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ON DERANGEMENT POLYNOMIALS OF TYPE B

CHAK-ON CHOW

Abstract. Wachs [Proc. Amer. Math. Soc. 106 (1989), 273–278] studied the q-enumeration
of derangements in the symmetric group Sn by the major index and obtained a q-analogue of
the classical derangement number. We consider in this work the q-enumeration of derange-
ments in the hyperoctahedral group Bn by the flag major index and obtain a q-analogue of
the type B derangement number.

Let n > 1. Let Bn be the nth hyperoctahedral group, which is a Coxeter group of rank
n, consisting of signed permutations of [n] := {1, 2, . . . , n}. We shall represent a signed
permutation σ ∈ Bn by the word σ1σ2 · · ·σn, where σi = σ(i), i = 1, 2, . . . , n. The (type A)
descent set of σ is D(σ) := {i ∈ [n − 1] : σi > σi+1}. A statistic derivable from D(σ) is the
usual (type A) major index: maj(σ) :=

∑
i∈D(σ) i. Let N(σ) := #{i ∈ [n] : σi < 0} be the

number of negative letters of σ.
Two candidates for the type B major index, namely, the negative major index (nmaj) and

the flag major index (fmaj), have recently been proposed and proven to be Mahonian, i.e.,

∑
σ∈Bn

qfmaj(σ) =
∑
σ∈Bn

qnmaj(σ) =
∑
σ∈Bn

qlB(σ) = [2]q[4]q · · · [2n]q,

where [k]q := 1 + q + q2 + · · ·+ qk−1 is a q-integer, fmaj(σ) := 2 maj(σ) + N(σ), and lB the
length function on Bn. By pairing with the negative descent number (ndes) and the flag
descent number (fdes), respectively, these major indices are shown to satisfy a q-rational
generating function generalizing the classical Carlitz identity. See [1, 2] for the definitions of
undefined terms and the above mentioned results.

In a recent work, Chow and Gessel [5] studied the Euler-Mahonian pair (desB, fmaj), where
desB is the type B descent number, on Bn and computed its q-rational generating function.
This q-rational generating function reduces to the rational generating function for the type
B Eulerian polynomial when q → 1, thus providing a natural type B generalization of the
classical Carlitz identity. It is from this point of view that the flag major index (fmaj) plays
the same role on the hyperoctahedral group Bn as the usual major index (maj) does on the
symmetric group Sn.

A number of statistical studies on Bn sequel to [1, 2, 5] have been pursued by various
authors. See, e.g., [6, 7, 9] which considered the flag and negative major indices as well as
other permutation statistics in the more general setting of signed words and wreath products.

For n > 1, let Dn := {σ ∈ Sn : σ(i) 6= i for all i ∈ [n]} be the set of all derangements in
Sn. Wachs [11] considered derangement polynomials defined by dn(q) :=

∑
σ∈Dn

qmaj(σ) and
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showed combinatorially that

(1) dn(q) = [n]q!
n∑

k=0

(−1)kq(
k
2)

[k]q!
,

where [n]q! := [1]q[2]q · · · [n]q is a q-factorial. Letting q → 1, the above formula reduces to
the formula of the nth classical derangement number: dn = n!

∑n
k=0(−1)k/k!. It is from

this point of view that Wachs’ derangement polynomials are q-analogues of the derangement
numbers.

We show in this work (Theorem 5) that dB
n (q) :=

∑
σ∈DB

n
qfmaj(σ) can be written as

dB
n (q) = [2]q[4]q · · · [2n]q

n∑
k=0

(−1)kq2(k
2)

[2]q[4]q · · · [2k]q
,

where DB
n := {σ ∈ Bn : σ(i) 6= i for all i ∈ [n]} is the set of derangements in Bn. The first

four dB
n (q) are given as follows:

dB
1 (q) = q,

dB
2 (q) = q + 2q2 + q3 + q4,

dB
3 (q) = q + 3q2 + 4q3 + 5q4 + 5q5 + 4q6 + 4q7 + 2q8 + q9,

dB
4 (q) = q + 4q2 + 8q3 + 13q4 + 18q5 + 22q6 + 26q7 + 28q8 + 28q9 + 25q10

+ 21q11 + 17q12 + 11q13 + 7q14 + 3q15 + q16.

Following Wachs, for any signed permutation α ∈ BA, where A = {a1 < a2 < · · · < ak},
define the reduction of α to be the signed permutation in Bk obtained from α by replacing
each letter αj by (sgn αj)i if |αj| = ai, i = 1, 2, . . . , k. The derangement part of a signed
permutation σ ∈ Bn, denoted dp(σ), is the reduction of the subword of non-fixed points of σ.
For example, dp(53̄1̄4762̄) = 43̄1̄52̄. Note that the derangement part of a signed permutation
is a signed derangement, and that conversely, any derangement in DB

k and k-element subset
of [n] determine a signed permutation in Bn with n− k fixed points. Hence, the number of
signed permutations in Bn with a given derangement part in DB

k is
(

n
k

)
.

Now let σ = σ1σ2 · · ·σn ∈ Bn. A letter σi of σ is an excedant (respectively subcedant) of σ
if σi > i (respectively σi < i). Let s(σ) and e(σ) be the number of subcedants and excedants
of σ, respectively. It is clear that excedants of σ are necessarily positive. We now fix n and
let k 6 n. For σ ∈ Bk, let σ̃ be the signed permutation of k letters obtained from σ by
replacing its ith smallest (in absolute value) subcedant σj by (sgn σj)i, i = 1, 2, . . . , s(σ), its
ith smallest fixed point by s(σ)+ i, i = 1, 2, . . . , k− s(σ)− e(σ), and its ith largest excedant
by n − i + 1, i = 1, 2, . . . , e(σ). The map σ → σ̃ restricted to the symmetric group Sk is
precisely the descent set preserving map used in [11]. If k = n then σ̃ ∈ Bn. If σ is a signed
derangement, then σ̃ ∈ DB

A , where A = {1, 2, . . . , s(σ)}∪ {n− e(σ) + 1, n− e(σ) + 2, . . . , n}.
Lemma 1. Let σ ∈ Bk, k 6 n. Then D(σ) = D(σ̃) and N(σ) = N(σ̃).

Proof. It is clear from the construction of σ̃ that N(σ) = N(σ̃). Let σ = σ1σ2 · · ·σk and
σ̃ = σ̃1σ̃2 · · · σ̃k. For each i ∈ [k− 1], we shall show that i ∈ D(σ) if and only if i ∈ D(σ̃), by
considering the nine possible designations of subcedant (s), excedant (e), and fixed point (f)
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to σi and σi+1. Since the letters σ̃i are determined according to whether σi is a subcedant
(e), a fixed point (f), or an excedant (e), and in this order, σ̃i < σ̃i+1 if the designation of
σi precedes that of σi+1.

Suppose that (σi, σi+1) is an (f, e) or (f, f) pair. Then σi = i < i + 1 6 σi+1 so that σ̃i <
σ̃i+1. If (σi, σi+1) is an (f, s), then σi = i > i− 1 > σi+1 so that σ̃i > s(σ) > |σ̃i+1| > σ̃i+1.

Suppose now that (σi, σi+1) is an (s, f) or (s, e) pair. Then σi < i < i + 1 6 σi+1 so that
σ̃i < σ̃i+1. If (σi, σi+1) is an (s, s), then since sgn σi = sgn σ̃i, σi ≷ σi+1 ≷ 0 if and only if
σ̃i ≷ σ̃i+1 ≷ 0, and σi ≷ 0 ≷ σi+1 if and only if σ̃i ≷ 0 ≷ σ̃i+1.

Suppose finally that (σi, σi+1) is an (e, f) pair. Then σi > i + 2 > i + 1 = σi+1 so that
σ̃i > σ̃i+1; if (σi, σi+1) is an (e, s) pair, then σi > i > σi+1 so that σ̃i > σ̃i+1; consider now
(σi, σi+1) being an (e, e) pair. If σi (respectively σi+1) is the jth (respectively kth) largest
excedant of σ, then σi ≶ σi+1 if and only if j ≷ k if and only if σ̃i = n− j + 1 ≶ n− k + 1 =
σ̃i+1. �

Let n1, . . . , nr be non-negative integers such that
∑r

i=1 ni = n. Recall the q-multinomial
coefficient [

n
n1, . . . , nr

]
q

:=
[n]q!

[n1]q! · · · [nr]q!
.

Now let (N1, . . . , Nr) be a partition of the set [n]. For each 1 6 i 6 r let πi be a permutation
of the elements of Ni. Recall that a permutation σ ∈ Sn is a shuffle of π1, π2, . . . , πr if, for
every i, the letters of Ni appears in σ in the same order as the corresponding letters in πi.
The generating function of shuffles of permutations by their major index has been computed
by Garsia and Gessel [8, Theorem 3.1].

Theorem 2 (Garsia-Gessel). Let sh(π1, . . . , πr) be the collection of all shuffles of given
permutations π1, π2, . . . , πr. Then∑

σ∈sh(π1,...,πr)

qmaj(σ) =

[
n

n1, . . . , nr

]
q

qmaj(π1)+···+maj(πr),

where ni is the length of πi (1 6 i 6 r).

Theorem 2 remains true if π1, . . . , πr are signed words of distinct letters from the totally
ordered alphabet {−n < −n + 1 < · · · < −1 < 1 < 2 < · · · < n}. It is clear in this case
that N(σ) = N(π1) + · · · + N(πr). Replacing q by q2, followed by multiplication by qN(σ)

and noting that fmaj(σ) = 2 maj(σ) + N(σ), we have the following identity:

(2)
∑

σ∈sh(π1,...,πr)

qfmaj(σ) =

[
n

n1, . . . , nr

]
q2

qfmaj(π1)+···+fmaj(πr),

where ni is the length of πi (1 6 i 6 r).

Theorem 3. Let α ∈ DB
k , k 6 n, and γ = (s(α)+1)(s(α)+2) . . . (n− e(α)). Then the map

ϕ : {σ ∈ Bn : dp(σ) = α} → sh(α̃, γ) defined by ϕ(σ) = σ̃ is a flag major index preserving
bijection, i.e., fmaj(σ) = fmaj(ϕ(σ)).
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Proof. The flag major index preserving property of ϕ is clear from Lemma 1. Since #{σ ∈
Bn : dp(σ) = α} = # sh(α̃, γ) =

(
n
k

)
, to prove that ϕ is a bijection, it suffices to prove that

ϕ({σ ∈ Bn : dp(σ) = α}) = sh(α̃, γ).
First, we claim that if σ ∈ Bn is such that dp(σ) = α, then σ̃ is obtained from σ by

replacing the subword of non-fixed points of σ by α̃ and the subword of fixed points of σ
by γ. Indeed, the subword of fixed points of σ is replaced by the word (s(σ) + 1)(s(σ) +
2) · · · (n− e(σ)), which is precisely γ since s(σ) = s(α) and e(σ) = e(α). Also since α is the
reduction of the subword of non-fixed points of σ, the position of the ith smallest subcedant
of α is the same as the position of the i smallest subcedant of σ in its subword of non-fixed
points. The same is true for the ith largest excedant. Hence each subcedant and excedant of
σ is replaced by the same letter that replaces the corresponding subcedant and excedant of
α, which means that the subword of subcedants and excedants of σ is replaced by α̃. Thus
ϕ(σ) = σ̃ ∈ sh(α̃, γ).

To finish the proof, we show that ϕ is surjective. Let τ ∈ sh(α̃, γ). Replace the α̃ subword
by the signed permutation, of the subword positions, whose reduction is α, and the letters of
the γ subword by their positions, we obtain a unique signed permutation σ ∈ Bn such that
dp(σ) = α and ϕ(σ) = τ . �

Proposition 4. Let α ∈ DB
k and 0 6 k 6 n. Then∑
dp(σ)=α, σ∈Bn

qfmaj(σ) = qfmaj(α)

[
n
k

]
q2

.

Proof. This follows from∑
dp(σ)=α, σ∈Bn

qfmaj(σ) =
∑

σ∈sh(α̃,γ)

qfmaj(σ) = qfmaj(α̃)

[
n
k

]
q2

= qfmaj(α)

[
n
k

]
q2

,

where the first equality follows from Theorem 3, the second from (2), and the third from
Lemma 1. �

Recall that the two q-exponential functions defined by

e(u; q) :=
∑
n>0

un

(q; q)n

, E(u; q) :=
∑
n>0

q(
n
2)un

(q; q)n

,

satisfy E(−u; q)e(u; q) = 1 (which is what the so-called Gauß inversion [3, p. 96] amounts
to), where

(u; q)n :=

{
1 if n = 0,

(1− u)(1− uq) · · · (1− uqn−1) if n > 1.

Theorem 5. For n > 1, we have

(i) dB
n (q) = [2]q[4]q · · · [2n]q

n∑
k=0

(−1)kq2(k
2)

[2]q[4]q · · · [2k]q
,

(ii)
∑
n>0

dB
n (q)

un

[2]q[4]q · · · [2n]q
=

E(−u(1− q); q2)

1− u
,
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(iii) dB
n+1(q) = [2n + 2]qd

B
n (q) + (−1)n+1q2(n+1

2 ).

Proof. By virtue of the preceding proposition, we have

[2]q[4]q · · · [2n]q =
∑
σ∈Bn

qfmaj(σ)

=
n∑

k=0

∑
α∈DB

k

∑
dp(σ)=α

qfmaj(σ)

=
n∑

k=0

∑
α∈DB

k

qfmaj(α)

[
n
k

]
q2

=
n∑

k=0

[
n
k

]
q2

dB
k (q).

(3)

Since [2]q[4]q · · · [2n]q = (1 + q)n[n]q2 !, (3) can be simplified as

(1 + q)n =
n∑

k=0

dB
k (q)

[k]q2 ![n− k]q2 !
.

Multiplying through by un/(1− q2)n, followed by summing over n > 0, we get

e(u; q2)
∑
n>0

dB
n (q)

un

(q2; q2)n

=
∑
n>0

un

(1− q)n
,

since (q2; q2)n = (1 − q2)n[n]q2 !. Multiplying the preceding equation by E(−u; q2), followed
by extracting the coefficients of un, we have

dB
n (q) =

n∑
k=0

(−1)kq2(k
2)(q2; q2)n

(q2; q2)k(1− q)n−k
=

n∑
k=0

(−1)kq2(k
2)[2]q[4]q · · · [2n]q

[2]q[4]q · · · [2k]q
,

which is (i). Since (q2; q2)n = (1− q)n[2]q[4]q · · · [2n]q, we have∑
n>0

dB
n (q)

un

(1− q)n[2]q[4]q · · · [2n]q
=

E(−u; q2)

1− u/(1− q)
.

Replacing u by u(1− q), we get (ii). (iii) is immediate from (i). �

Theorem 5(i) is the type B analogue of (1), in the sense that [2]q[4]q · · · [2n]q (respextively
[n]q!) is the Poincaré series of Bn (respectively Sn). (See [4, Chapter 7].) By letting q → 1,
E(−u(1− q); q2) → e−u/2 and Theorem 5 specializes to∑

n>0

dB
n

un

2nn!
=

e−u/2

1− u
,

dB
n+1 = 2(n + 1)dB

n + (−1)n+1,

dB
n = n!

n∑
k=0

(−1)k2n−k

k!
,
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where dB
n = dB

n (1) is the derangement number of Bn; the last formula can also be obtained
by a routine application of the principle of inclusion-exclusion [10, Chapter 2].
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