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Abstract. A k-digraph is an orientation of a multi-graph that is without loops and
contains at most k edges between any pair of distinct vertices. We obtain necessary
and sufficient conditions for a sequence of non-negative integers in non-decreasing
order to be a sequence of numbers, called marks (k-scores), attached to vertices of
a k-digraph. We characterize irreducible and uniquely realizable mark sequences in
k-digraphs.

1. Introduction

Let D be a k-digraph with vertex set V = {v1, v2, . . . , vn}, and let d+(vi) and d−(vi)
denote the outdegree and indegree, respectively, of a vertex vi. Define pvi

(or pi)
= k(n − 1) + d+(vi) − d−(vi), as the mark of vi, so that 0 ≤ pvi

≤ 2k(n − 1). The
sequence P = [pi]

n
1 in non-decreasing order is called the mark sequence of D.

A k-digraph can be interpreted as the result of a competition in which the participants
play each other at most k times, with an arc from u to v if and only if u defeats v.
A player receives two points for each win, and one point for each tie (draw), that is
the case in which the two players do not play one another or the competition between
the players yields no result. With this marking system, player v obtains a total of pv

points.
A sequence P of non-negative integers in non-decreasing order is said to be realizable

if there exists a k-digraph with mark sequence P.
Any undefined terms are found in [3,5], and one should also take into account the

non-standard definitions and notations introduced in this paper.
In a k-digraph, if there are x1 arcs directed from vertex u to vertex v, and x2 arcs

directed from vertex v to vertex u, with 0 ≤ x1, x2 ≤ k and 0 ≤ x1 + x2 ≤ k, we denote
this by u(x1 − x2)v.

We have one of the following six possibilities between any two vertices u and v in a
2-digraph:
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(i) exactly two arcs directed from u to v, and no arc directed from v to u; this is
denoted by u(2− 0)v;

(ii) exactly two arcs directed from v to u, and no arc directed from u to v; this is
denoted by u(0− 2)v;

(iii) exactly one arc from u to v, and exactly one arc from v to u; this is denoted by
u(1− 1)v;

(iv) exactly one arc from u to v, and no arc from v to u; this is denoted by u(1−0)v;
(v) exactly one arc from v to u, and no arc from u to v; this is denoted by u(0−1)v;
(vi) no arc from u to v, and no arc from v to u; this is denoted by u(0− 0)v.

We note that a 1-digraph is an oriented graph, and a complete 1-digraph is a tour-
nament. A k-digraph D is said to be complete if there are exactly k arcs between any
pair of vertices of D.

A k-triple in a k-digraph is an induced k-subdigraph with three vertices, and is of
the form u(x1 − x2)v(y1 − y2)w(z1 − z2)u, where, for i = 1, 2, we have 0 ≤ xi, yi, zi ≤ k
and 0 ≤

∑2
i=1 xi,

∑2
i=1 yi,

∑2
i=1 zi ≤ k. Also, in a k-digraph a 1-triple is an induced

1-subdigraph with three vertices. A 1-triple is said to be transitive if it is of the form
u(1− 0)v(1− 0)w(0− 1)u, or u(1− 0)v(0− 1)w(0− 0)u, or u(1− 0)v(0− 0)w(0− 1)u,
or u(1 − 0)v(0 − 0)w(0 − 0)u, or u(0 − 0)v(0 − 0)w(0 − 0)u, otherwise it is said to be
intransitive. A k-triple is said to be transitive if it contains only transitive 1-triples,
and a k-digraph is said to be transitive if every of its k-triples is transitive.

A tournament is an irreflexive, complete, asymmetric digraph. The score sv of a
vertex v in a tournament is the number of arcs directed away from that vertex, and
the score sequence S(T ) of a tournament T is formed by listing the vertex scores in
non-decreasing order. The following criterion is given by Landau [4].

Theorem 1.1 ([4]). A sequence [si]
n
1 of non-negative integers in non-decreasing order

is the score sequence of a tournament if and only if

k∑
i=1

si ≥
(

k

2

)
, for 1 ≤ k ≤ n,

with equality for k = n.

With the marking system, the mark pv of a vertex v in a tournament is given by
pv = 2sv + n− 1, and Landau’s conditions become

k∑
i=1

pi ≥ k(n + k − 2), for 1 ≤ k ≤ n,

with equality for k = n.

An oriented graph is a digraph with no symmetric pairs of directed arcs and without
self-loops. Avery [2] defined av = n− 1 + d+(v)− d−(v), 0 ≤ av ≤ 2n− 2, as the score
of a vertex v in an oriented graph D, and A = [a1, a2, . . . , an] in non-decreasing order is
the score sequence of D. The following result is due to Avery, and a constructive proof
can be found in [8].



MARK SEQUENCES IN DIGRAPHS 3

Theorem 1.2 ([2]). A sequence A = [ai]
n
1 of non-negative integers in non-decreasing

order is the score sequence of an oriented graph if and only if

k∑
i=1

ai ≥ k(k − 1), for 1 ≤ k ≤ n,

with equality for k = n.

Once again, with the marking system, the mark pv of a vertex v in an oriented graph
is given by pv = av + n− 1, and Avery’s conditions become

k∑
i=1

pi ≥ k(n + k − 2), for 1 ≤ k ≤ n,

with equality for k = n.

2. Mark sequences in digraphs

A k-digraph D is said to be complete if there are exactly k arcs between every pair of
vertices of D. If in a k-digraph D there are exactly k arcs, which are parallel, between
every pair of vertices of D, then D is called a k tournament. A double tournament can
be treated as a tournament whose arcs have been duplicated.

The following result can be easily established, and is analogous to Theorem 2.2 of
Avery [2].

Lemma 2.1. If D and D′ are two k-digraphs with the same mark sequence, then D
can be transformed to D′

(i) by successively transforming 1-triples in one of the following ways:
either (a) by changing the intransitive 1-triple u(1 − 0)v(1 − 0)w(1 − 0)u to a

transitive 1-triple u(0−0)v(0−0)w(0−0)u, which has the same mark sequence,
or vice versa,

or (b) by changing an intransitive 1-triple u(1−0)v(1−0)w(0−0)u to a transitive
1-triple u(0 − 0)v(0 − 0)w(0 − 1)u, which has the same mark sequence, or vice
versa.

or (ii) by changing a double u(1− 1)v to a double u(0− 0)v which has the same mark
sequence, or vice versa.

We note here that, in a transitive tournament T , all its 1-triples are of the form u(1−
0)v(1− 0)w(0− 1)u, for all vertices u, v and w in T . Similarly, in a transitive oriented
graph, all the 1-triples are of the form u(1−0)v(1−0)w(0−1)u, u(1−0)v(0−1)w(0−0)u,
u(1−0)v(0−0)w(0−1)u, u(1−0)v(0−0)w(0−0)u, u(0−0)v(0−0)w(0−0)u. Clearly,
in the transitive double tournament D, we have u(2−0)v(2−0)w(0−2)u for all vertices
u, v and w in D.

Now, we have the following observation.

Theorem 2.1. Among all k-digraphs with a given mark sequence those with the fewest
arcs are transitive.
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Proof. Let P be a mark sequence, and let D be a realization of P that is not transitive.
Then D contains an intransitive 1-triple. If it is of the form u(1− 0)v(1− 0)w(1− 0)u,
it can be transformed by operation (i)(a) of Lemma 2.1 to a transitive 1-triple u(0 −
0)v(0− 0)w(0− 0)u with the same mark sequence and three arcs fewer. If D contains
an intransitive 1-triple of the form u(1− 0)v(1− 0)w(0− 0)u, it can be transformed by
operation (i)(b) of Lemma 2.1 to a transitive 1-triple of the form u(0−0)v(0−0)w(0−1)u
with the same mark sequence and one arc fewer. If D contains both types of intransitive
1-triples, then again they can be transformed to transitive 1-triples, and certainly with
lesser arcs. In case D contains a double u(1− 1)v, it can be transformed to u(0− 0)v
by operation (ii) of Lemma 2.1 with the same mark sequence and two arcs fewer. �

The following result is the existence criteria for realizability of mark sequences in
k-digraphs.

Theorem 2.2. A sequence [pi]
n
1 of non-negative integers in non-decreasing order is the

mark sequence of a k-digraph if and only if

t∑
i=1

pi ≥ kt(t− 1), for 1 ≤ t ≤ n,

with equality for t = n.

Proof. (i) Sufficiency. Let qi = pi−k(n−1). Then
∑n

i=1 qi = 0, and we may assume
that q1 ≤ q2 ≤ · · · ≤ qr < 0 ≤ qr+1 ≤ · · · ≤ qn.

Construct a network with vertex set {s, v1, v2, . . . , vn, t} of cardinality n+2 as follows.

(1) There are arcs (s, vi), 1 ≤ i ≤ r from the source s to vertex vi. The arc (s, vi)
has capacity −qi, 1 ≤ i ≤ r.

(2) Arcs (vi, t) from vi to the sink t, r + 1 ≤ i ≤ n. The arc (vi, t) has capacity −qi.
(3) For each pair vi, vj of distinct vertices (i 6= j), we have one arc from vi to vj and

one arc from vj to vi, each with capacity k.

It is easy to check that a k-digraph with mark sequence [pi]
n
i can be obtained from

an integral flow of value −
∑r

i=1 qi =
∑n

i=r+1 qi by reducing the flow on cycles of length
2 until one of the two edges has flow value zero.

In view of the max-flow-min-cut-Theorem, it suffices to check that each cut has
capacity at least

∑n
i=r+1 qi.

We thus assume that {s} ∪ C is a cut, C ⊆ {v1, v2, . . . , vn}, |C| = t, and that
|C ∩ {v1, v2, . . . , vr}| = a and |C ∩ {vr+1, vr+2, . . . , vn}| = b = t− a.

For its capacity, we have the following estimate.

cap({s} ∪ C) =
∑

i:i≤r,vi /∈C

−qi +
∑

i:i>r,vi∈C

qi + t(n− t) · k

≥ −
r∑

i=a+1

qi +
r+b∑

i=r+1

qi + t(n− t) · k.

This expression is bounded from below by −
∑r

i=1 qi =
∑n

i=r+1 qi if and only if

a∑
i=1

qi +
r+b∑

i=r+1

qi + t(n− t) · k ≥ 0,



MARK SEQUENCES IN DIGRAPHS 5

if and only if
a∑

i=1

pi +
r+b∑

i=r+1

pi + t(n− t) · k ≥ t · k(n− 1)

(since pi = k(n− 1) + qi), if and only if

a∑
i=1

pi +
r+b∑

i=r+1

pi ≥ kt(t− 1).

This latter inequality is certainly implied by the inequality
t∑

i=1

pi ≥ kt(t− 1),

since the pi are non-decreasing.

(ii) Necessity. Follows from the construction in (i) if we use the cuts
{s} ∪ {v1, v2, . . . , vt}, 1 ≤ t ≤ n. �

The following result is the existence criteria for realizability of mark sequences in
2-digraphs. The proof follows from Theorem 2.2. Here we give a different proof.

Theorem 2.3. A sequence [pi]
n
1 of non-negative integers in non-decreasing order is the

mark sequence of a 2-digraph if and only if

k∑
i=1

pi ≥ 2k(k − 1), for 1 ≤ k ≤ n, (2.3.1)

with equality for k = n.

Proof. Necessity. Let D be a 2-digraph with mark sequence [pi]
n
1 . Let W be the

2-subdigraph induced by any set of k vertices w1, w2, . . . , wk of D. Let α denote the
number of arcs of D that start in W and end outside W , and let β denote the number
of arcs of D that start outside of W and end in W . Note that each vertex w in W ,
and for every vertex v of D not in W , there are at most two arcs from v to w, so that
β ≤ 2k(n− k). Therefore, we have β ≤ 2nk − 2k2. Then,

k∑
i=1

pwi
=

k∑
i=1

(2n− 2 + d+
D(wi)− d−D(wi))

= 2nk − 2k +
k∑

i=1

d+
D(wi)−

k∑
i=1

d−D(wi)

= 2nk − 2k +

[
k∑

i=1

d+
W (wi) + α

]
−

[
k∑

i=1

d−W (wi) + β

]
= 2nk − 2k + (number of arcs of W ) + α− (number of arcs of W )− β

= 2nk − 2k + α− β (2.3.2)

≥ 2nk − 2k − β

≥ 2nk − 2k − 2nk + 2k2 = 2k(k − 1).
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Applying this result to the k vertices with marks p1, p2, . . . , pk yields the desired inequal-
ity. If k = n, then α = β = 0, and the required equality follows from Equation (2.3.2).

Sufficiency. This is proved by contradiction. Assume all sequences of non-negative
integers in non-decreasing order of length fewer than n satisfying conditions (2.3.1) be
the mark sequences. Let n be the smallest and with this choice of n, p1 be the smallest
possible such that P = [pi]

n
1 is not a mark sequence. Two cases arise,

(a) equality in (2.3.1) holds for some k < n, and
(b) each inequality in (2.3.1) is strict for all k < n.

Case (a). Assume k (k < n) is the smallest such that

k∑
i=1

pi = 2k(k − 1).

Clearly, the sequence [p1, p2, . . . , pk] satisfies conditions (2.3.1), and is a sequence with
length less than n. So, by assumption, [pi]

k
1 is a mark sequence of some 2-digraph, say

D1. Further,

m∑
i=1

(pk+i − 4k) =
m+k∑
i=1

pi −
k∑

i=1

ai − 4mk

≥ 2(m + k)(m + k − 1)− 2k(k − 1)− 4mk

= 2m(m− 1),

for each m, 1 ≤ m ≤ n − k, with equality when m = k. As m < n, thus by the
minimality of n, the sequence [pk+1 − 4k, pk+2 − 4k, . . . , pn − 4k] is the mark sequence
of some 2-digraph D2. The 2-digraph D of order n consisting of disjoint copies of D1

and D2, such that u(2 − 0)v for each vertex u ∈ D2 and for each vertex v ∈ D1, has
mark sequence P = [pi]

n
1 , which is a contradiction.

Case (b). Assume that each inequality in condition (2.3.1) is strict for all k < n.
Obviously, p1 > 0. Consider the sequence P ′ = [p′i]

n
1 , defined by

p′i =


pi − 1, if i = 1,

pi + 1, if i = n,

pi, otherwise.

Then,
k∑

i=1

p′i =

(
k∑

i=1

pi

)
− 1 > 2k(k − 1)− 1 ≥ 2k(k − 1),

for all k, 1 ≤ k < n, and

n∑
i=1

p′i =

(
n∑

i=1

pi

)
− 1 + 1 = 2n(n− 1).

This shows that the sequence P ′ = [p′i]
n
1 satisfies condition (2.3.1), and therefore is

a mark sequence of some 2-digraph D. Let u and v denote the vertices with marks
p′i = pi − 1 and p′n = pn − 1 respectively.
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If in D, u(0 − 2)v, or u(1 − 1)v, or u(1 − 0)v, or u(0 − 1)v, or u(0 − 0)v, then
transforming them respectively to u(0 − 1)v, or u(1 − 0)v, or u(2 − 0)v, or u(1 − 1)v,
or u(1− 0)v, we obtain a 2-digraph with mark sequence P , a contradiction.

In D, let u(2− 0)v. We have p′v ≥ p′u + 2. If there exists at least one vertex w ∈ D−
{u, v} such that the 2-triples formed by the vertices u, v and w contain an intransitive
1-triple of the form u(1− 0)v(1− 0)w(1− 0)u, or u(1− 0)v(1− 0)w(0− 0)u, or u(1−
0)v(0 − 0)w(1 − 0)u, transforming them respectively to u(1 − 0)v(0 − 0)w(0 − 0)u, or
u(1 − 0)v(0 − 0)w(0 − 1)u, or u(1 − 0)v(0 − 1)w(0 − 0)u, we obtain a 2-digraph with
mark sequence P , which is a contradiction.

Assume for each vertex w ∈ D−{u, v}, the 2-triples formed by the vertices u, v and
w contain only transitive 1-triples of the form

(i) u(1− 0)v(1− 0)w(0− 1)u,
(ii) u(1− 0)v(0− 1)w(1− 0)u,
(iii) u(1− 0)v(0− 1)w(0− 1)u,
(iv) u(1− 0)v(0− 0)w(0− 1)u,
(v) u(1− 0)v(0− 1)w(0− 0)u,
(vi) u(1− 0)v(0− 0)w(0− 0)u.

Then, clearly p′v < p′u + 2, since d+
u > d+

v and d−u < d−v , and we get a contradiction.
If (i) appears for every vertex w ∈ D − {u, v}, so that the 2-triples formed by u, v

and w is of the form u(2− 0)v(2− 0)w(0− 1)u, then

p′v = 2n− 2 + d+
v − d−v = 2n− 2 + 2(n− 2)− 2 = 4n− 8,

and
p′u = 2n− 2 + d+

u − d−u = 2n− 2 + n− 2 + 2 = 3n− 2.

Therefore, p′v = p′u + n− 6.
For n < 8, clearly p′v ≤ p′u + 1, a contradiction.
For n ≥ 8, we do have p′v ≥ p′u + 2, but then u(2 − 0)v(2 − 0)w(0 − 1)u can be

transformed to u(2− 0)v(1− 0)w(0− 2)u, and we get a 2-digraph with mark sequence
P , a contradiction.

If (ii) appears for every vertex w ∈ D − {u, v} such that the 2-triple formed by u, v
and w is of the form u(2− 0)v(0− 1)w(2− 0)u, then

p′v = 2n− 2 + d+
v − d−v = 2n− 2− (n− 2)− 2 = n− 2,

and
p′u = 2n− 2 + d+

u − d−u = 2n− 2− 2(n− 2) = 4.

Therefore, p′v − p′u = n− 6, so that p′v = p′u + n− 6.
For n < 8, clearly p′v ≤ p′u + 1, a contradiction.
For n ≥ 8, we have p′v ≥ p′u + 2. Then, transforming u(2 − 0)v(0 − 1)w(2 − 0)u

to u(2 − 0)v(0 − 2)w(1 − 0)u, we obtain a 2-digraph with mark sequence P , again a
contradiction. �

Some stronger inequalities on marks in 2-digraphs can be found in [7]. The next
result is the analogue of Havel–Hakimi theorem on degree sequences of simple graphs.

Theorem 2.4. Let P = [pi]
n
1 be a sequence of non-negative integers in non-decreasing

order, where for each i, 0 ≤ pi ≤ 2k(n− 1). Let P ′ be obtained from P by deleting the
greatest entry pn (= 2k(n − 1) − r, say) and (a) if r ≤ n − 1, reducing the r greatest
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remaining entries by one each, or (b) if r > n − 1, reducing the r − (n − 1) greatest
remaining entries by two each, and the 2n−2− r remaining entries by one. Then, P is
a mark sequence of some k-digraph if and only if P ′ (arranged in non-decreasing order)
is a mark sequence of some k-digraph.

Proof. Let P ′ be a mark sequence of some k-digraph D′. If P ′ is obtained from P as
in (a), then a k-digraph D with mark sequence P is obtained by adding a vertex v in
D′ such that v((k − 1) − 0)vi for those vertices vi in D′ with mark vi = pi − 1, and
v(k − 0)vi for those vertices vi in D′ with mark vi = pi. If P ′ is obtained from P as in
(b), then again a k-digraph D with mark sequence P is obtained by adding a vertex v
in D′ such that v((k − 1) − 1)vi for those vertices vi in D′ with mark vi = pi − 2 and
v((k − 1)− 0)vi for those vertices vi in D′ with mark vi = pi − 1.

Conversely, let P be the mark sequence of some k-digraph D. We assume D is
transitive, if not D becomes transitive by using Lemma 2.1. Let V = {v1, v2, . . . , vn}
be the vertex set of D, and let pn = 2k(n− 1)− r. If r ≤ n− 1, construct D such that
vn((k− 1)− 0)vi for all i, n− r ≤ i ≤ n− 1, and vn(k− 0)vj for all j, 1 ≤ j ≤ n− r− 1.
Clearly, D − vn realizes P ′ (arranged in non-decreasing order). If r > n− 1, construct
D such that vn((k− 1)− 1)vi for all i, 2n− r− 1 ≤ i ≤ n− 1, and vn((k− 1)− 0)vj for
all j, 1 ≤ j ≤ 2n− r − 2. Then again, D − vn realizes P ′ (arranged in non-decreasing
order). �

Theorem 2.4 provides an algorithm for determining whether a given non-decreasing
sequence P of non-negative integers is a mark sequence, and for constructing a corre-
sponding k-digraph. At each stage, we form P ′ according to Theorem 2.4 such that P ′

is in non-decreasing order. If pn = 2k(n − 1) − r, deleting pn, and performing (a) or
(b) of Theorem 2.4 according as r ≤ n− 1, or r > n− 1, we get P ′ = [p′1, p

′
2, . . . , p

′
n−1].

If the mark of vertex vi was decreased by one in this process, then the construction
yielded vn((k− 1)− 0)vi, and if it was decreased by two, then the construction yielded
vn((k − 1) − 1)vi. For a vertex vj whose mark remained unchanged, the construction
yielded vn(k − 0)vj. If this procedure is applied recursively, then it tests whether or
not P is a mark sequence, and if P is a mark sequence, then a k-digraph with mark
sequence P is constructed.

Theorem 2.5. Let P = [pi]
n
1 be a sequence of non-negative integers in non-decreasing

order, where for each i, 0 ≤ pi ≤ 2k(n− 1). Let P ′ be obtained from P by deleting the
greatest entry pn (= 2k(n− 1)− r, say) and (a) if r is even, say r = 2t, reducing t of
the next greatest entries by two, or (b) if r is odd, say r = 2t + 1, reducing t greatest
remaining entries by two, and reducing the greatest among the remaining entries by
one. Then P is a mark sequence if and only if P ′ (arranged in non-decreasing order)
is a mark sequence.

The proof follows by using the arguments as in Theorem 2.4.

Theorem 2.5 also provides an algorithm of checking whether or not a given non-
decreasing sequence P of non-negative integers is a mark sequence and for constructing
a corresponding k-digraph. At each stage, we form P ′ according to Theorem 2.5 such
that P ′ is in non-decreasing order. If pn = 2k(n − 1) − r, deleting pn, and performing
(a), or (b), of Theorem 2.5 according as r is even or odd, we get P ′ = [p′1, p

′
2, . . . , p

′
n−1].

If the mark of the vertex vi was decreased by two in the process, then the construction
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yielded vn((k − 1)− 1)vi, and if it was decreased by one, then the construction yielded
vn((k − 1) − 0)vi. For a vertex vj whose mark remained unchanged, the construction
yielded vn(k − 0)vj. If this procedure is applied recursively, then it tests whether or
not P is a mark sequence, and if P is a mark sequence, then a k-digraph with mark
sequence P is constructed.

3. Irreducible mark sequences

A k-digraph is reducible if it is possible to partition its vertices into two nonempty
sets V1 and V2 in such a way that there are exactly two arcs directed from every vertex
of V2 to each vertex of V1, and there is no arc from any vertex of V1 to any vertex of
V2. If D1 and D2 are k-digraphs having vertex sets V1 and V2 respectively, then the
k-digraph D consisting of all the arcs of D1, and all the arcs of D2, and exactly k arcs
directed from every vertex of D2 to each vertex of D1 is denoted by D = [D1, D2]. If
this is not possible, the k-digraph is said to be irreducible. Let D1, D2, . . . , Dh be
irreducible k-digraphs with disjoint vertex sets. Then D = [D1, D2, . . . , Dh] is the k-
digraph having all arcs of Di, 1 ≤ i ≤ h, and exactly k arcs from every vertex of Dj to
each vertex of Di, 1 ≤ i < j ≤ h. We call D1, D2, . . . , Dh the irreducible components
of D, and such a decomposition is called the irreducible decomposition of D. A mark
sequence P is said to be irreducible if all the k-digraphs D with mark sequence P are
irreducible.

The following result characterizes irreducible k-digraphs.

Theorem 3.1. If D is a connected k-digraph with mark sequence P = [pi]
n
1 , then D is

irreducible if and only if, for t = 1, 2, . . . , n− 1,

t∑
i=1

pi > kt(t− 1) (3.1.1)

and
n∑

i=1

pi = kn(n− 1). (3.1.2)

Proof. Let D be a connected, irreducible k-digraph having mark sequence P = [pi]
n
1 .

Condition (3.1.2) holds, since Theorem 2.2 has already established it for any k-digraph.
Condition (3.1.2) also implies that for any integer t < n, the k-subdigraph D′ induced
by any set of t vertices has a sum of marks in D′ equal to kt(t−1). Since D is irreducible,
therefore either there is an arc from at least one of these t vertices to at least one of
the other n− t vertices, or there is exactly one arc from at least one of the other n− t
vertices to at least one vertex in D′. Therefore, for 1 ≤ t < n− 1,

t∑
i=1

pi ≥ kt(t− 1) + 1 > kt(t− 1).

For the converse, suppose that conditions (3.1.1) and (3.1.2) hold. It follows from
Theorem 2.2 that there exists a k-digraph with mark sequence P = [pi]

n
1 . Assume such

a k-digraph is reducible, and let D = [D1, D2, . . . , Dh] be the irreducible component
decomposition of D. Since there are exactly k arcs from every vertex of Dj to each
vertex of Di, 1 ≤ i < j ≤ h, D is evidently connected. If m is the number of vertices
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in D1, then m < n, and
∑m

i=1 pi = km(m − 1), which is a contradiction to the given
hypothesis. Hence, D is irreducible. �

We note that a disconnected k-digraph is always irreducible, since if D1 and D2 are
the components of D, then there are no arcs between vertices of D1 and vertices of D2.

The following result can be easily established.

Theorem 3.2. If D is a k-digraph with mark sequence P = [pi]
n
1 , and

∑r
i=1 pi =

kr(r − 1),
∑t

i=1 pi = kt(t − 1), and
∑q

i=1 pi > kq(q − 1), for r + 1 ≤ q ≤ t − 1,
0 ≤ r < t ≤ n, then the k-subdigraph induced by the vertices vr+1, vr+2, . . . , vt is an
irreducible component of D with mark sequence [pi − kr]tr+1.

The mark sequence P is irreducible if D is irreducible, and the irreducible components
of P are the mark sequences of the irreducible components of D. That is, if D =
[D1, D2, . . . , Dh] is the irreducible component decomposition of a k-digraph D with
mark sequence P , then the irreducible components Pi of P are the mark sequences of
the k-subdigraphs induced by the vertices of Di, 1 ≤ i ≤ h. Theorem 3.2 shows that
the irreducible components of P are determined by the successive values of k for which

t∑
i=1

pi = kt(t− 1), 1 ≤ t ≤ n. (3.2.1)

This is illustrated by the following examples of 2-digraphs.

(i) Let P = [1, 3, 9, 12, 15, 20]. Equation (3.2.1) is satisfied for k = 2, 5, 6. Therefore,
the irreducible components of P are [0], [1, 4, 7], [0] in ascending order.

(ii) Let P = [0, 5, 8, 11, 17, 19]. Here Equation (3.2.1) is satisfied for k = 1, 4, 6.
Therefore, the irreducible components of P are [0], [1, 4, 7] and [1, 3] in ascending order.

A mark sequence is uniquely realizable if it belongs to exactly one k-digraph. The
characterization of uniquely realizable score sequences in tournaments is given by Avery
[1], and that of oriented graphs by S.Pirzada [6]. Now, as an observation, we have the
following result.

Theorem 3.3. The mark sequence P of a k-digraph D is uniquely realizable if and only
if every irreducible component of P is uniquely realizable.

The next result determines which irreducible mark sequences in 2-digraphs are uniqu-
ely realizable.

Theorem 3.4. The only irreducible mark sequences in 2-digraphs that are uniquely
realizable are [0] and [1, 3].

Proof. Let P be an irreducible mark sequence, and let D with vertex set V be a 2-
digraph having mark sequence P. Then D is irreducible. Therefore, D cannot be par-
titioned into 2-subdigraphs D1, D2, . . . , Dk such that there are exactly two arcs from
every vertex of Dα to each vertex of Dβ, 1 ≤ β < α ≤ k. First assume D has n ≥ 3
vertices. Let W = {w1, w2, . . . , wr} and U = {u1, u2, . . . , us} respectively be any two
disjoint subsets of V such that r + s = n. Since D is irreducible, (1) there do not exist
exactly two arcs from every wi (1 ≤ i ≤ r) to each uj (1 ≤ j ≤ s), and (2) there do
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not exist exactly two arcs from every uj (1 ≤ j ≤ s) to each wi (1 ≤ i ≤ s). First of all
we consider Case (1), and then Case (2) follows by using the same argument as in (1).

Case (1). There exists at least one vertex, say w1, in W , and at least one vertex,
say u1, in U such that either (a) w1(1− 1)u, or (b) w1(0− 2)u1, or (c) w1(1− 0)u1, or
(d) w1(0− 1)u1, or (e) w1(0− 0)u1.

Assume wi(2− 0)uj for each i (1 ≤ i ≤ r) and j (1 ≤ j ≤ s), except for i = j = 1.

If in D, either (a) w1(1−1)u1, or (e) w1(0−0)u1, then transforming them respectively
to w1(0− 0)u1, or w1(1− 1)u1, gives a 2-digraph D′ with the same mark sequence. In
both cases, D and D′ have different number of arcs, and thus are non-isomorphic.

(b) Let w1(0−2)u1. Since there are only six possibilities between w1 and wi, therefore,
for any other vertex wi in W we have one of the following cases:

(i) w1(2−0)wi(2−0)u1(2−0)w1, (ii) w1(1−1)wi(2−0)u1(2−0)w1, (iii) w1(1−0)wi(2−
0)u1(2− 0)w1, (iv) w1(0− 1)wi(2− 0)u1(2− 0)w1, (v) w1(0− 0)wi(2− 0)u1(2− 0)w1,
(vi) w1(0− 2)wi(2− 0)u1(2− 0)w1.

Transforming (i)–(v) respectively to w1(1− 0)wi(1− 0)u1(1− 0)w1, w1(0− 1)wi(1−
0)u1(1 − 0)w1, w1(0 − 0)wi(1 − 0)u1(1 − 0)w1, w1(0 − 2)wi(1 − 0)u1(1 − 0)w1, w1(0 −
1)wi(1 − 0)u1(1 − 0)w1, gives a 2-digraph with the same mark sequence. In all these
five cases, D and D′ have different number of arcs, and thus are non-isomorphic.

If (vi) occurs in D, and also wq(2− 0)wi for 1 ≤ i < q ≤ r, then the 2-digraph D is
reducible with irreducible components D1, D2, . . . , Dr respectively having vertex sets
V1 = {u1, u2, . . . , us, w1}, V2 = {w2}, V3 = {w3}, . . . , Vk = {wr}.

Also for any vertex uj in U , since there are only six possibilities between u1 and uj,
we have one of the following cases:

(vii) w1(0− 2)u1(0− 2)uj(0− 2)w1, (viii) w1(0− 2)u1(1− 1)uj(0− 2)w1, (ix) w1(0−
2)u1(1−0)uj(0−2)w1, (x) w1(0−2)u1(0−1)uj(0−2)w1, (xi) w1(0−2)u1(0−0)uj(0−2)w1,
(xii) w1(0− 2)u1(2− 0)uj(0− 2)w1.

If any one of (vii)–(xi) appears in D, then making respectively the transformations
w1(0−1)u1(0−1)uj(0−1)w1, w1(0−1)u1(1−0)uj(0−1)w1, w1(0−1)u1(2−0)uj(0−1)w1,
w1(0− 1)u1(1− 1)uj(0− 1)w1, w1(0− 1)u1(1− 0)uj(0− 1)w1, we get a 2-digraph with
the same mark sequence, but the numbers of arcs in D and D′ are different, and thus
D and D′ are non-isomorphic.

If (xii) and any of (i)–(v) appear simultaneously, then there exists a 2-digraph D′

with the same mark sequence, but D and D′ have different numbers of arcs. Thus, D
and D′ are non-isomorphic.

If (vi) and (xii) appear simultaneously, and also wq(2 − 0)wi for all 1 ≤ i < q ≤ r,
then D is reducible with the irreducible components D1, D2, . . . , Dr having vertex sets
V1 = {u1, u2, . . . , us, w1}, V2 = {w2}, V3 = {w3}, . . . , Vr = {wr} respectively.

(c) Let w1(1 − 0)u1. For any vertex wi in W , since there are only six possibilities
between w1 and wi, we have one of the following cases:

(i) w1(2−0)wi(2−0)u1(0−1)w1, (ii) w1(1−1)wi(2−0)u1(0−1)w1, (iii) w1(1−0)wi(2−
0)u1(0− 1)w1, (iv) w1(0− 1)wi(2− 0)u1(0− 1)w1, (v) w1(0− 0)wi(2− 0)u1(0− 1)w1,
(vi) w1(0− 2)wi(2− 0)u1(0− 1)w1.

For (i)–(v) making respectively the transformations w1(1 − 0)wi(1 − 0)u1(0 − 2)w1,
w1(0−1)wi(1−0)u1(0−2)w1, w1(0−1)wi(1−0)u1(0−2)w1, w1(1−1)wi(1−0)u1(2−0)w1,
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w1(0− 1)wi(1− 0)u1(2− 1)w1, we obtain a 2-digraph D′ with the same mark sequence,
but the numbers of arcs in D and D′ are not equal. Thus, D and D′ are non-isomorphic.

Now, for any other vertex uj in U , there are only six possibilities between u1 and uj,
and we have one of the following cases:

(vii) w1(1− 0)u1(0− 2)uj(0− 2)w1, (viii) w1(1− 0)u1(1− 1)uj(0− 2)w1, (ix) w1(1−
0)u1(1−0)uj(0−2)w1, (x) w1(1−0)u1(0−1)uj(0−2)w1, (xi) w1(1−0)u1(0−0)uj(0−2)w1,
(xii) w1(1− 0)u1(2− 0)uj(0− 2)w1.

If any one of (vii)–(xi) appears, then making respectively the transformations w1(2−
0)u1(0− 1)uj(0− 1)w1, w1(2− 0)u1(1− 0)uj(0− 1)w1, w1(2− 0)u1(2− 0)uj(0− 1)w1,
w1(2 − 0)u1(1 − 1)uj(0 − 1)w1, w1(2 − 0)u1(1 − 0)uj(0 − 1)w1, we get a 2-digraph D′

with the same mark sequence, but D and D′ have different numbers of arcs. Thus, D
and D′ are non-isomorphic.

If (xii) and one of (i)-(v) appears simultaneously, we once again arrive to the con-
clusion that there exists a 2-digraph D′ with the mark sequence P , but D and D′ are
non-isomorphic.

Thus, we are left with the case when (vi) and (xii) appear simultaneously, and also
wq(2 − 0)wi for all 1 ≤ i < q ≤ r. But, then D is reducible having the irreducible
components D1, D2, . . . , Dr with vertex sets V1 = {u1, u2, . . . , us, w1}, V2 = {w2}, . . . ,
Vr = {wr} respectively.

(d) Let w1(0−1)u1. Since there are only six possibilities between w1 and wi, therefore
for any other vertex wi in W , we have one of the following cases:

(i) w1(2−1)wi(2−0)u1(1−0)w1, (ii) w1(1−1)wi(2−0)u1(1−0)w1, (iii) w1(1−0)wi(2−
0)u1(1− 0)w1, (iv) w1(0− 1)wi(2− 0)u1(1− 0)w1, (v) w1(0− 0)wi(2− 0)u1(1− 0)w1,
(vi) w1(0− 2)wi(2− 0)u1(1− 0)w1.

If any one of (i)–(v) appears, then making respectively the transformations w1(1 −
0)wi(1− 0)u1(0− 0)w1, w1(0− 1)wi(1− 0)u1(0− 0)w1, w1(0− 0)wi(1− 0)u1(0− 0)w1,
w1(0−2)wi(1−0)u1(0−0)w1, w1(0−1)wi(1−0)u1(0−0)w1, gives a 2-digraph D′ with
the same mark sequence, but the numbers of arcs in D and D′ are different so that D
and D′ are non-isomorphic.

If (vi) appears in D, and also if wq(2 − 0)wi for all 1 ≤ i < q ≤ r, then D becomes
reducible.

Now, for any other vertex uj in U , there are only six possibilities between u1 and uj,
and we have one of the following cases:

(vii) w1(0− 1)u1(0− 2)uj(0− 2)w1, (viii) w1(0− 1)u1(1− 1)uj(0− 2)w1, (ix) w1(0−
1)u1(1−0)uj(0−2)w1, (x) w1(0−1)u1(0−1)uj(0−2)w1, (ix) w1(0−1)u1(0−0)uj(0−2)w1,
(xii) w1(0− 1)u1(2− 0)uj(0− 2)w1.

If any one of (vii)–(xi) appears in D, then making respectively the transformations
w1(0−0)u1(0−1)uj(0−1)w1, w1(0−0)u1(1−0)uj(0−1)w1, w1(0−0)u1(2−0)uj(0−1)w1,
w1(0− 0)u1(0− 0)uj(0− 1)w1, w1(0− 0)u1(1− 0)uj(0− 1)w1, gives a 2-digraph D′ with
the same mark sequence, but the numbers of arcs in D and D′ are different so that D
is not isomorphic to D′.

If (xii) and any one of (i)–(v) appear simultaneously, then once again there exists a
2-digraph D′ with the same mark sequence, but D and D′ have different numbers of
arcs so that D and D′ are non-isomorphic.

If (vi) and (xii) appear simultaneously, and also wq(2 − 0)wi for all 1 ≤ i < q ≤ r,
then D is reducible.
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Now, let D have exactly two vertices say u and v. The only irreducible mark sequences
realizing D are [2, 2], and [1, 3]. Obviously the sequence [2, 2] has two non-isomorphic
realizations namely u(0−0)v and u(1−1)v, and [1, 3] has the unique realization u(0−1)v.
Thus P = [1, 3] is uniquely realizable.

If D has only one vertex, then P = [0], which evidently is uniquely realizable. �

Combining Theorem 3.3 and Theorem 3.4, we have the following result for 2-digraphs.

Theorem 3.5. The mark sequence P of a 2-digraph is uniquely realizable if and only
if every irreducible component of P is of the form [0] or [1, 3].

We observe that in the mark sequence P = [4i−4]n1 every irreducible component is [0],
and thus P is uniquely realizable. We note that the mark sequences of tournaments are
not uniquely realizable. To see this, consider the mark sequence P = [2, 4, 6] realizing
the tournament T . The other 2-digraph D realized by P has vertex set {v1, v2, v3} with
v1(0− 0)v2(0− 0)v3(2− 0)v1.

However, we observe that a mark sequence of a tournament T is uniquely realizable
if and only if the mark sequence of the double tournament of T is uniquely realizable.

Now, we have the following generalization of Theorem 3.5, and the proof follows by
using arguments as in Theorem 3.5.

Theorem 3.6. The mark sequence P of a k-digraph is uniquely realizable if and only
if every irreducible component of P is of the form [0] or [1, 2k − 1].
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