non-trivial composed
coloured trees with root type 7 and root colour in vt~!(7) C A.

Defining G = ;07 e(T) and G, = > recer. €(T) we have the following
result which is analogous to Theorem 2.3.

Theorem 6.1. We have
Gy =Grox,, (Xo+Go)oevr

where ox.,,, indicates that each occurrence of X, (with o € VT ) in G, has to
be replaced by the formal power series X, + G,.

It follows easily that the systems of formal power series
(XT - GT)TEVT and (XT + éT)TGVT

are reciprocal under composition with respect to the variables Xy7.
Denoting by G, the generating function of all non-trivial rooted trees with
vertex-type in V7 and a root of colour a € A and setting X = >+ X;
Proposition 3.2 is valid.
Similarly, Proposition 3.4 holds for the similarly defined power series Ga
involving composed coloured trees after setting Geer = Yorevr XrtD nea G

7. LODAY’S EXAMPLE (1)

This section contains a partial analysis of example (i) in [3] and was the
starting point of this paper. The framework is somewhat simpler than in the
previous sections: we work over the commutative ground field C of complex
numbers. We consider the alphabet

A={o,N,NW,W,5W,S,SE, E,NE}

of nine elements suggesting the graphical notation of [3]. All elements of
A are of degree 2 (and we are thus working with 2-regular trees). We set
X =—t, Y, =—1,Va € Ain order to stick to [3], c¢f. Remark 2.7. We consider
weight-matrices w(1), w(2) with coeflicients w(k)as = —Mi(e, 8),k = 1,2
where My, My are the two 9 x 9 matrices

100000O0O0O 01 11000O00O0
11100000 O0 0001O00O0O0O0O0
111100000 0000O0OO0OO0O®O0OO
101100000 01 0000O0O0O0
111110000 , 000O0O0OT1TO0®O0O0
1'1000O00O0O0O 001111000
111101000 000010111
1'1010000O0O0 0010O0O0O0CT1T1
111100000 0000O0OO0OO0OT1T1
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Setting g, = —G,, Proposition 3.2 corresponds to the equations
9o = (—t+go)(—t+gn+gnvw + 9gw)
gv = (=t+go+gn+gvw)(—t+ gw)
gvw = (=t go + gy + gyvw + gw)(—1)
gw = (=t+go+gnw + gw)(—t + gn)
gsw = (—t+go+9gn+9gnvw + 9w + gsw)(—t + gs)
gs = (—t+go+gn)(—t+ gvw + 9w + gsw + gs)
gsg = (—t+go+gn+9nvw + gw + gs)

(=t + gsw + gse + ge + gnE)

gg = (~t+go+gn+agw)(—t+gnw + g5+ gnE)
gve = (—t+go+9gn +9gvw +9w)(~t+ 95 + 9gnE) -

One sees easily that we have

9o = gN = gw -
Eliminating gy, g we get the simpler equations:
go = (=t +go)(—t+ 290 + gnw)
gNw t +3go + gnvw) (1)

= (_
gsw = (=t +3go + gnvw + gsw)(—t + gs)
gs = (=t+2g)(=t+go+ gnw + gs + gsw)
= (_
= (_

JE t+39.)(—t+gvw + 95+ 9NE)
INE t+39 + gvw)(—t+ 95 + gnE)
gse = (—t+39.+ gnw + 9s)(—t+ gsw + 9se + 9 + gnE)

where functions above a horizontal line are independent of functions below the
line.
Computations (done with Maple) using Grébner bases show that

y=—t+9go+gn+9gnw + 9w + gsw + gs + gse + ge + gnE

(corresponding to the power series X — G = X — > __, G, of Corollary 2.4)

satisfies the algebraic equation P(y(t),t) = 0 where

acA

Plyt)=co+cay+ey’+ey’+ey
with

co = t (288#31 — 100813 — 17696 t% + 35124 28 + 513042 t7
—352654 126 — 8834409 — 2315100 4 + 94293622 123
+92841847 2% — 608228325 t*! — 1031578684 ¢2°
+2072381165 t19 4 5859780674 18 — 1127775119 ¢17
—16287829166 !0 — 15833938922 15 + 9251292427 ¢4
+38652814035 13 + 44572754075 t'2 + 10866248029 ¢!
—40129564125 10 — 59007425756 t7 — 36829453004 ¢
—10216139916 t™ — 63849664 t° + 693364800 t> + 187804368 t*
+24111840 % + 1694752 ¢ + 63488 ¢ + 1024)
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g = —T768t3 + 148830 + 44636 t2° — 49538 28 — 1198111 %7
+359773 125 4- 19127286 t*° + 7602856 t>* — 192894854 3
—193322898 t22 + 1208988418 2! + 1968967542 ¢2°
—4212884427 t19 — 10893520130 t'® + 4099837581 ¢17
+31343794098 16 + 22508418249 15 — 27437733598 ¢14
—67449042813 t'3 — 62529644946 t'2 — 3629552721 ¢!
+84243589625 t1° + 130637976096 t2 + 104165077688 ¢
+50704667612 7 + 15902199040 t5 + 3290858704 t°
+451630576 t* + 40498432 3 + 2274080 % 4 72704 t 4 1024

¢y = t (68012 — 93212 — 3927027 + 33926126 + 1020385 {25
—335552 124 — 15580483 123 — 2999586 t22 4 151572589 2L
+104425399 120 — 945694543 119 — 1131146667 18
+3558106593 t17 + 6544185368 116 — 6226627151 {15
—20759382401 £14 — 4197042728 13 + 20133893401 #12
+33005986439 t11 + 5921959164 t10 — 22398414511 ¢°
—37477032816 18 — 356481928727 — 21631096056 ¢°
—8298733544 15 — 1992896768 t* — 295849440 t*
—26179392 2 — 1255424 ¢ — 24832)

cg = —t2 (t—2)(t+1)(2t*+6t>—11t>—30t —4)
(12431 — 39820 — 5146 ¢19 + 14694 18 + 92616 17 — 213234 ¢1¢
—966327 1% + 1518831 t'* + 6391763 t'* — 5003278 '
—26227554 t' + 1248286 t'° + 58532080 ¢ + 36103178 ¢°
—41699603 17 — 645441955 — 4181851915 — 21472740 t*
—8578026 t* — 1961960 ¢? — 218928 t — 9296)

and
g = (P—2t—-2)(* =2t —T)(t —2)*(t+1)?

(2t +613 —11¢* — 30t — 4)*°
(8t7—10¢° — 171¢° + 209 ¢* + 948 ¢3 — 721 1% — 1892¢ — 249).

The first coefficients of the series y(t) are
—t+9¢* —49¢° 4+ 284+ — 1735¢° + 10955 t° — 70695 ¢" + 463087 ¢

— 3066450 ¢ + 20471641 t'° — 137540539 t** + 928791019 "% F . ..
The reciprocal function

§ = —t 4+ 9t* — 113t3 + 1724¢* — 29309¢° + 532896t° — . ..

satisfies the polynomial equation P(t,4) = 0 with P(y,t) = ¢y + c1y + coy® +
c3y® + cqy? as above. Corollary 2.4 shows that ¢ is also defined by

§=—t+Ggo+ gy +Inw + gw + gsw + Gs + Gsg + g + InNE



ON GENERATING SERIES OF COLOURED PLANAR TREES 17

where gm gN7 gNW; gW? gSWu gSv gSEu gE? QNE SatiSfy the “Complementary” equa-
tions

Jo = (=t+9gn+gvw + 9w + Gsw + Gs + gse + 95 + GnE)

(=t + Go + gsw + Gs + gse + 9 + gNE)
gv = (~t+9gw+3dsw+3gs+ Jgsg + gg + gnr)

(=t + go + gn + gnw + +Gsw + Gs + gse + 9 + INE)
gnw = (=t+ gsw + gs + gse + Ge + yE)

(=t + Go + g + Gvw + 9w + Gsw + Gs + gse + Je + gnE)
gw = (=t+3gn+gsw+3gs+gse + 9 + gnE)

(=t + 9o + gnvw + 9w + gsw + gs + Gse + 9 + GnE)
gsw = (=t+gs+gse+9ge + gne)

(=t +go +9n + gnw + Gw + Gsw + gse + Ge + NE)
gs = (~t+gnw + gw + Gsw + gs + gse + Ge + NE)

(=t + 9o +9n + gse + 9 + gnE)
gsg = (—t+gsw+ gse + e + gnE)

(=t + Go + gn + gnw + gw + Js)
g = (—=t+gnw + gsw + s + gse + G + Gne)

(=t + Go + gn + gw + gsw + gs + Jse)
gve = (=t gsw + gs + gse + g + gne)

(—t+ Go + gn + gnw + Gw + Gsw + Gs + Jsk)

Remark 7.1. For computations of huge terms in the series expansion of an
algebraic function, one can use the following well-known trick: any algebraic
function y(t) = > a,t™ of degree d satisfies a linear differential equation

with polynomial coefficients qq,...,q € C[t]. This allows a recursive compu-
tations of a,, with time and memory requirements linear in n. In our case, we
get

W)y +a )y + )y + at)y® + qt)y® =0

where qo, ...,q4 € Z[t] are polynomials of degrees respectively 150, 151, 155,
156 and 157.

7.1. Asymptotics. The asymptotic growth rate of the coefficients of y(t) is
governed by the distance of the origin to the first ramification point of the cor-
responding sheet, see [4]. Ramifications are above the roots of the discriminant
D(t) of P(y,t) with respect to y. This discriminant is given by

D(t) =1 ra 13 73 T
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where

rn o= t*—4t34+6t2+8t+1

re = B —3t12—16t" +100¢° — 8617 — 22218 + 312¢7 — 544 6
+4845t° 4 10665 t* 4 9536 3 + 4084 t? + 528t + 16

rs = 206 4+ 50¢1 —849¢4 — 93713 + 11563 t12 + 7833 ¢!
—64177t'0 — 588827 + 141152 % + 259280 ¢7 + 82253 t6
—366913 > — 698955 t* — 468324 t3 — 122700¢> — 13720t — 552

ry = 5760t 4 88642 — 425056 t°! + - - - — 7200309248t — 76152832

(r4 is not involved in coarse asymptotics of y(t)). The roots of the polynomial
Too =10 (t—2)% (t+1)° (2t* +6¢° — 11 — 30t — 4)?

are critical points for the critical value oo.

Since the coefficients of y(t) have alternating signs, the “smallest” singularity
of y(t) is on the negative real halfline. The following table resumes the relevant
data for its computation. More precisely, the algebraic function defined by
P has a ramification of order 3 with y = oo above ¢ = 0. The remaining
sheet is unramified above ¢ = 0 and defines the generating function y(¢) under
consideration.

The table contains the following informations: the first column shows the
argument ¢ considered in the corresponding row. The second column indicates
the factor of the discriminant D(t) if ¢ is a root of D(t). The remaining column
displays information about the inverse images of ¢ defined by the algebraic
equation of y(t).

We have

to =0 Teo | Y1 =Y2 =Yz =00, ys =0

o >1>1 Y1 <ya <yz <0<y

t1 ~ —0.04355 | 79 |y ~ —2922 < yp = y3 ~ —1.083 < 0 < y4 ~ 0.066
1 >1t> 19 y1<0<y4,y2:%€C\R

to~—0.1118 | r3 |y ~ —82.3 < yo = y3 ~ 0.2194 < y4 ~ 0.4499

to >1>t3 1 <0<wyy, yo=73 € C\R

t3 ~ —0.14047 0<ys~4.113, y; =00, Yy =73 ~ —2.98 + 8.4811
t3>t>t4 O<y4<y1,y2:%€C\R

ty ~ —0.14118 | roo | 0 < yg ~ 8.692 < y; ~ 28.07, yo = y3 =

ty >1> 15 O<y4<y1,y2:%€<C\R

ts ~ —0.14127 | 79 |0 < yy =1 ~ 14.89, y5 = y3 ~ 23.95 + 59.72:

The convergence radius of the series for y(t) is of course given by |t5| = —t;
and the asymptotic growth of the coefficients of y(t) is roughly exponential
with argument

1/t5 ~ —7.07857458512410303820641252737538586816317182 .

A slightly more precise asymptotic behaviour of the coefficients of y(t) can
be computed as follows:
At the root

p =15 ~ —.14127137998962933757540882196178714222253950575630
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of ry, the ramified sheet corresponds to the double root
Y, ~ 14.88738808602894055277970788094544394

of P(y,p) € Cly]. (Caution: when computing y, as a root of P(y,p) one
loses roughly half the digits since an error of order € on p induces an error of
order /e on the corresponding two roots approximating the double root y, of
P(y,p). A better strategy is of course to compute y, as a (simple) root of the
derivative L P(y, p) of P(y,p)).

dy
In a small open neighbourhood of p we get now a Puiseux series expansion

y(t) = h(t) +gt)Vp—1

with h(t), g(t) holomorphic. Since the discriminant D(t) contains no other
roots of absolute value |p|, the asymptotics of the generating function y(t) are
roughly given by

%\/ﬁm "
= P, () (2)
B (1o e ()
= Yve (1 - Dot %QZ'_B) <£>">
= Tv/P 1 - %fo:l =1 (Z!n(;L2z!1)! o tn>
where v(p) = g(p). Since

(2n — 2)! 1/4n(n —1) 4771 (n —1)2n72 g=2n+2 g1
n!(n—=1)! n 27 (n—1) (n—1)2"1 201 /T n3/?

we get the asymptotics

~Y ’7P
2 /7 nd3/2 pn-1/2

The constant v, can be computed by remarking that
0 = P(h(t)++vp—1tg(t)1)
= Py, +7Vp—1+0((p—1)),1)

2 2 (p—1)
= 2P|+ 2, (= p)+O((p— 1))

Qn

yielding

A
ot \Yp,pP
2p o2p
8y2 (ypvp)

Yo/ P = ~ 337.171657540870 .

We have thus asymptotically
a, ~ 95.11436852604511894068836 p~™ n~>/?

with p ~ —.1412713799896293375754088219617871422225395057563006418,
(cf. Formula 10.64 in [4]).
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