ON DERANGEMENT POLYNOMIALS OF TYPE B

CHAK-ON CHOW

ABSTRACT. Wachs [*Proc. Amer. Math. Soc.* **106** (1989), 273–278] studied the q-enumeration of derangements in the symmetric group \mathfrak{S}_n by the major index and obtained a q-analogue of the classical derangement number. We consider in this work the q-enumeration of derangements in the hyperoctahedral group B_n by the flag major index and obtain a q-analogue of the type B derangement number.

Let $n \ge 1$. Let B_n be the *n*th hyperoctahedral group, which is a Coxeter group of rank n, consisting of signed permutations of $[n] := \{1, 2, ..., n\}$. We shall represent a signed permutation $\sigma \in B_n$ by the word $\sigma_1 \sigma_2 \cdots \sigma_n$, where $\sigma_i = \sigma(i), i = 1, 2, ..., n$. The (type A) descent set of σ is $D(\sigma) := \{i \in [n-1]: \sigma_i > \sigma_{i+1}\}$. A statistic derivable from $D(\sigma)$ is the usual (type A) major index: maj $(\sigma) := \sum_{i \in D(\sigma)} i$. Let $N(\sigma) := \#\{i \in [n]: \sigma_i < 0\}$ be the number of negative letters of σ .

Two candidates for the type B major index, namely, the negative major index (nmaj) and the flag major index (fmaj), have recently been proposed and proven to be Mahonian, i.e.,

$$\sum_{\sigma \in B_n} q^{\operatorname{fmaj}(\sigma)} = \sum_{\sigma \in B_n} q^{\operatorname{nmaj}(\sigma)} = \sum_{\sigma \in B_n} q^{l_B(\sigma)} = [2]_q [4]_q \cdots [2n]_q,$$

where $[k]_q := 1 + q + q^2 + \cdots + q^{k-1}$ is a *q*-integer, fmaj $(\sigma) := 2 \text{ maj}(\sigma) + N(\sigma)$, and l_B the length function on B_n . By pairing with the negative descent number (ndes) and the flag descent number (fdes), respectively, these major indices are shown to satisfy a *q*-rational generating function generalizing the classical Carlitz identity. See [1, 2] for the definitions of undefined terms and the above mentioned results.

In a recent work, Chow and Gessel [5] studied the Euler-Mahonian pair (des_B, fmaj), where des_B is the type B descent number, on B_n and computed its q-rational generating function. This q-rational generating function reduces to the rational generating function for the type B Eulerian polynomial when $q \to 1$, thus providing a *natural* type B generalization of the classical Carlitz identity. It is from this point of view that the flag major index (fmaj) plays the same role on the hyperoctahedral group B_n as the usual major index (maj) does on the symmetric group \mathfrak{S}_n .

A number of statistical studies on B_n sequel to [1, 2, 5] have been pursued by various authors. See, e.g., [6, 7, 9] which considered the flag and negative major indices as well as other permutation statistics in the more general setting of signed words and wreath products.

For $n \ge 1$, let $\mathscr{D}_n := \{ \sigma \in \mathfrak{S}_n : \sigma(i) \neq i \text{ for all } i \in [n] \}$ be the set of all derangements in \mathfrak{S}_n . Wachs [11] considered derangement polynomials defined by $d_n(q) := \sum_{\sigma \in \mathscr{D}_n} q^{\operatorname{maj}(\sigma)}$ and

showed combinatorially that

(1)
$$d_n(q) = [n]_q! \sum_{k=0}^n \frac{(-1)^k q^{\binom{k}{2}}}{[k]_q!}$$

where $[n]_q! := [1]_q[2]_q \cdots [n]_q$ is a q-factorial. Letting $q \to 1$, the above formula reduces to the formula of the *n*th classical derangement number: $d_n = n! \sum_{k=0}^n (-1)^k / k!$. It is from this point of view that Wachs' derangement polynomials are q-analogues of the derangement numbers.

We show in this work (Theorem 5) that $d_n^B(q) := \sum_{\sigma \in \mathscr{D}_n^B} q^{\operatorname{fmaj}(\sigma)}$ can be written as

$$d_n^B(q) = [2]_q[4]_q \cdots [2n]_q \sum_{k=0}^n \frac{(-1)^k q^{2\binom{k}{2}}}{[2]_q[4]_q \cdots [2k]_q}$$

where $\mathscr{D}_n^B := \{ \sigma \in B_n : \sigma(i) \neq i \text{ for all } i \in [n] \}$ is the set of derangements in B_n . The first four $d_n^B(q)$ are given as follows:

$$\begin{split} &d_1^B(q) = q, \\ &d_2^B(q) = q + 2q^2 + q^3 + q^4, \\ &d_3^B(q) = q + 3q^2 + 4q^3 + 5q^4 + 5q^5 + 4q^6 + 4q^7 + 2q^8 + q^9, \\ &d_4^B(q) = q + 4q^2 + 8q^3 + 13q^4 + 18q^5 + 22q^6 + 26q^7 + 28q^8 + 28q^9 + 25q^{10} \\ &\quad + 21q^{11} + 17q^{12} + 11q^{13} + 7q^{14} + 3q^{15} + q^{16}. \end{split}$$

Following Wachs, for any signed permutation $\alpha \in B_A$, where $A = \{a_1 < a_2 < \cdots < a_k\}$, define the *reduction* of α to be the signed permutation in B_k obtained from α by replacing each letter α_j by $(\operatorname{sgn} \alpha_j)i$ if $|\alpha_j| = a_i$, $i = 1, 2, \ldots, k$. The *derangement part* of a signed permutation $\sigma \in B_n$, denoted $dp(\sigma)$, is the reduction of the subword of non-fixed points of σ . For example, $dp(5\bar{3}\bar{1}476\bar{2}) = 4\bar{3}\bar{1}5\bar{2}$. Note that the derangement part of a signed permutation is a signed derangement, and that conversely, any derangement in \mathcal{D}_k^B and k-element subset of [n] determine a signed permutation in B_n with n - k fixed points. Hence, the number of signed permutations in B_n with a given derangement part in \mathcal{D}_k^B is $\binom{n}{k}$.

Now let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_n \in B_n$. A letter σ_i of σ is an *excedant* (respectively *subcedant*) of σ if $\sigma_i > i$ (respectively $\sigma_i < i$). Let $s(\sigma)$ and $e(\sigma)$ be the number of subcedants and excedants of σ , respectively. It is clear that excedants of σ are necessarily positive. We now fix n and let $k \leq n$. For $\sigma \in B_k$, let $\tilde{\sigma}$ be the signed permutation of k letters obtained from σ by replacing its *i*th smallest (in absolute value) subcedant σ_j by $(\operatorname{sgn} \sigma_j)i$, $i = 1, 2, \ldots, s(\sigma)$, its *i*th smallest fixed point by $s(\sigma) + i$, $i = 1, 2, \ldots, k - s(\sigma) - e(\sigma)$, and its *i*th largest excedant by n - i + 1, $i = 1, 2, \ldots, e(\sigma)$. The map $\sigma \to \tilde{\sigma}$ restricted to the symmetric group \mathfrak{S}_k is precisely the descent set preserving map used in [11]. If k = n then $\tilde{\sigma} \in B_n$. If σ is a signed derangement, then $\tilde{\sigma} \in \mathcal{D}_A^B$, where $A = \{1, 2, \ldots, s(\sigma)\} \cup \{n - e(\sigma) + 1, n - e(\sigma) + 2, \ldots, n\}$.

Lemma 1. Let $\sigma \in B_k$, $k \leq n$. Then $D(\sigma) = D(\tilde{\sigma})$ and $N(\sigma) = N(\tilde{\sigma})$.

Proof. It is clear from the construction of $\tilde{\sigma}$ that $N(\sigma) = N(\tilde{\sigma})$. Let $\sigma = \sigma_1 \sigma_2 \cdots \sigma_k$ and $\tilde{\sigma} = \tilde{\sigma}_1 \tilde{\sigma}_2 \cdots \tilde{\sigma}_k$. For each $i \in [k-1]$, we shall show that $i \in D(\sigma)$ if and only if $i \in D(\tilde{\sigma})$, by considering the nine possible designations of subcedant (s), excedant (e), and fixed point (f)

to σ_i and σ_{i+1} . Since the letters $\tilde{\sigma}_i$ are determined according to whether σ_i is a subcedant (e), a fixed point (f), or an excedant (e), and in this order, $\tilde{\sigma}_i < \tilde{\sigma}_{i+1}$ if the designation of σ_i precedes that of σ_{i+1} .

Suppose that (σ_i, σ_{i+1}) is an (f, e) or (f, f) pair. Then $\sigma_i = i < i + 1 \leq \sigma_{i+1}$ so that $\tilde{\sigma}_i < \tilde{\sigma}_{i+1}$. If (σ_i, σ_{i+1}) is an (f, s), then $\sigma_i = i > i - 1 \geq \sigma_{i+1}$ so that $\tilde{\sigma}_i > s(\sigma) \geq |\tilde{\sigma}_{i+1}| \geq \tilde{\sigma}_{i+1}$.

Suppose now that (σ_i, σ_{i+1}) is an (s, f) or (s, e) pair. Then $\sigma_i < i < i + 1 \leq \sigma_{i+1}$ so that $\tilde{\sigma}_i < \tilde{\sigma}_{i+1}$. If (σ_i, σ_{i+1}) is an (s, s), then since $\operatorname{sgn} \sigma_i = \operatorname{sgn} \tilde{\sigma}_i, \sigma_i \geq \sigma_{i+1} \geq 0$ if and only if $\tilde{\sigma}_i \geq \tilde{\sigma}_{i+1} \geq 0$, and $\sigma_i \geq 0 \geq \sigma_{i+1}$ if and only if $\tilde{\sigma}_i \geq 0 \geq \tilde{\sigma}_{i+1}$.

Suppose finally that (σ_i, σ_{i+1}) is an (e, f) pair. Then $\sigma_i \ge i+2 > i+1 = \sigma_{i+1}$ so that $\tilde{\sigma}_i > \tilde{\sigma}_{i+1}$; if (σ_i, σ_{i+1}) is an (e, s) pair, then $\sigma_i > i \ge \sigma_{i+1}$ so that $\tilde{\sigma}_i > \tilde{\sigma}_{i+1}$; consider now (σ_i, σ_{i+1}) being an (e, e) pair. If σ_i (respectively σ_{i+1}) is the *j*th (respectively *k*th) largest excedant of σ , then $\sigma_i \le \sigma_{i+1}$ if and only if $j \ge k$ if and only if $\tilde{\sigma}_i = n - j + 1 \le n - k + 1 = \tilde{\sigma}_{i+1}$.

Let n_1, \ldots, n_r be non-negative integers such that $\sum_{i=1}^r n_i = n$. Recall the *q*-multinomial coefficient

$$\begin{bmatrix} n\\ n_1, \dots, n_r \end{bmatrix}_q := \frac{[n]_q!}{[n_1]_q! \cdots [n_r]_q!}.$$

Now let (N_1, \ldots, N_r) be a partition of the set [n]. For each $1 \leq i \leq r$ let π_i be a permutation of the elements of N_i . Recall that a permutation $\sigma \in \mathfrak{S}_n$ is a shuffle of $\pi_1, \pi_2, \ldots, \pi_r$ if, for every *i*, the letters of N_i appears in σ in the same order as the corresponding letters in π_i . The generating function of shuffles of permutations by their major index has been computed by Garsia and Gessel [8, Theorem 3.1].

Theorem 2 (Garsia-Gessel). Let $sh(\pi_1, \ldots, \pi_r)$ be the collection of all shuffles of given permutations $\pi_1, \pi_2, \ldots, \pi_r$. Then

$$\sum_{\in \operatorname{sh}(\pi_1,\ldots,\pi_r)} q^{\operatorname{maj}(\sigma)} = \begin{bmatrix} n\\ n_1,\ldots,n_r \end{bmatrix}_q q^{\operatorname{maj}(\pi_1)+\cdots+\operatorname{maj}(\pi_r)},$$

where n_i is the length of π_i $(1 \leq i \leq r)$.

 σ

Theorem 2 remains true if π_1, \ldots, π_r are signed words of distinct letters from the totally ordered alphabet $\{-n < -n + 1 < \cdots < -1 < 1 < 2 < \cdots < n\}$. It is clear in this case that $N(\sigma) = N(\pi_1) + \cdots + N(\pi_r)$. Replacing q by q^2 , followed by multiplication by $q^{N(\sigma)}$ and noting that fmaj $(\sigma) = 2$ maj $(\sigma) + N(\sigma)$, we have the following identity:

(2)
$$\sum_{\sigma \in \operatorname{sh}(\pi_1, \dots, \pi_r)} q^{\operatorname{fmaj}(\sigma)} = \begin{bmatrix} n \\ n_1, \dots, n_r \end{bmatrix}_{q^2} q^{\operatorname{fmaj}(\pi_1) + \dots + \operatorname{fmaj}(\pi_r)},$$

where n_i is the length of π_i $(1 \leq i \leq r)$.

Theorem 3. Let $\alpha \in \mathscr{D}_k^B$, $k \leq n$, and $\gamma = (s(\alpha) + 1)(s(\alpha) + 2) \dots (n - e(\alpha))$. Then the map $\varphi \colon \{\sigma \in B_n \colon dp(\sigma) = \alpha\} \to \operatorname{sh}(\tilde{\alpha}, \gamma) \text{ defined by } \varphi(\sigma) = \tilde{\sigma} \text{ is a flag major index preserving bijection, i.e., fmaj}(\sigma) = \operatorname{fmaj}(\varphi(\sigma)).$

Proof. The flag major index preserving property of φ is clear from Lemma 1. Since $\#\{\sigma \in B_n: dp(\sigma) = \alpha\} = \#\operatorname{sh}(\tilde{\alpha}, \gamma) = \binom{n}{k}$, to prove that φ is a bijection, it suffices to prove that $\varphi(\{\sigma \in B_n: dp(\sigma) = \alpha\}) = \operatorname{sh}(\tilde{\alpha}, \gamma)$.

First, we claim that if $\sigma \in B_n$ is such that $dp(\sigma) = \alpha$, then $\tilde{\sigma}$ is obtained from σ by replacing the subword of non-fixed points of σ by $\tilde{\alpha}$ and the subword of fixed points of σ by γ . Indeed, the subword of fixed points of σ is replaced by the word $(s(\sigma) + 1)(s(\sigma) + 2) \cdots (n - e(\sigma))$, which is precisely γ since $s(\sigma) = s(\alpha)$ and $e(\sigma) = e(\alpha)$. Also since α is the reduction of the subword of non-fixed points of σ , the position of the *i*th smallest subcedant of α is the same as the position of the *i* smallest subcedant of σ in its subword of non-fixed points. The same is true for the *i*th largest excedant. Hence each subcedant and excedant of σ is replaced by the same letter that replaces the corresponding subcedant and excedant of α , which means that the subword of subcedants and excedants of σ is replaced by $\tilde{\alpha}$. Thus $\varphi(\sigma) = \tilde{\sigma} \in \operatorname{sh}(\tilde{\alpha}, \gamma)$.

To finish the proof, we show that φ is surjective. Let $\tau \in \operatorname{sh}(\tilde{\alpha}, \gamma)$. Replace the $\tilde{\alpha}$ subword by the signed permutation, of the subword positions, whose reduction is α , and the letters of the γ subword by their positions, we obtain a unique signed permutation $\sigma \in B_n$ such that $dp(\sigma) = \alpha$ and $\varphi(\sigma) = \tau$.

Proposition 4. Let $\alpha \in \mathscr{D}_k^B$ and $0 \leq k \leq n$. Then

$$\sum_{dp(\sigma)=\alpha, \sigma \in B_n} q^{\operatorname{fmaj}(\sigma)} = q^{\operatorname{fmaj}(\alpha)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^2}$$

Proof. This follows from

$$\sum_{dp(\sigma)=\alpha, \sigma\in B_n} q^{\mathrm{fmaj}(\sigma)} = \sum_{\sigma\in \mathrm{sh}(\tilde{\alpha},\gamma)} q^{\mathrm{fmaj}(\sigma)} = q^{\mathrm{fmaj}(\tilde{\alpha})} \begin{bmatrix} n\\ k \end{bmatrix}_{q^2} = q^{\mathrm{fmaj}(\alpha)} \begin{bmatrix} n\\ k \end{bmatrix}_{q^2},$$

where the first equality follows from Theorem 3, the second from (2), and the third from Lemma 1. $\hfill \Box$

Recall that the two q-exponential functions defined by

$$e(u;q):=\sum_{n\geqslant 0}\frac{u^n}{(q;q)_n},\qquad E(u;q):=\sum_{n\geqslant 0}\frac{q^{\binom{n}{2}}u^n}{(q;q)_n},$$

satisfy E(-u;q)e(u;q) = 1 (which is what the so-called Gauß inversion [3, p. 96] amounts to), where

$$(u;q)_n := \begin{cases} 1 & \text{if } n = 0, \\ (1-u)(1-uq)\cdots(1-uq^{n-1}) & \text{if } n \ge 1. \end{cases}$$

Theorem 5. For $n \ge 1$, we have

(i)
$$d_n^B(q) = [2]_q [4]_q \cdots [2n]_q \sum_{k=0}^n \frac{(-1)^k q^{2\binom{k}{2}}}{[2]_q [4]_q \cdots [2k]_q},$$

(ii) $\sum_{n \ge 0} d_n^B(q) \frac{u^n}{[2]_q [4]_q \cdots [2n]_q} = \frac{E(-u(1-q);q^2)}{1-u}$

(iii)
$$d_{n+1}^B(q) = [2n+2]_q d_n^B(q) + (-1)^{n+1} q^{2\binom{n+1}{2}}.$$

Proof. By virtue of the preceding proposition, we have

(3)

$$[2]_{q}[4]_{q} \cdots [2n]_{q} = \sum_{\sigma \in B_{n}} q^{\operatorname{fmaj}(\sigma)}$$

$$= \sum_{k=0}^{n} \sum_{\alpha \in \mathscr{D}_{k}^{B}} \sum_{dp(\sigma)=\alpha} q^{\operatorname{fmaj}(\sigma)}$$

$$= \sum_{k=0}^{n} \sum_{\alpha \in \mathscr{D}_{k}^{B}} q^{\operatorname{fmaj}(\alpha)} \begin{bmatrix} n \\ k \end{bmatrix}_{q^{2}}$$

$$= \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix}_{q^{2}} d_{k}^{B}(q).$$

Since $[2]_q[4]_q \cdots [2n]_q = (1+q)^n [n]_{q^2}!$, (3) can be simplified as

$$(1+q)^n = \sum_{k=0}^n \frac{d_k^B(q)}{[k]_{q^2}![n-k]_{q^2}!}.$$

Multiplying through by $u^n/(1-q^2)^n$, followed by summing over $n \ge 0$, we get

$$e(u;q^2)\sum_{n\ge 0}d_n^B(q)\frac{u^n}{(q^2;q^2)_n}=\sum_{n\ge 0}\frac{u^n}{(1-q)^n},$$

since $(q^2; q^2)_n = (1 - q^2)^n [n]_{q^2}!$. Multiplying the preceding equation by $E(-u; q^2)$, followed by extracting the coefficients of u^n , we have

$$d_n^B(q) = \sum_{k=0}^n \frac{(-1)^k q^{2\binom{k}{2}} (q^2; q^2)_n}{(q^2; q^2)_k (1-q)^{n-k}} = \sum_{k=0}^n \frac{(-1)^k q^{2\binom{k}{2}} [2]_q [4]_q \cdots [2n]_q}{[2]_q [4]_q \cdots [2k]_q},$$

which is (i). Since $(q^2; q^2)_n = (1 - q)^n [2]_q [4]_q \cdots [2n]_q$, we have

$$\sum_{n \ge 0} d_n^B(q) \frac{u^n}{(1-q)^n [2]_q [4]_q \cdots [2n]_q} = \frac{E(-u;q^2)}{1-u/(1-q)}.$$

Replacing u by u(1-q), we get (ii). (iii) is immediate from (i).

Theorem 5(i) is the type B analogue of (1), in the sense that $[2]_q[4]_q \cdots [2n]_q$ (respectively $[n]_q!$) is the Poincaré series of B_n (respectively \mathfrak{S}_n). (See [4, Chapter 7].) By letting $q \to 1$, $E(-u(1-q);q^2) \to e^{-u/2}$ and Theorem 5 specializes to

$$\sum_{n \ge 0} d_n^B \frac{u^n}{2^n n!} = \frac{e^{-u/2}}{1-u},$$
$$d_{n+1}^B = 2(n+1)d_n^B + (-1)^{n+1},$$
$$d_n^B = n! \sum_{k=0}^n \frac{(-1)^k 2^{n-k}}{k!},$$

where $d_n^B = d_n^B(1)$ is the derangement number of B_n ; the last formula can also be obtained by a routine application of the principle of inclusion-exclusion [10, Chapter 2].

References

- R. M. Adin, F. Brenti and Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. in Appl. Math. 27 (2001), 210–224.
- [2] R. M. Adin and Y. Roichman, The flag major index and group actions on polynomial rings, *European J. Combin.* 22 (2001), 431–446.
- [3] M. Aigner, Combinatorial Theory, Springer-Verlag, New York, 1979.
- [4] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Springer, New York, 2005.
- [5] C.-O. Chow and I. M. Gessel, On the descent numbers and major indices for the hyperoctahedral group, submitted, 2003.
- [6] D. Foata and G.-N. Han, Signed words and permutations, II: the Euler-Mahonian polynomials, *Electron. J. Combin.* 11(2), Article #R22, 2005, 18 pages (The Stanley Festschrift).
- [7] D. Foata and G.-N. Han, Signed words and permutations, III: the MacMahon Verfahren, Sém. Lothar. Combin., B54a, 2006, 20 pages (The Viennot Festschrift).
- [8] A. Garsia and I. Gessel, Permutation statistics and partitions, Adv. Math. 31 (1979), 288–305.
- [9] J. Haglund, N. Loehr and J. B. Remmel, Statistics on wreath products, perfect matchings and signed words, *European J. Combin.* 26 (2005), 835–868.
- [10] R. P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge University Press, Cambridge, 1997.
- [11] M. Wachs, On *q*-derangement numbers, Proc. Amer. Math. Soc. **106** (1989), 273–278.

P.O. BOX 91100, TSIMSHATSUI POST OFFICE, HONG KONG *E-mail address*: cchow@alum.mit.edu