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COMPUTER-FREE EVALUATION OF AN INFINITE DOUBLE
SUM VIA EULER SUMS

ALOIS PANHOLZER AND HELMUT PRODINGER

ABSTRACT. A short and computer-free proof (using Euler sums and multiple zeta
functions) is provided for a double sum that was recently computed by Pemantle
and Schneider using the computer software Sigma.

1. INTRODUCTION

The evaluation of the double sum
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(where H,, = 22:1% denote harmonic numbers) appears in [4] and was obtained
using Carsten Schneider’s software Sigma. Here, we will give a short proof that is
completely computer-free. It uses Euler sums and multiple zeta functions.

The second order harmonic numbers which appear in the sequel are denoted by
= 22:1 %
We split the sum S and apply partial fraction decomposition:
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The inner sum is snnphﬁed as follows:
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Thus the task reduces to evaluate the following single sum:
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After partial fraction expansion (and shifting the index if necessary), sum S can
be written as follows:
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For the final computation of S we require the following evaluations of Euler sums
via values of the Riemann zeta function:
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from which equation (1) then follows.
Equations (3c) and (3d) can be found explicitly in [3]. In [3] one also finds the
identities
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we obtain equation (3b) as well, using (4a), (4b) and (3c).
To show (3a) we will apply Theorem 2 of [2], which gives
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where the multiple zeta functions are defined by
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Since
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we obtain
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Using the following evaluations of the multiple zeta function given in [1] resp. [2]:

€(2,1,2) = ¢(2,3) = 5¢(5) — 20(2)C(3),

C(2,2,1) = ((3,2) =~ +30(2)¢(3),

((4,1) = 2¢(5) = ¢(2)C(3),

equation (3a) follows.
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