ON DERANGEMENT POLYNOMIALS OF TYPE B

CHAK-ON CHOW

Abstract

Wachs [Proc. Amer. Math. Soc. 106 (1989), 273-278] studied the q-enumeration of derangements in the symmetric group \mathfrak{S}_{n} by the major index and obtained a q-analogue of the classical derangement number. We consider in this work the q-enumeration of derangements in the hyperoctahedral group B_{n} by the flag major index and obtain a q-analogue of the type B derangement number.

Let $n \geqslant 1$. Let B_{n} be the nth hyperoctahedral group, which is a Coxeter group of rank n, consisting of signed permutations of $[n]:=\{1,2, \ldots, n\}$. We shall represent a signed permutation $\sigma \in B_{n}$ by the word $\sigma_{1} \sigma_{2} \cdots \sigma_{n}$, where $\sigma_{i}=\sigma(i), i=1,2, \ldots, n$. The (type A) descent set of σ is $D(\sigma):=\left\{i \in[n-1]: \sigma_{i}>\sigma_{i+1}\right\}$. A statistic derivable from $D(\sigma)$ is the usual (type A) major index: $\operatorname{maj}(\sigma):=\sum_{i \in D(\sigma)} i$. Let $N(\sigma):=\#\left\{i \in[n]: \sigma_{i}<0\right\}$ be the number of negative letters of σ.

Two candidates for the type B major index, namely, the negative major index (nmaj) and the flag major index (fmaj), have recently been proposed and proven to be Mahonian, i.e.,

$$
\sum_{\sigma \in B_{n}} q^{\mathrm{fmaj}(\sigma)}=\sum_{\sigma \in B_{n}} q^{\mathrm{nmaj}(\sigma)}=\sum_{\sigma \in B_{n}} q^{l_{B}(\sigma)}=[2]_{q}[4]_{q} \cdots[2 n]_{q},
$$

where $[k]_{q}:=1+q+q^{2}+\cdots+q^{k-1}$ is a q-integer, $\operatorname{fmaj}(\sigma):=2 \operatorname{maj}(\sigma)+N(\sigma)$, and l_{B} the length function on B_{n}. By pairing with the negative descent number (ndes) and the flag descent number (fdes), respectively, these major indices are shown to satisfy a q-rational generating function generalizing the classical Carlitz identity. See $[1,2]$ for the definitions of undefined terms and the above mentioned results.

In a recent work, Chow and Gessel [5] studied the Euler-Mahonian pair (des_{B}, fmaj), where des_{B} is the type B descent number, on B_{n} and computed its q-rational generating function. This q-rational generating function reduces to the rational generating function for the type B Eulerian polynomial when $q \rightarrow 1$, thus providing a natural type B generalization of the classical Carlitz identity. It is from this point of view that the flag major index (fmaj) plays the same role on the hyperoctahedral group B_{n} as the usual major index (maj) does on the symmetric group \mathfrak{S}_{n}.

A number of statistical studies on B_{n} sequel to $[1,2,5]$ have been pursued by various authors. See, e.g., $[6,7,9]$ which considered the flag and negative major indices as well as other permutation statistics in the more general setting of signed words and wreath products.

For $n \geqslant 1$, let $\mathscr{D}_{n}:=\left\{\sigma \in \mathfrak{S}_{n}: \sigma(i) \neq i\right.$ for all $\left.i \in[n]\right\}$ be the set of all derangements in \mathfrak{S}_{n}. Wachs [11] considered derangement polynomials defined by $d_{n}(q):=\sum_{\sigma \in \mathscr{O}_{n}} q^{\operatorname{maj}(\sigma)}$ and
showed combinatorially that

$$
d_{n}(q)=[n]_{q}!\sum_{k=0}^{n} \frac{\left.(-1)^{k} q^{k} \begin{array}{c}
k \tag{1}\\
2
\end{array}\right)}{[k]_{q}!},
$$

where $[n]_{q}!:=[1]_{q}[2]_{q} \cdots[n]_{q}$ is a q-factorial. Letting $q \rightarrow 1$, the above formula reduces to the formula of the nth classical derangement number: $d_{n}=n!\sum_{k=0}^{n}(-1)^{k} / k!$. It is from this point of view that Wachs' derangement polynomials are q-analogues of the derangement numbers.

We show in this work (Theorem 5) that $d_{n}^{B}(q):=\sum_{\sigma \in \mathscr{P}_{n}^{B}} q^{\mathrm{fmaj}(\sigma)}$ can be written as

$$
d_{n}^{B}(q)=[2]_{q}[4]_{q} \cdots[2 n]_{q} \sum_{k=0}^{n} \frac{(-1)^{k} q^{2}\binom{k}{2}}{[2]_{q}[4]_{q} \cdots[2 k]_{q}},
$$

where $\mathscr{D}_{n}^{B}:=\left\{\sigma \in B_{n}: \sigma(i) \neq i\right.$ for all $\left.i \in[n]\right\}$ is the set of derangements in B_{n}. The first four $d_{n}^{B}(q)$ are given as follows:

$$
\begin{aligned}
d_{1}^{B}(q) & =q, \\
d_{2}^{B}(q) & =q+2 q^{2}+q^{3}+q^{4}, \\
d_{3}^{B}(q) & =q+3 q^{2}+4 q^{3}+5 q^{4}+5 q^{5}+4 q^{6}+4 q^{7}+2 q^{8}+q^{9}, \\
d_{4}^{B}(q) & =q+4 q^{2}+8 q^{3}+13 q^{4}+18 q^{5}+22 q^{6}+26 q^{7}+28 q^{8}+28 q^{9}+25 q^{10} \\
& \quad+21 q^{11}+17 q^{12}+11 q^{13}+7 q^{14}+3 q^{15}+q^{16} .
\end{aligned}
$$

Following Wachs, for any signed permutation $\alpha \in B_{A}$, where $A=\left\{a_{1}<a_{2}<\cdots<a_{k}\right\}$, define the reduction of α to be the signed permutation in B_{k} obtained from α by replacing each letter α_{j} by $\left(\operatorname{sgn} \alpha_{j}\right) i$ if $\left|\alpha_{j}\right|=a_{i}, i=1,2, \ldots, k$. The derangement part of a signed permutation $\sigma \in B_{n}$, denoted $d p(\sigma)$, is the reduction of the subword of non-fixed points of σ. For example, $d p(5 \overline{3} \overline{1} 476 \overline{2})=4 \overline{3} \overline{1} 5 \overline{2}$. Note that the derangement part of a signed permutation is a signed derangement, and that conversely, any derangement in \mathscr{D}_{k}^{B} and k-element subset of $[n]$ determine a signed permutation in B_{n} with $n-k$ fixed points. Hence, the number of signed permutations in B_{n} with a given derangement part in \mathscr{D}_{k}^{B} is $\binom{n}{k}$.
Now let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in B_{n}$. A letter σ_{i} of σ is an excedant (respectively subcedant) of σ if $\sigma_{i}>i$ (respectively $\sigma_{i}<i$). Let $s(\sigma)$ and $e(\sigma)$ be the number of subcedants and excedants of σ, respectively. It is clear that excedants of σ are necessarily positive. We now fix n and let $k \leqslant n$. For $\sigma \in B_{k}$, let $\tilde{\sigma}$ be the signed permutation of k letters obtained from σ by replacing its i th smallest (in absolute value) subcedant σ_{j} by $\left(\operatorname{sgn} \sigma_{j}\right) i, i=1,2, \ldots, s(\sigma)$, its i th smallest fixed point by $s(\sigma)+i, i=1,2, \ldots, k-s(\sigma)-e(\sigma)$, and its i th largest excedant by $n-i+1, i=1,2, \ldots, e(\sigma)$. The map $\sigma \rightarrow \tilde{\sigma}$ restricted to the symmetric group \mathfrak{S}_{k} is precisely the descent set preserving map used in [11]. If $k=n$ then $\tilde{\sigma} \in B_{n}$. If σ is a signed derangement, then $\tilde{\sigma} \in \mathscr{D}_{A}^{B}$, where $A=\{1,2, \ldots, s(\sigma)\} \cup\{n-e(\sigma)+1, n-e(\sigma)+2, \ldots, n\}$.
Lemma 1. Let $\sigma \in B_{k}, k \leqslant n$. Then $D(\sigma)=D(\tilde{\sigma})$ and $N(\sigma)=N(\tilde{\sigma})$.
Proof. It is clear from the construction of $\tilde{\sigma}$ that $N(\sigma)=N(\tilde{\sigma})$. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ and $\tilde{\sigma}=\tilde{\sigma}_{1} \tilde{\sigma}_{2} \cdots \tilde{\sigma}_{k}$. For each $i \in[k-1]$, we shall show that $i \in D(\sigma)$ if and only if $i \in D(\tilde{\sigma})$, by considering the nine possible designations of subcedant (s), excedant (e), and fixed point (f)
to σ_{i} and σ_{i+1}. Since the letters $\tilde{\sigma}_{i}$ are determined according to whether σ_{i} is a subcedant (e), a fixed point (f), or an excedant (e), and in this order, $\tilde{\sigma}_{i}<\tilde{\sigma}_{i+1}$ if the designation of σ_{i} precedes that of σ_{i+1}.

Suppose that $\left(\sigma_{i}, \sigma_{i+1}\right)$ is an (f, e) or (f, f) pair. Then $\sigma_{i}=i<i+1 \leqslant \sigma_{i+1}$ so that $\tilde{\sigma}_{i}<$ $\tilde{\sigma}_{i+1}$. If $\left(\sigma_{i}, \sigma_{i+1}\right)$ is an (f, s), then $\sigma_{i}=i>i-1 \geqslant \sigma_{i+1}$ so that $\tilde{\sigma}_{i}>s(\sigma) \geqslant\left|\tilde{\sigma}_{i+1}\right| \geqslant \tilde{\sigma}_{i+1}$.

Suppose now that $\left(\sigma_{i}, \sigma_{i+1}\right)$ is an (s, f) or (s, e) pair. Then $\sigma_{i}<i<i+1 \leqslant \sigma_{i+1}$ so that $\tilde{\sigma}_{i}<\tilde{\sigma}_{i+1}$. If $\left(\sigma_{i}, \sigma_{i+1}\right)$ is an (s, s), then since $\operatorname{sgn} \sigma_{i}=\operatorname{sgn} \tilde{\sigma}_{i}, \sigma_{i} \gtrless \sigma_{i+1} \gtrless 0$ if and only if $\tilde{\sigma}_{i} \gtrless \tilde{\sigma}_{i+1} \gtrless 0$, and $\sigma_{i} \gtrless 0 \gtrless \sigma_{i+1}$ if and only if $\tilde{\sigma}_{i} \gtrless 0 \gtrless \tilde{\sigma}_{i+1}$.

Suppose finally that $\left(\sigma_{i}, \sigma_{i+1}\right)$ is an (e, f) pair. Then $\sigma_{i} \geqslant i+2>i+1=\sigma_{i+1}$ so that $\tilde{\sigma}_{i}>\tilde{\sigma}_{i+1}$; if $\left(\sigma_{i}, \sigma_{i+1}\right)$ is an (e, s) pair, then $\sigma_{i}>i \geqslant \sigma_{i+1}$ so that $\tilde{\sigma}_{i}>\tilde{\sigma}_{i+1}$; consider now (σ_{i}, σ_{i+1}) being an (e, e) pair. If σ_{i} (respectively σ_{i+1}) is the j th (respectively k th) largest excedant of σ, then $\sigma_{i} \lessgtr \sigma_{i+1}$ if and only if $j \gtrless k$ if and only if $\tilde{\sigma}_{i}=n-j+1 \lessgtr n-k+1=$ $\tilde{\sigma}_{i+1}$.

Let n_{1}, \ldots, n_{r} be non-negative integers such that $\sum_{i=1}^{r} n_{i}=n$. Recall the q-multinomial coefficient

$$
\left[\begin{array}{c}
n \\
n_{1}, \ldots, n_{r}
\end{array}\right]_{q}:=\frac{[n]_{q}!}{\left[n_{1}\right]_{q}!\cdots\left[n_{r}\right]_{q}!}
$$

Now let $\left(N_{1}, \ldots, N_{r}\right)$ be a partition of the set $[n]$. For each $1 \leqslant i \leqslant r$ let π_{i} be a permutation of the elements of N_{i}. Recall that a permutation $\sigma \in \mathfrak{S}_{n}$ is a shuffle of $\pi_{1}, \pi_{2}, \ldots, \pi_{r}$ if, for every i, the letters of N_{i} appears in σ in the same order as the corresponding letters in π_{i}. The generating function of shuffles of permutations by their major index has been computed by Garsia and Gessel [8, Theorem 3.1].

Theorem 2 (Garsia-Gessel). Let $\operatorname{sh}\left(\pi_{1}, \ldots, \pi_{r}\right)$ be the collection of all shuffles of given permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{r}$. Then

$$
\sum_{\sigma \in \operatorname{sh}\left(\pi_{1}, \ldots, \pi_{r}\right)} q^{\operatorname{maj}(\sigma)}=\left[\begin{array}{c}
n \\
n_{1}, \ldots, n_{r}
\end{array}\right]_{q} q^{\operatorname{maj}\left(\pi_{1}\right)+\cdots+\operatorname{maj}\left(\pi_{r}\right)}
$$

where n_{i} is the length of $\pi_{i}(1 \leqslant i \leqslant r)$.
Theorem 2 remains true if π_{1}, \ldots, π_{r} are signed words of distinct letters from the totally ordered alphabet $\{-n<-n+1<\cdots<-1<1<2<\cdots<n\}$. It is clear in this case that $N(\sigma)=N\left(\pi_{1}\right)+\cdots+N\left(\pi_{r}\right)$. Replacing q by q^{2}, followed by multiplication by $q^{N(\sigma)}$ and noting that $\mathrm{fmaj}(\sigma)=2 \operatorname{maj}(\sigma)+N(\sigma)$, we have the following identity:

$$
\sum_{\sigma \in \operatorname{sh}\left(\pi_{1}, \ldots, \pi_{r}\right)} q^{\operatorname{fmaj}(\sigma)}=\left[\begin{array}{c}
n \tag{2}\\
n_{1}, \ldots, n_{r}
\end{array}\right]_{q^{2}} q^{\operatorname{fmaj}\left(\pi_{1}\right)+\cdots+\operatorname{fmaj}\left(\pi_{r}\right)}
$$

where n_{i} is the length of $\pi_{i}(1 \leqslant i \leqslant r)$.
Theorem 3. Let $\alpha \in \mathscr{D}_{k}^{B}, k \leqslant n$, and $\gamma=(s(\alpha)+1)(s(\alpha)+2) \ldots(n-e(\alpha))$. Then the map $\varphi:\left\{\sigma \in B_{n}: d p(\sigma)=\alpha\right\} \rightarrow \operatorname{sh}(\tilde{\alpha}, \gamma)$ defined by $\varphi(\sigma)=\tilde{\sigma}$ is a flag major index preserving bijection, i.e., fmaj $(\sigma)=\mathrm{fmaj}(\varphi(\sigma))$.

Proof. The flag major index preserving property of φ is clear from Lemma 1. Since $\#\{\sigma \in$ $\left.B_{n}: d p(\sigma)=\alpha\right\}=\# \operatorname{sh}(\tilde{\alpha}, \gamma)=\binom{n}{k}$, to prove that φ is a bijection, it suffices to prove that $\varphi\left(\left\{\sigma \in B_{n}: d p(\sigma)=\alpha\right\}\right)=\operatorname{sh}(\tilde{\alpha}, \gamma)$.

First, we claim that if $\sigma \in B_{n}$ is such that $d p(\sigma)=\alpha$, then $\tilde{\sigma}$ is obtained from σ by replacing the subword of non-fixed points of σ by $\tilde{\alpha}$ and the subword of fixed points of σ by γ. Indeed, the subword of fixed points of σ is replaced by the word $(s(\sigma)+1)(s(\sigma)+$ 2) $\cdots(n-e(\sigma))$, which is precisely γ since $s(\sigma)=s(\alpha)$ and $e(\sigma)=e(\alpha)$. Also since α is the reduction of the subword of non-fixed points of σ, the position of the i th smallest subcedant of α is the same as the position of the i smallest subcedant of σ in its subword of non-fixed points. The same is true for the i th largest excedant. Hence each subcedant and excedant of σ is replaced by the same letter that replaces the corresponding subcedant and excedant of α, which means that the subword of subcedants and excedants of σ is replaced by $\tilde{\alpha}$. Thus $\varphi(\sigma)=\tilde{\sigma} \in \operatorname{sh}(\tilde{\alpha}, \gamma)$.

To finish the proof, we show that φ is surjective. Let $\tau \in \operatorname{sh}(\tilde{\alpha}, \gamma)$. Replace the $\tilde{\alpha}$ subword by the signed permutation, of the subword positions, whose reduction is α, and the letters of the γ subword by their positions, we obtain a unique signed permutation $\sigma \in B_{n}$ such that $d p(\sigma)=\alpha$ and $\varphi(\sigma)=\tau$.
Proposition 4. Let $\alpha \in \mathscr{D}_{k}^{B}$ and $0 \leqslant k \leqslant n$. Then

$$
\sum_{d p(\sigma)=\alpha, \sigma \in B_{n}} q^{\mathrm{fmaj}(\sigma)}=q^{\mathrm{fmaj}(\alpha)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{2}} .
$$

Proof. This follows from

$$
\sum_{d p(\sigma)=\alpha, \sigma \in B_{n}} q^{\mathrm{fmaj}(\sigma)}=\sum_{\sigma \in \operatorname{sh}(\tilde{\alpha}, \gamma)} q^{\mathrm{fmaj}(\sigma)}=q^{\mathrm{fmaj}(\tilde{\alpha})}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{2}}=q^{\mathrm{fmaj}(\alpha)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{2}},
$$

where the first equality follows from Theorem 3, the second from (2), and the third from Lemma 1.

Recall that the two q-exponential functions defined by

$$
e(u ; q):=\sum_{n \geqslant 0} \frac{u^{n}}{(q ; q)_{n}}, \quad E(u ; q):=\sum_{n \geqslant 0} \frac{q^{\binom{n}{2}} u^{n}}{(q ; q)_{n}},
$$

satisfy $E(-u ; q) e(u ; q)=1$ (which is what the so-called Gauß inversion [3, p. 96] amounts to), where

$$
(u ; q)_{n}:= \begin{cases}1 & \text { if } n=0 \\ (1-u)(1-u q) \cdots\left(1-u q^{n-1}\right) & \text { if } n \geqslant 1\end{cases}
$$

Theorem 5. For $n \geqslant 1$, we have
(i) $d_{n}^{B}(q)=[2]_{q}[4]_{q} \cdots[2 n]_{q} \sum_{k=0}^{n} \frac{(-1)^{k} q^{2\binom{k}{2}}}{[2]_{q}[4]_{q} \cdots[2 k]_{q}}$,
(ii) $\sum_{n \geqslant 0} d_{n}^{B}(q) \frac{u^{n}}{[2]_{q}[4]_{q} \cdots[2 n]_{q}}=\frac{E\left(-u(1-q) ; q^{2}\right)}{1-u}$,
(iii) $d_{n+1}^{B}(q)=[2 n+2]_{q} d_{n}^{B}(q)+(-1)^{n+1} q^{2\binom{n+1}{2}}$.

Proof. By virtue of the preceding proposition, we have

$$
\begin{align*}
{[2]_{q}[4]_{q} \cdots[2 n]_{q} } & =\sum_{\sigma \in B_{n}} q^{\mathrm{fmaj}(\sigma)} \\
& =\sum_{k=0}^{n} \sum_{\alpha \in \mathscr{P}_{k}^{B}} \sum_{d p(\sigma)=\alpha} q^{\operatorname{fmaj}(\sigma)} \\
& =\sum_{k=0}^{n} \sum_{\alpha \in \mathscr{P}_{k}^{B}} q^{\operatorname{fmaj}(\alpha)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{2}} \tag{3}\\
& =\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q^{2}} d_{k}^{B}(q) .
\end{align*}
$$

Since $[2]_{q}[4]_{q} \cdots[2 n]_{q}=(1+q)^{n}[n]_{q^{2}}$!, (3) can be simplified as

$$
(1+q)^{n}=\sum_{k=0}^{n} \frac{d_{k}^{B}(q)}{[k]_{q^{2}}![n-k]_{q^{2}}!} .
$$

Multiplying through by $u^{n} /\left(1-q^{2}\right)^{n}$, followed by summing over $n \geqslant 0$, we get

$$
e\left(u ; q^{2}\right) \sum_{n \geqslant 0} d_{n}^{B}(q) \frac{u^{n}}{\left(q^{2} ; q^{2}\right)_{n}}=\sum_{n \geqslant 0} \frac{u^{n}}{(1-q)^{n}},
$$

since $\left(q^{2} ; q^{2}\right)_{n}=\left(1-q^{2}\right)^{n}[n]_{q^{2}}$!. Multiplying the preceding equation by $E\left(-u ; q^{2}\right)$, followed by extracting the coefficients of u^{n}, we have

$$
d_{n}^{B}(q)=\sum_{k=0}^{n} \frac{(-1)^{k} q^{2\binom{k}{2}}\left(q^{2} ; q^{2}\right)_{n}}{\left(q^{2} ; q^{2}\right)_{k}(1-q)^{n-k}}=\sum_{k=0}^{n} \frac{(-1)^{k} q^{2\binom{k}{2}}[2]_{q}[4]_{q} \cdots[2 n]_{q}}{[2]_{q}[4]_{q} \cdots[2 k]_{q}},
$$

which is (i). Since $\left(q^{2} ; q^{2}\right)_{n}=(1-q)^{n}[2]_{q}[4]_{q} \cdots[2 n]_{q}$, we have

$$
\sum_{n \geqslant 0} d_{n}^{B}(q) \frac{u^{n}}{(1-q)^{n}[2]_{q}[4]_{q} \cdots[2 n]_{q}}=\frac{E\left(-u ; q^{2}\right)}{1-u /(1-q)} .
$$

Replacing u by $u(1-q)$, we get (ii). (iii) is immediate from (i).
Theorem 5(i) is the type B analogue of (1), in the sense that $[2]_{q}[4]_{q} \cdots[2 n]_{q}$ (respextively $\left.[n]_{q}!\right)$ is the Poincaré series of B_{n} (respectively \mathfrak{S}_{n}). (See [4, Chapter 7$]$.) By letting $q \rightarrow 1$, $E\left(-u(1-q) ; q^{2}\right) \rightarrow e^{-u / 2}$ and Theorem 5 specializes to

$$
\begin{aligned}
\sum_{n \geqslant 0} d_{n}^{B} \frac{u^{n}}{2^{n} n!} & =\frac{e^{-u / 2}}{1-u} \\
d_{n+1}^{B} & =2(n+1) d_{n}^{B}+(-1)^{n+1} \\
d_{n}^{B} & =n!\sum_{k=0}^{n} \frac{(-1)^{k} 2^{n-k}}{k!},
\end{aligned}
$$

where $d_{n}^{B}=d_{n}^{B}(1)$ is the derangement number of B_{n}; the last formula can also be obtained by a routine application of the principle of inclusion-exclusion [10, Chapter 2].

References

[1] R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math. 27 (2001), 210-224.
[2] R. M. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, European J. Combin. 22 (2001), 431-446.
[3] M. Aigner, Combinatorial Theory, Springer-Verlag, New York, 1979.
[4] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.
[5] C.-O. Chow and I. M. Gessel, On the descent numbers and major indices for the hyperoctahedral group, submitted, 2003.
[6] D. Foata and G.-N. Han, Signed words and permutations, II: the Euler-Mahonian polynomials, Electron. J. Combin. 11(2), Article \#R22, 2005, 18 pages (The Stanley Festschrift).
[7] D. Foata and G.-N. Han, Signed words and permutations, III: the MacMahon Verfahren, Sém. Lothar. Combin., B54a, 2006, 20 pages (The Viennot Festschrift).
[8] A. Garsia and I. Gessel, Permutation statistics and partitions, Adv. Math. 31 (1979), 288-305.
[9] J. Haglund, N. Loehr and J. B. Remmel, Statistics on wreath products, perfect matchings and signed words, European J. Combin. 26 (2005), 835-868.
[10] R. P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge University Press, Cambridge, 1997.
[11] M. Wachs, On q-derangement numbers, Proc. Amer. Math. Soc. 106 (1989), 273-278.
P.O. Box 91100, Tsimshatsui Post Office, Hong Kong

E-mail address: cchow@alum.mit.edu

