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CLASSIFICATION OF BIJECTIONS BETWEEN

321- AND 132-AVOIDING PERMUTATIONS

ANDERS CLAESSON AND SERGEY KITAEV

Abstract. It is well-known, and was first established by Knuth in 1969, that the
number of 321-avoiding permutations is equal to that of 132-avoiding permutations.
In the literature one can find many subsequent bijective proofs of this fact. It turns
out that some of the published bijections can easily be obtained from others. In
this paper we describe all bijections we were able to find in the literature and show
how they are related to each other via “trivial” bijections. We classify the bijections
according to statistics preserved (from a fixed, but large, set of statistics), obtaining
substantial extensions of known results. Thus, we give a comprehensive survey and
a systematic analysis of these bijections.

We also give a recursive description of the algorithmic bijection given by Richards
in 1988 (combined with a bijection by Knuth from 1969). This bijection is equivalent
to the celebrated bijection of Simion and Schmidt (1985), as well as to the bijection
given by Krattenthaler in 2001, and it respects 11 statistics — the largest number
of statistics any of the bijections respects.
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1. Introduction and main results

Given two different bijections between two sets of combinatorial objects, what does
it mean to say that one bijection is better than the other? Perhaps, a reasonable
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Catalan structures.
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answer would be “The one that is easier to describe.” While the ease of description
and how easy it is to prove properties of the bijection using the description is one
aspect to consider, an even more important aspect, in our opinion, is how well the
bijection reflects and translates properties of elements of the respective sets.

A natural measure for a bijection between two sets of permutations, then, is how
many statistics the bijection preserves. Obviously, we don’t have an exhaustive list of
permutation statistics, but we have used the following list as our “base” set:

asc, des, exc, ldr, rdr, lir, rir, zeil, comp, lmax, lmin, rmax, rmin,

head, last, peak, valley, lds, lis, rank, cyc, fix, slmax .

These are defined in Section 2. To make sure we find all statistics that a given bijection
“essentially” preserves, we include in our list of statistics those that are obtained
from our “basic” statistics by applying to them the trivial bijections on permutations
(reverse=r, complement=c, inverse=i) and their compositions. Moreover, for each
statistic stat, in this extended list we consider two other statistics: n-stat(π) = n −
stat(π) and m-stat(π) = n + 1 − stat(π), where n is the length of the permutation.
The meaning of n-stat or m-stat is often “non-stat”; for example, n-fix counts non-
fixed-points.

This way each basic statistic gives rise to 24 statistics. The base set contains 23
statistics, giving a total of 552 statistics. There are, however, many statistics in that
set that are equal as functions; for instance, des = asc.r, and peak = peak.r = valley.c,
where we use a dot to denote composition of functions. The classes of equal statistics
are listed in the Appendix (Section 7). To prove the correctness of this partitioning
is a trivial but very lengthy task. Thus we omit giving that proof. Choosing one
representative from each of the classes of equal statistics results in a final set of 148
statistics; we call this set STAT.

In the theorems below, the statistics presented are linearly independent. An ex-
ample of linear dependence among the statistics over permutations avoiding 132 is
lmin− lmax + n-des− head = 0. The results below are also maximal in that they can-
not be non-trivially extended using statistics from STAT. That is, adding one more
pair of equidistributed statistics from STAT to any of the results would create a linear
dependency among the statistics.

A permutation π = a1a2 . . . an avoids the pattern 321 if there are no indices i < j < k
such that ak < aj < ai. It avoids 132 if there are no indices i < j < k such that
ai < ak < aj . Avoidance of other patterns is defined similarly.

Knuth [8, 9] showed that the number of permutations avoiding a pattern of length
3 is independent of the pattern. This number is the n-th Catalan number, Cn =

1
n+1

(

2n

n

)

. To prove this, it suffices, due to the symmetry afforded by the trivial bijec-

tions on permutations, to consider one representative from {123, 321} and one from
{132, 231, 213, 312}. That symmetry also means that, to prove this bijectively, it
suffices to find a bijection from the set of permutations avoiding a pattern in one
of the classes to permutations avoiding a pattern in the other. This turns out to
be a non-trivial problem. Several authors have, however, succeeded in doing so
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[5, 6, 10, 12, 13, 15, 16, 17]; we call those bijections

Knuth, Knuth–Rotem, Simion–Schmidt, Knuth–Richards,

West, Krattenthaler, Billey–Jockusch–Stanley–Reifegerste,

Elizalde–Deutsch, and Mansour–Deng–Du .

They are described in Section 3. In Section 4 we define, using recursion, a “new”
bijection called Φ. It turns out that Φ is related, via trivial bijections, to the bijection
by Knuth and Richards.

The main results of this paper are contained in the following three theorems. The
first theorem substantially extends what was previously known about statistics pre-
served by the bijections. In bold we mark the results known before this paper — there
is a total of 7 pairs of those; the remaining 68 pairs are new.

Theorem 1. The following results are maximal in the sense that adding one more

pair of equidistributed statistics from STAT to any of the results would create a linear

dependency among the statistics. In bold we mark the results that were known; also,

we indicate the sets between which a bijection acts.

(11) Knuth–Richards, 132-avoiding permutations → 123-avoiding permutations

valley.i valley lmin ldr.i head.i comp.r rank ldr lir.i lir rmax
valley valley.i lmin ldr head comp.r rank ldr.i slmax.c slmax.i.r head.i.r

(11) Simion–Schmidt, 123-avoiding permutations → 132-avoiding permutations

valley valley.i lmin ldr head comp.r rank ldr.i slmax.c slmax.i.r head.i.r
valley valley.i lmin ldr head comp.r rank ldr.i lir lir.i rmin

(11) Krattenthaler, 123-avoiding permutations → 132-avoiding permutations

peak.i peak rmax zeil last.i.r comp.r rank.r.c rdr slmax.r.i slmax.r last
valley valley.i lmin ldr head comp.r rank ldr.i lir lir.i rmin

(11) Mansour–Deng–Du, 321-avoiding permutations → 231-avoiding permutations

valley peak.i rmin rir last comp rank.r lir.i slmax.c.r slmax.i head.i
valley peak.i rmin rir last comp rank.r lir.i rdr ldr.i lmin

(9) Knuth–Rotem, 321-avoiding permutations → 132-avoiding permutations

valley.i peak exc slmax head slmax.r.c.i rir.i lir last.i
valley.i valley des rdr ldr.i zeil lmax rmin m-ldr

(9) Billey–Jockusch–Stanley–Reifegerste, 321-avoiding permutations → 132-avoiding permutations

valley peak.i exc slmax.i head.i slmax.r.c rir lir.i last
valley valley.i des zeil ldr rdr rmin lmax m-ldr.i

(7) West, 123-avoiding permutations → 132-avoiding permutations

valley.i exc.r slmax.i.r slmax.c ldr ldr.i head
valley.i asc lir.i comp rmax ldr.i head
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(5) Knuth, 321-avoiding permutations → 132-avoiding permutations

exc fix lir.i lir lis

exc fix rmin lmax n-rank

(1) Elizalde-Deutsch, 321-avoiding permutations → 132-avoiding permutations

fix

fix

The numbers in parentheses in Theorem 1 indicate the number of statistics re-
spected. It turns out that bijections with the same number are related via “trivial”
bijections. The next theorem makes this precise.

Theorem 2. The following relations among bijections between 321- and 132-avoiding

permutations hold:

reverse ◦Φ−1 = inverse ◦ Simion–Schmidt ◦ reverse

= inverse ◦ Krattenthaler ◦ reverse ◦ inverse

= inverse ◦ reverse ◦ Mansour–Deng–Du

= Knuth–Richards−1 ◦ reverse

and

Billey–Jockusch–Stanley–Reifegerste = inverse ◦ Knuth–Rotem ◦ inverse .

Also, there are no other relations among the bijections and their inverses via the trivial

bijections that do not follow from the ones above.

Thus if we regard all bijections as bijections from 321- to 132-avoiding permutations
— applying the transformations in Theorem 2 — then we get the following condensed
version of Theorem 1.

Theorem 3. For bijections from 321- to 132-avoiding permutations we have the fol-

lowing equidistribution results. These results are maximal in the sense that adding one

more pair of equidistributed statistics from STAT to any of the results would create a

linear dependency among the statistics.

(11) Φ, Knuth–Richards, Krattenthaler, Mansour–Deng–Du, Simion–Schmidt

valley peak.i rmin rir last comp rank.r lir.i slmax.c.r slmax.i head.i
valley valley.i lmin ldr head comp.r rank ldr.i lir lir.i rmin

(9) Knuth–Rotem, Billey–Jockusch–Stanley–Reifegerste

valley peak.i exc slmax.i head.i slmax.r.c rir lir.i last
valley valley.i des zeil ldr rdr rmin lmax m-ldr.i

(7) West

peak.i exc slmax.i slmax.r.c rir lir.i last
valley.i asc lir.i comp rmax ldr.i head
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(5) Knuth

exc fix lir.i lir lis
exc fix rmin lmax n-rank

(1) Elizalde-Deutsch

fix
fix

In Section 2 we define the relevant statistics; in Section 3 we describe the bijections;
in Section 4 we give a new recursive description of the bijection by Knuth and Richards;
in Section 5 we prove Theorem 2; and in Section 6 we prove Theorem 1.

2. Permutation statistics

The permutation π on {1, 2, . . . , n} that sends 1 to a1, 2 to a2, etc, we denote
π = a1a2 . . . an, and we call ai the i-th letter of π. A permutation statistic is simply a
function from permutations to N. For example, the permutation statistic asc is defined
as follows: an ascent in π is a letter that is followed by a larger letter; in other words,
an ai such that ai < ai+1. By asc(π) we denote the number of ascents in π. Similarly,
a descent is a letter followed by a smaller letter, and by des(π) we denote the number
of descents in π.

For words α and β over the alphabet N we define that α ≺ β if for all letters a in
α and all letters b in β we have a < b. For instance, 42 ≺ 569. A component of π is a
nonempty segment τ of π such that π = στρ with σ ≺ τ ≺ ρ, and such that if τ = αβ
and α ≺ β then α or β is empty. By comp(π) we denote the number of components
of π. For instance, comp(213645) = 3, the components being 21, 3, and 645.

A left-to-right minimum of π is a letter with no smaller letter to the left of it; the
number of left-to-right minima is denoted lmin(π). The statistics right-to-left min-

ima (rmin), left-to-right maxima (lmax), and right-to-left maxima (rmax) are defined
similarly.

In the following table we define the remaining statistics that are of interest to us.
For reference we include the statistics already defined in the preceding few paragraphs.

asc = number of ascent;

comp = number of components;

des = number of descents;

exc = number of excedances: positions i such that ai > i;

fix = number of fixed points: positions i such that ai = i;

head = first element: head(π) = a1;

last = last element: last(π) = an;

ldr = length of the leftmost decreasing run: largest i such that a1 > a2 > · · · >
ai;

lds = length of the longest decreasing sequence in a permutation;

lir = length of the leftmost increasing run: largest i such that a1 < a2 < · · · < ai;
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lis = length of the longest increasing sequence in a permutation;

lmax = number of left-to-right maxima;

lmin = number of left-to-right minima;

peak = number of peaks: positions i in π such that ai−1 < ai > ai+1;

rank = largest k such that ai > k for all i ≤ k (see [6]);

rdr = lir.r = length of the rightmost decreasing run;

rmax = number of right-to-left maxima;

rmin = number of right-to-left minima;

rir = ldr.r = length of the rightmost increasing run;

slmax = the number of letters to the left of second left-to-right maximum in π∞:
largest i such that a1 ≥ a1, a1 ≥ a2, . . . , a1 ≥ ai;

valley = number of valleys: positions i in π such that ai−1 > ai < ai+1;

zeil = rdr.i = length of the longest subword n(n− 1) . . . i (see [18]).

Let us also describe some of the derived statistics:

comp.r = number of reverse components: a reverse component is a nonempty seg-
ment τ of π such that π = στρ with σ ≻ τ ≻ ρ, and such that if τ = αβ
and α ≻ β then α or β is empty;

head.i = position of the smallest letter;

last.i = position of the largest letter;

lir.i = zeil.c = largest i such that 12 . . . i is a subword in π;

peak.i = number of letters ai that are to the right of both ai − 1 and ai + 1;

valley.i = number of letters ai that are to the left of both ai − 1 and ai + 1.

3. Bijections in the literature

In this section we describe the bijections, and we try to stay close to the original
sources when doing so. In what follows Sn(τ) is the set of τ -avoiding permutations of
length n, and Dn is the set of Dyck paths of length 2n.

3.1. Knuth’s bijection, 1973. Knuth [8, pp. 242–243] gives a bijection from 312-
avoiding permutations to “stack words”. Formulated a bit differently, it amounts
to a bijection from 132-avoiding permutations to Dyck paths. Knuth [9, pp. 60–
61] also gives a bijection from 321-avoiding permutations to Dyck paths. By letting
permutations that are mapped to the same Dyck path correspond to each other, a
bijection between 321- and 132-avoiding permutation is obtained — we call it Knuth’s
bijection.

We start by describing the bijection from 132-avoiding permutations to Dyck paths.
We shall refer to it as the standard bijection. (This bijection is the same as the one
given by Krattenthaler [10], who, however, gives a non-recursive description of it; see
Section 3.6.) Let π = πLnπR be a 132-avoiding permutation of length n. Each letter
of πL is larger than any letter of πR, or else a 132 pattern would be formed. Let π′

L be
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the permutation of 1, 2, . . . , |πL| obtained from πL by subtracting |πR| from each of its
letters. We define the standard bijection f recursively by f(π) = uf(π′

L)df(πR) and
f(ǫ) = ǫ. Here, and elsewhere, ǫ denotes the empty word/permutation. Thus, under
the standard bijection, the position of the largest letter in a 132-avoiding permutation
determines the first return to x-axis and vice versa. For instance,

f(7564213) = udf(564213) = uduf(1)df(4213) = uduuddudf(213)

= uduudduduf(21)d = uduudduduudf(1)d

= uduudduduududd

=
•

??
? •

??
? •

??
?

•
??

? •

��� •
??

? •
??

? •

��� •

��� •
??

?

•

��� •

��� •

��� •

��� •

As mentioned, Knuth also gives a bijection from 321-avoiding permutations to Dyck
paths: Given a 321-avoiding permutation, start by applying the Robinson-Schensted-

Knuth correspondence to it. This classic correspondence gives a bijection between
permutations π of length n and pairs (P,Q) of standard Young tableaux of the same
shape λ ⊢ n. As is well known, the length of the longest decreasing subword in π
corresponds to the number of rows in P (or Q). Thus, for 321-avoiding permutations,
the tableaux P and Q have at most two rows.

The insertion tableau P is obtained by reading π = a1a2 . . . an from left to right
and, at each step, inserting ai to the partial tableau obtained thus far. Assume that
a1, a2, . . . , ai−1 have been inserted. If ai is larger than all the elements in the first row
of the current tableau, place ai at the end of the first row. Otherwise, let m be the
leftmost element in the first row that is larger than ai. Place ai in the square that
is occupied by m, and place m at the end of the second row. The recording tableau
Q has the same shape as P and is obtained by placing i, for i from 1 to n, in the
position of the square that in the construction of P was created at step i (when ai

was inserted). For example, the pair of tableaux corresponding to the 321-avoiding
permutation 3156247 we get by the following sequence of insertions:

(

ǫ ǫ
)

→
(

3 1
)

→

(

1 1
3 2

)

→

(

15 13
3 2

)

→

(

156 134
3 2

)

→

(

126 134
35 25

)

→

(

124 134
356 256

)

→

(

1247 1347
356 256

)

.

The pair of tableaux (P,Q) is then turned into a Dyck path D. The first half, A, of
the Dyck path we get by recording, for i from 1 to n, an up-step if i is in the first row
of P , and a down-step if it is in the second row. Let B be the word obtained from Q
in the same way but interchanging the roles of u and d. Then D = ABr where Br is
the reverse of B. Continuing with the example above we get

D =
•

??
? •

??
? •

??
?

•

��� •

��� • ??
? • ??

? •

��� • ??
? • ??

?

•

��� •

��� •

��� •

��� •
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Elizalde and Pak [6] use this bijection together with a slight modification of the
standard bijection to give a combinatorial proof of a generalization of the result by
Robertson et al. [14] that fixed points have the same distribution on 123- and 132-
avoiding permutations. The modification they use is to reflect the Dyck path obtained
from the standard bijection with respect to the vertical line crossing the path in the
middle. Alternatively, the path can be read from the permutation diagram as described
in [6]. We follow Elizalde and Pak and apply the same modification. After reflection,
the path f(7564213) above is the same as the path D in the preceding example.
Thus the image of the 321-avoiding permutation 3156247 under what we call Knuth’s
bijection is the 132-avoiding permutation 7564213.

3.2. Knuth–Rotem’s bijection, 1975. Rotem [15] gives a bijection between 321-
avoiding permutations and Dyck paths, described below. Combining it with the stan-
dard bijection gives a bijection from 321- to 132-avoiding permutations — we call it
Knuth–Rotem’s bijection.

Let Bn be the set of sequences b1b2 . . . bn satisfying the two conditions

(1) b1 ≤ b2 ≤ · · · ≤ bn;
(2) 0 ≤ bi ≤ i− 1, for i = 1, 2, . . . , n.

Let π = p1p2 . . . pn be a 321-avoiding permutation. From it we construct a sequence
b1b2 . . . bn in Bn: Let b1 = 0. For i = 2, . . . , n, let bi = bi−1 if pi is a left-to-right
maximum in π, and let bi = pi otherwise.

For the permutation π = 2513476 we get the sequence 0013446. We represent this
sequence by a “bar-diagram”, which in turn can be viewed as a lattice path from (0, 0)
to (7, 7):

7

6 • •

5

4 • • •

3 • •

2

1 • •

0 • • •

7 •

6 • •

5 •

4 • • •

3 • •

2 •

1 • •

0 • • •

Rotating that path counter clockwise by 3π/4 radians we get

•
??

? •
??

? •
??

?

• ??
? •

��� • ??
? • ??

? •

��� •

��� • ??
?

•

��� •

��� •

��� •

��� •

In the previous subsection we saw that this path is f(7564213) where f is the standard
bijection. Thus the image of the 321-avoiding permutation 2513476 under Knuth–
Rotem’s bijection is the 132-avoiding permutation 7564213.

3.3. Simion–Schmidt’s bijection, 1985. Consider the following algorithm:
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Input: A permutation σ = a1a2 . . . , an in Sn(123).
Output: A permutation τ = c1c2 . . . cn in Sn(132).

1 c1 := a1; x := a1

2 for i = 2, . . . , n:
3 if ai < x:
4 ci := ai; x := ai

5 else:
6 ci := min{ k | x < k ≤ n, k 6= cj for all j < i }

The map σ 7→ τ is the Simion–Schmidt bijection [16]. As an example, the 123-avoiding
permutation 6743152 maps to the 132-avoiding permutation 6743125.

We remark that Fulmek [7] has given a simple diagrammatic description of what
is essentially the Simion–Schmidt bijection. To be more precise, the bijection Fulmek
describes is (complement ◦ Simion–Schmidt ◦ complement).

3.4. Knuth–Richards’ bijection, 1988. Richards’ bijection [13] from Dyck paths
to 123-avoiding permutations is given by the following algorithm:

Input: A Dyck path P = b1b2 . . . b2n.
Output: A permutation π = a1a2 . . . an in Sn(123).

1 r := n + 1; s := n + 1; j := 1

2 for i = 1, . . . , n:
3 if bj is an up-step:
4 repeat s := s− 1; j := j + 1 until bj is a down-step
5 as := i
6 else:

7 repeat r := r − 1 until ar is unset
8 ar := i
9 j := j + 1

The Knuth–Richards bijection, from Sn(132) to Sn(123), is defined by

Knuth–Richards = Richards ◦ f,

where f is the standard bijection from 132-avoiding permutations to Dyck paths, and
Richards is the algorithm just described. As an example, applying Knuth–Richards’
bijection to 6743125 yields 5743612.

3.5. West’s bijection, 1995. West’s bijection [17] is induced by an isomorphism
between generating trees. The two isomorphic trees generate 123- and 132-avoiding
permutations, respectively. We give a brief description of that bijection: Given a
permutation π = p1p2 . . . pn−1 and a positive integer i ≤ n, let

πi = p1 . . . pi−1 n pi . . . pn−1;
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we call this inserting n into site i. With respect to a fixed pattern τ , we call site i of
π in Sn−1(τ) active if the insertion of n into site i creates a permutation in Sn(τ).

For i = 0, . . . , n − 1, let ai+1 be the number of active sites in the permutation
obtained from π by removing the i largest letters. The signature of π is the word

a0a1 . . . an−1.

West [17] showed that for 123-avoiding permutations, as well as for 132-avoiding per-
mutations, the signature determines the permutation uniquely. This induces a natural
bijection between the two sets. For example, the 123-avoiding permutation 536142
corresponds to the 132-avoiding permutation 534612 — both have the same signature,
343322.

3.6. Krattenthaler’s bijection, 2001. Krattenthaler’s bijection [10] uses Dyck
paths as intermediate objects. Permutations that are mapped to the same Dyck path
correspond to each other under this bijection.

The first part of Krattenthaler’s bijection is a bijection from 123-avoiding permu-
tations to Dyck paths. Reading right to left, let the right-to-left maxima in π be m1,
m2, . . . , ms, so that

π = wsms . . . w2m2w1m1,

where wi is the subword of π in between mi+1 and mi. Since π is 123-avoiding, the
letters in wi are in decreasing order. Moreover, all letters of wi are smaller than those
of wi+1.

To define the bijection, read π from right to left. Any right-to-left maximum mi is
translated into mi −mi−1 up-steps (with the convention m0 = 0). Any subword wi

is translated into |wi| + 1 down-steps, where |wi| denotes the number of letters of wi.
Finally, the resulting path is reflected in a vertical line through the center of the path.
Alternatively, we could have generated the Dyck path from right to left.

The second part of Krattenthaler’s bijection is a bijection from 132-avoiding permu-
tations to Dyck paths. Read π = p1p2 . . . pn in Sn(132) from left to right and generate
a Dyck path. When pj is read, adjoin, to the path obtained thus far, as many up-steps
as necessary to reach height hj + 1, followed by a down-step to height hj (measured
from the x-axis); here hj is the number of letters in pj+1 . . . pn which are larger than
pj . This procedure can be shown to be equivalent to the standard bijection from
132-avoiding permutations to Dyck paths.

For instance, Krattenthaler’s bijection sends the permutation 536142 in S6(123) to
the permutation 452316 in S6(132) — both map to the same Dyck path,

•
??

? •
??

?

•

��� •
??

? •

��� •
??

? •
??

?

•

��� •

��� •

��� • ??
?

•

��� •

3.7. Billey–Jockusch–Stanley–Reifegerste’s bijection, 2002. The following fig-
ure illustrates the Billey–Jockusch–Stanley–Reifegerste bijection as it was presented
by Reifegerste [12].
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8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8

It pictures the 321-avoiding permutation π = 13256847 and the 132-avoiding per-
mutation π′ = 78564213, two permutations that correspond to each other under that
bijection.

Let π = a1a2 . . . an be a 321-avoiding permutation, and let E be the set of pairs

E = { (i, ai) | i is an excedance }.

For each pair (i, ai) in E, we place a square, called an E-square, in position (i, n+1−ai)
in an n×n permutation matrix. (E uniquely determines π.) Next we shade each square
(a, b) of the matrix where there are no E-squares in the region {(i, j) | i ≥ a, j ≥ b},
thus obtaining a Ferrers diagram. Finally, we get the 132-avoiding permutation π′

corresponding to π by placing dots (circles), row by row starting from the first row,
in the leftmost available shaded square such that there are no two dots in any column
or row. If (i, j) contains a dot, then π′(i) = j.

Reifegerste [12, Thm. 3.1] showed that the map π 7→ π′ is the composition of a bijec-
tion (between 321-avoiding permutations and Dyck paths) given by Billey, Jockusch
and Stanley [2] and the standard bijection (from 132-avoiding permutations to Dyck
paths). Therefore we call π 7→ π′ the Billey–Jockusch–Stanley–Reifegerste bijection.

3.8. Elizalde-Deutsch’s bijection, 2003. Here is an outline of a bijection by Eli-
zalde and Deutsch [5]: Map 321- and 132-avoiding permutation bijectively to Dyck
paths; use an automorphism Ψ on Dyck paths; and match permutations with equal
paths.

We start by describing the automorphism Ψ. Let P be a Dyck path of length
2n. Each up-step of P has a corresponding down-step in the sense that the path
between the up-step and the down-step forms a proper Dyck path. Match such pairs
of steps. Let σ in S2n be the permutation defined by σi = (i + 1)/2 if i is odd, and
σi = 2n + 1 − i/2 otherwise. For i from 1 to 2n, consider the σi-th step of P . If the
corresponding matching step has not yet been read, define the i-th step of Ψ(P ) to be
an up-step, otherwise let it be a down-step. For example,

Ψ(uuduudududddud) = uuuddduduuddud.

The bijection ψ from 321-avoiding permutations to Dn is defined as follows. Any
permutation π in Sn can be represented as an n× n array with crosses in the squares
(i, π(i)). Given the array of π in Sn(321), consider the path with down- and right-steps
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along the edges of the squares that goes from the upper-left corner to the lower-right
corner of the array leaving all the crosses to the right and remaining always as close
to the main diagonal as possible. Then the corresponding Dyck path is obtained from
this path by reading an up-step every time the path moves down, and a down-step
every time the path moves to the right. For example,

ψ(2314657) = uuduudududddud.

The bijection φ from 132-avoiding permutations to Dn is the standard bijection
followed by a reflection of the path with respect to a vertical line through the middle
of the path. For example,

φ(7432516) = uuduudududddud.

The Elizalde-Deutsch bijection, from Sn(321) to Sn(132), is defined by

Elizalde–Deutsch = φ−1 ◦ Ψ−1 ◦ ψ.

As an example, it sends 2314657 to 2314657.

3.9. Mansour–Deng–Du’s bijection, 2006. Let i be a positive integer smaller than
n. Let si, for i = 1, . . . , n− 1, denote the adjacent transposition (i i+ 1) in Sn. For
any permutation π of length n, the canonical reduced decomposition of π is

π = σ1σ2 . . . σk,

where σi = shi
shi−1 . . . sti , hi ≥ ti, 1 ≤ i ≤ k and 1 ≤ h1 < h2 < · · · < hk ≤ n− 1. For

example, 415263 = (s3s2s1)(s4s3)(s5).
Mansour, Deng and Du [11] use canonical reduced decompositions to construct a

bijection between Sn(321) and Sn(231). They show that a permutation is 321-avoiding
precisely when ti ≥ ti−1 + 1 for 2 ≤ i ≤ k [11, Thm. 2]. They also show that a
permutation is 231-avoiding precisely when ti ≥ ti−1 or ti ≥ hi−j + 2 for 2 ≤ i ≤ k
and 1 ≤ j ≤ i− 1 [11, Thm. 15]. Using these two theorems they build their bijection,
which is composed of two bijections: one from Sn(321) to Dn, and one from Sn(231)
to Dn.

For a Dyck path P , we define the (x + y)-labeling of P as follows: each cell in
the region enclosed by P and the x-axis, whose corner points are (i, j), (i+ 1, j − 1),
(i+2, j) and (i+1, j+1) is labeled by (i+ j)/2. If (i−1, j−1) and (i, j) are starting
points of two consecutive up-steps, then we call the cell with leftmost corner (i, j) an
essential cell and the up-step ((i− 1, j − 1), (i, j)) its left arm. We say that two cells
are connected if they share at least one point.

We define the zigzag strip of P as follows: If there is no essential cell in P , then the
zigzag strip is empty. Otherwise, the zigzag strip is the longest run of connected cells
(from left to right) that starts at the rightmost essential cell and is such that each
cell in the run shares an edge with P (it lies on the border of P). For example, the
zigzag strip of the Dyck path uuduuududddudduduuddud in Figure 1 is the shaded cell
labeled by 9, while for the Dyck path uuduuududdd (obtained from that in Figure 1
by ignoring the steps 15 to 22) the zigzag strip is the run of shaded connected cells
labeled by 4, 5, 5, 5 and 6.
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Let Pn,k be a Dyck path of semi-length n containing k essential cells. We define its
zigzag decomposition as follows: The zigzag decomposition of Pn,0 is the empty set.
The zigzag decomposition of Pn,1 is the zigzag strip. If k ≥ 2, then we decompose
Pn,k = Pn,k−1Q, where Q is the zigzag strip of Pn,k and Pn,k−1 is the Dyck path obtained
from P by deleting Q. Reading the labels of Q from left to right, ignoring repetitions,
we get a sequence of numbers {i, i+ 1, . . . , j}, and we associate Q with the sequence
of adjacent transpositions σk = sjsj−1 . . . si. For Pn,i with i ≤ k − 1 repeat the above
procedure to get σk−1, . . . , σ2, σ1. The zigzag decomposition of Pn,k is then given by
σ = σ1σ2 . . . σk.

From the zigzag decomposition we get a 321-avoiding permutation π whose canonical
reduced decomposition is σ. For the Dyck path P11,4 in Figure 1 we have

π = (s3s2s1)(s4s3)(s6s5s4)(s9) = (4, 1, 5, 7, 2, 3, 6, 8, 10, 9, 11),

which is a permutation in S11(321).
We will now describe a map from Dyck paths to 231-avoiding permutations. For

a Dyck path P , we define (x − y)-labeling of P as follows (this labeling seems to be
considered for the first time in [1]): each cell in the region enclosed by P and the
x-axis, whose corner points are (i, j), (i+1, j−1), (i+2, j) and (i+1, j+1) is labeled
by (i− j + 2)/2.

Let us say that a cell is on the x-axis if it shares a point with the x-axis. We define the
trapezoidal strip of P as follows: If there is no essential cell in P , then the trapezoidal
strip is empty. Otherwise, the trapezoidal strip is the longest run of connected cells
on the x-axis (from left to right) that starts at the rightmost essential cell on the x-
axis. For example, the trapezoidal strip of the Dyck path uuduuududddudduduuddud
in Figure 2 is the shaded cell labeled by 9, while for the Dyck path uuduuududdd
(obtained from that in Figure 2 by ignoring the steps 15 to 22) the zigzag strip is the
downmost shaded strip with labels 1, 2, 3, 4, 5 and 6.
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Let Pn,k be a Dyck path of semi-length n containing k essential cells. We define
its trapezoidal decomposition as follows: The trapezoidal decomposition of Pn,0 is the
empty set. The trapezoidal decomposition of Pn,1 is the trapezoidal strip. If k ≥ 2,
then we decompose Pn,k into Pn,k = Q1uQ2d, where u is the left arm of the rightmost
essential cell that touches the x-axis, d is the last down step of Pn,k, and Q1 and Q2

carry the labels in Pn,k. Reading the labels of the trapezoidal strip of Pn,k from left
to right we get a sequence {i, i + 1, . . . , j}, and we set σk = sjsj−1 . . . si. Repeat the
above procedure for Q1 and Q2. Suppose the trapezoidal decomposition of Q1 and Q2

are σ′ and σ′′ respectively, then the trapezoidal decomposition for Pn,k is σ = σ′σ′′σk.
From the trapezoidal decomposition we get a 231-avoiding permutation π whose

canonical reduced decomposition is σ. For the Dyck path P11,4 in Figure 2 we have

π = (s3s2)(s4s3s2)(s6s5s4s3s2s1)(s9) = (7, 1, 5, 4, 2, 3, 6, 8, 10, 9, 11),

which is a permutation in S11(231).
Together, the two maps involving Dyck paths described in this subsection gives a

bijection from 321-avoiding to 231-avoiding permutations.

4. A recursive description of the Knuth–Richards bijection

In this section we define a recursive map from 231- to 321-avoiding permutations.
That this map is the Knuth–Richards bijection will be proved in Section 5.3.

We call a permutation π indecomposable if comp(π) = 1; otherwise we call π de-

composable. Equivalently, if we define the sum ⊕ on permutations by σ ⊕ τ = στ ′,
where τ ′ is obtained from τ by adding |σ| to each of its letters, then a permutation is
indecomposable if it cannot be written as the sum of two nonempty permutations.

We shall describe, separately for 231- and 321-avoiding permutations, how to gen-
erate the indecomposable permutations, thus inducing a bijection we call Φ.

For a permutation of length n to be 231-avoiding everything to the left of n has to
be smaller than anything to the right of n. Clearly, if there is at least one letter to the
left of n, then the permutation is decomposable (everything to the right of n, including
n, would form the last component). Thus a 231-avoiding permutation of length n is
indecomposable if and only if it starts with n.

To build an indecomposable 231-avoiding permutation of length n from a 231-
avoiding permutation of length n − 1 we simply prepend n. Let us call this map
α. For instance, α(2134) = 52134.

Given k indecomposable 231-avoiding permutations π1, π2, . . . , πk, we build the
corresponding permutation by summing: π1 ⊕ π2 ⊕ · · · ⊕ πk. Given k indecomposable
321-avoiding permutations π1, π2, . . . , πk we build the corresponding permutation by
summing in reverse order: πk ⊕ πk−1 ⊕ · · · ⊕ π1.
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Here is how we build an indecomposable 321-avoiding permutation π′ of length n
from a 321-avoiding permutation π of length n− 1:

π = 2 4 1 3 5 7 6 9 8

2 4 10 1 3 5 7 6 9 8

π′ = 2 4 7 1 3 5 9 6 10 8

In the first row we box the left-to-right maxima to the right of 1 that are not right-to-
left minima. Here, those are 7 and 9. In the second row we insert a new largest letter,
10, immediately to the left of 1 and box it. Finally, in the third row, we cyclically
shift the sequence of boxed letter one step to the left, thus obtaining π′. Let us call
this map β.

The induced map Φ, between 231- and 321-avoiding permutations is then formally
defined by

Φ(ǫ) = ǫ; Φ(α(σ)) = β(Φ(σ)); Φ(σ ⊕ τ) = Φ(τ) ⊕ Φ(σ).

As an example, consider the permutation 5213476 in S6(231). Decompose it using ⊕
and α:

5213476 = 52134 ⊕ 21 = α(2134) ⊕ α(1) = α(α(1) ⊕ 1 ⊕ 1) ⊕ α(1).

Reverse the order of summands and change each α to β:

β(1) ⊕ β(1 ⊕ 1 ⊕ β(1)) = 21 ⊕ β(1243) = 21 ⊕ 41253 = 2163475.

In conclusion, Φ(5213476) = 2163475.

5. Proof of Theorem 2

In the following five subsections we shall prove the equalities of Theorem 2 —
one subsection for each equality. The last statement of Theorem 2, that there can
be no other relations than the ones presented, is easily realized as follows: The set
STAT is by definition closed with respect to the trivial bijections, meaning that if
f is a trivial bijection and stat ∈ STAT, then stat.f ∈ STAT. Thus, two bijections
related by trivial bijections will preserve the same number of statistics from STAT.
Consequently, bijections preserving different number of statistics (from STAT) cannot
be related by trivial bijections.

5.1. Simion–Schmidt versus Φ. We prepare for this proof by characterizing the
Simion–Schmidt bijection in terms of left-to-right minima. (That characterization
can be said to be implicit in [16].) We also characterize the bijection Φ in terms of
right-to-left minima.

Definition 4. For a permutation π = a1a2 . . . an of length n, define

lmin(π) =
{

(i, ai)
∣

∣ ai is a left-to-right minima in π
}

as the set of positions of left-to-right minima together with their values. Also, define

Sn/ lmin as the set of equivalence classes with respect to the equivalence induced by
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lmin: that is, π is equivalent to τ if lmin(π) = lmin(τ). Similarly, define rmin, lmax

and rmax.

The cardinality of lmin(Sn) = {lmin(π) | π ∈ Sn} is easily seen to be Cn, the n-th
Catalan number. The following lemma strengthens that observation:

Lemma 5. Each equivalence class in Sn/ lmin contains exactly one permutation that

avoids 123 and one that avoids 132. In other words, both Sn(123) and Sn(132) are

complete sets of representatives for Sn/ lmin.

Proof. Given a set L in lmin(Sn), this is how we construct the corresponding permuta-
tion τ = c1c2 . . . cn in Sn(132): For i from 1 to n, if (i, a) is in L let ci = a; otherwise,
let cj be the smallest letter not used that is greater than all the letters used thus far.

Given a set L in lmin(Sn), this is how we construct the corresponding permutation
π = a1a2 . . . an in Sn(123): For i from 1 to n, if (i, c) is in L let ai = c; otherwise, let
aj be the largest letter not used thus far.

It is easy to see that filling in the letters in any other way than the two ways described
will either change the sequence of left-to-right minima or result in an occurrence of
132 or 123. �

As an illustration of the preceding proof, with L = {(1, 6), (3, 3), (4, 2), (6, 1)} we
get 67324158 in S8(132) and 68327154 in S8(123).

Using Lemma 5 we can thus define a bijection between Sn(123) and Sn(132) by
letting π correspond to σ if lmin(π) = lmin(σ). However, this map is not new — it is
the Simion–Schmidt bijection:

Lemma 6. For π in Sn(123) and σ in Sn(132), the following two statements are

equivalent:

(1) Simion–Schmidt(π) = σ;
(2) lmin(π) = lmin(σ).

Indeed, looking at the algorithm defining the Simion–Schmidt bijection we see that
the variable x keeps track of the smallest letter read thus far; lines 3 and 4 express
that left-to-right minima are left unchanged; and line 6 assigns cj to be the smallest
letter not used that is greater than all the letters used thus far (as described above).

Here is a characterization of Φ in terms of rmin:

Lemma 7. For π in Sn(231) and σ in Sn(321), the following two statements are

equivalent:

(1) Φ(π) = σ;
(2) (n+ 1 − i, a) ∈ rmin(π) ⇐⇒ (n+ 1 − a, i) ∈ rmin(σ).

Proof. That the latter statement characterizes a bijection from Sn(231) to Sn(321)
follows from Lemma 5, so all we need to show is that Φ is that bijection.

We use induction on n, the length of the permutation. The case n = 1 is obvious:
the right-to-left minimum (1, 1) goes to the right-to-left minimum (1, 1). For the
induction step we distinguish two cases: π is decomposable and π is indecomposable
(see Section 4 for definitions).
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Suppose that π is indecomposable, and hence π = α(σ) for some σ. By definition,
Φ(π) = β(Φ(σ)). The claim follows from the following equivalences:

(n + 1 − i, a) ∈ rmin(π) ⇐⇒ (n− i, a) ∈ rmin(σ)

⇐⇒ (n− a, i) ∈ rmin Φ(σ)

⇐⇒ (n+ 1 − a, i) ∈ rmin Φ(π).

Here, the first equivalence is immediate from the definition of α — recall that all
α does is to insert a new largest letter in front of σ. The second equivalence holds
by induction. The third equivalence follows from the definition of β: the cyclic shift
involves no right-to-left minima and the space for the new letter is created to the left
of the letter 1; therefore, 1 is added to the indices of right-to-left minima.

Suppose π = τ ⊕ ρ is decomposable, and let k = |τ | and ℓ = |ρ|. By definition,
Φ(π) = Φ(ρ) ⊕ Φ(τ). We have

(n+ 1 − i, a) ∈ rmin(π)

⇐⇒ (n + 1 − i, a) ∈ rmin(τ) or (ℓ+ 1 − i, a− k) ∈ rmin(ρ) def’ of ⊕

⇐⇒ (k + 1 − (i− ℓ), a) ∈ rmin(τ) or (ℓ+ 1 − i, a− k) ∈ rmin(ρ) n = k + ℓ

⇐⇒ (k + 1 − a, i− ℓ) ∈ rmin Φ(τ) or (ℓ+ 1 − (a− k), i) ∈ rmin Φ(ρ) induction

⇐⇒ (k + 1 − a, i− ℓ) ∈ rmin Φ(τ) or (n + 1 − a, i) ∈ rmin Φ(ρ) n = k + ℓ

⇐⇒ (n + 1 − a, i) ∈ rmin(Φ(ρ) ⊕ Φ(τ)) def’ of ⊕

from which the claim follows. �

We now turn to the proof of the first identity of Theorem 2. It is equivalent to

inverse ◦ Simion–Schmidt ◦ reverse ◦ Φ ◦ reverse = identity .

With all the preparation we have done, this is easy to prove:

(i, a) ∈ lmin(π) ⇐⇒ (n+ 1 − i, a) ∈ rmin . reverse(π)

⇐⇒ (n+ 1 − a, i) ∈ rmin .Φ. reverse(π)

⇐⇒ (a, i) ∈ lmin . reverse .Φ. reverse(π)

⇐⇒ (a, i) ∈ lmin . Simion–Schmidt . reverse .Φ. reverse(π)

⇐⇒ (i, a) ∈ lmin . inverse . Simion–Schmidt . reverse .Φ. reverse(π).

5.2. Simion–Schmidt versus Krattenthaler. In Lemma 6 we characterized the
Simion–Schmidt bijection. We shall do the same for Krattenthaler’s bijection. We
start by looking at the standard bijection from 132-avoiding permutations to Dyck
paths (as defined in Section 3.1).

Let P be a Dyck path of length 2n; index its up- and down-steps 1 through n. For
instance,

P = u1u2u3d1d2u4u5d3d4u6d5d6.

A peak in a Dyck path is an up-step directly followed by a down-step. Define

peak(P ) = { (i, j) | uidj is a peak in P }.
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For instance, with P as before, we have peak(P ) = {(3, 1), (5, 3), (6, 5)}.

Lemma 8. Let f be the standard bijection from Sn(132) to Dn. For π in Sn(132) and

P in Dn, the following two statements are equivalent:

(1) f(π) = P ;

(2) (i, n+ 1 − a) ∈ lmin(π) ⇐⇒ (a, i) ∈ peak(P ).

Proof. Clearly, knowing peak(P ) is equivalent to knowing the path P . Thus the second
statement determines a bijection (by Lemma 5). It remains to show that the first
statement implies the second.

We shall use induction on the length of the permutation. Assume that πr is indecom-
posable (with respect to ⊕). It is easy to see that π ends with its largest letter. Hence,
π = τn for some τ in Sn−1(132). Let Q = f(τ). Then P = f(π) = uf(τ)d = uQd and

(i, n+ 1 − a) ∈ lmin(π) ⇐⇒ (i, n+ 1 − a) = (i, n− (a− 1)) ∈ lmin(τ)

⇐⇒ (a− 1, i) ∈ peak(Q)

⇐⇒ (a, i) ∈ peak(P ).

Assume that πr is decomposable, so πr = ρr ⊕ τ r for some τ in Sk(132) and ρ in
Sℓ(132) with both k and ℓ positive and k + ℓ = n. Let Q = f(τ) and R = f(ρ). Then
P = f(π) = f(τ)f(ρ) = QR and

(i, n + 1 − a) ∈ lmin(π)

⇐⇒ (i, k + 1 − a) ∈ lmin(τ) or (i− k, n+ 1 − a) ∈ lmin(ρ)

⇐⇒ (i, k + 1 − a) ∈ lmin(τ) or (i− k, ℓ+ 1 − (a− k)) ∈ lmin(ρ)

⇐⇒ (a, i) ∈ peak(Q) or (a− k, i− k) ∈ peak(R)

⇐⇒ (a, i) ∈ peak(P ),

which completes the proof. �

Lemma 9. Let K be Krattenthaler’s bijection from Sn(123) to Dn as described in

Section 3.6. For π in Sn(123) and P in Dn, the following two statements are equivalent:

(1) K(π) = P ;

(2) (i, n+ 1 − a) ∈ rmax(π) ⇐⇒ (a, i) ∈ peak(P ).

Proof. This is an easy consequence of K’s definition. �

Putting Lemma 8 and Lemma 9 together we get the desired characterization of
Krattenthaler’s bijection.

Lemma 10. For π in Sn(123) and σ in Sn(132), the following two statements are

equivalent:

(1) Krattenthaler(π) = σ;
(2) (n+ 1 − i, a) ∈ rmax(π) ⇐⇒ (n + 1 − a, i) ∈ lmin(σ).
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Having established this characterization, the rest is easy. From the sequence of
equivalences

(i, a) ∈ lmin(π)

⇐⇒ (n+ 1 − i, a) ∈ rmin . reverse(π)

⇐⇒ (a, n+ 1 − i) ∈ lmax . inverse . reverse(π)

⇐⇒ (n+ 1 − a, n+ 1 − i) ∈ rmax . reverse . inverse . reverse(π)

⇐⇒ (i, a) ∈ lmin .Krattenthaler . reverse . inverse . reverse(π)

⇐⇒ (i, a) ∈ lmin . Simion–Schmidt−1 .Krattenthaler . reverse . inverse . reverse(π)

it follows that

Simion–Schmidt−1 ◦ Krattenthaler ◦ reverse ◦ inverse ◦ reverse = identity

as desired.

5.3. Knuth–Richards versus Φ. Consider the Dyck path P = uudduududuuddd of
semi-length n = 7. Let us index its up- and down-steps 1 through n:

P = u1u2d1d2u3u4d3u5d4u6u7d5d6d7.

From this path we shall construct a permutation π = a1a2 . . . an. Scan P ’s down-steps
from left to right: if di is preceded by an up-step uj, then let an+1−j = i; otherwise,
let j be the largest value for which aj is unset, and let aj = i. In our example, this
leads to:

(1) d1 is preceded by the up-step u2; let a8−2 = a6 = 1.
(2) d2 is preceded by a down-step; let j = 7 and a7 = 2.
(3) d3 is preceded by the up-step u4; let a8−4 = a4 = 3.
(4) d4 is preceded by the up-step u5; let a8−5 = a3 = 4.
(5) d5 is preceded by the up-step u7; let a8−7 = a1 = 5.
(6) d6 is preceded by a down-step; let j = 5 and a5 = 6.
(7) d7 is preceded by a down-step; let j = 2 and a2 = 7.

The resulting permutation is π = 5743612. What we have just described is the algo-
rithm defining Richard’s bijection. Lines 3, 4 and 5 of that algorithm cover the case
when di is preceded by an up-step; lines 6, 7 and 8 the case when di is preceded by a
down-step.

Plainly, if di is preceded by an up-step ui then uidj is a peak in P . Moreover,
an+1−j = i is a left-to-right minimum in the corresponding permutation. To be precise
we have the following lemma.

Lemma 11. Let Richards be Richards’ bijection from Sn(123) to Dn as described in

Section 3.4. For π in Sn(123) and P in Dn, the following two statements are equivalent:

(1) Richards(P ) = π;
(2) (n+ 1 − i, a) ∈ lmin(π) ⇐⇒ (i, a) ∈ peak(P ).

Using Lemma 8 we get a characterization of the Knuth–Richards bijection:



20 ANDERS CLAESSON AND SERGEY KITAEV

Lemma 12. For π in Sn(132) and σ in Sn(123), the following two statements are

equivalent:

(1) Knuth–Richards(π) = σ;
(2) (i, a) ∈ lmin(π) ⇐⇒ (a, i) ∈ lmin(σ).

The rest is easy. We have

(i, a) ∈ lmin(π) ⇐⇒ (a, i) ∈ lmin .Knuth–Richards−1(π)

⇐⇒ (n+ 1 − a, i) ∈ rmin . reverse .Knuth–Richards−1(π)

⇐⇒ (n+ 1 − i, a) ∈ rmin .Φ. reverse .Knuth–Richards−1(π)

⇐⇒ (i, a) ∈ lmin . reverse .Φ. reverse .Knuth–Richards−1(π)

and hence

reverse ◦Φ ◦ reverse ◦ Knuth–Richards−1 = identity .

5.4. Simion–Schmidt versus Mansour–Deng–Du. We will show that

Mansour–Deng–Du = reverse ◦ Simion–Schmidt ◦ reverse .

Due to Lemma 6 it suffices to prove the following lemma.

Lemma 13. For π in Sn(132) and π′ in Sn(123), the following two statements are

equivalent:

(1) Mansour–Deng–Du(π) = π′;

(2) rmin(π) = rmin(π′).

Proof. Assume that π and π′ are as above. According to the proofs of Corollaries [11,
Cor. 4] and [11, Cor. 16], the positions of right-to-left minima in π and π′ are the same
and, in particular, rmin(π) = rmin(π′). Thus we only need to prove that right-to-left
minima are preserved in value under the Mansour–Deng–Du bijection. Equivalently,
we need to prove that non-right-to-left-minima (n-rmin) are preserved in value.

One can see that a letter a is an n-rmin in π if and only if the reduced decomposition
of π contains a run of adjacent transpositions (sa−1 . . . ). In particular, a = 1 is always
an n-rmin. Thus π = σ1 . . . σk and π′ = σ′

1 . . . σ
′

k for k = n−rmin(π). That is, π and π′

have the same number of runs of adjacent transpositions in the reduced decompositions
and it remains to show that the first letter of σj equals the first letter of σ′

j whenever
1 ≤ j ≤ k.

Let P be the intermediate Dyck path and consider its (x+y)- and (x−y)-labellings
of P . Note that cells touching the x-axis receive the same labels under both labellings.
From this, and the way that the zigzag and trapezoidal decompositions are constructed,
it immediately follows that σk and σ′

k begin with the same letter, namely, the label C
of the rightmost cell.

We now proceed by induction on the number of essential cells. If there are no
essential cells, then the statement is true. Suppose we have k > 0 essential cells.
Remove the rightmost zigzag strip to get a Dyck path P ′. Note that |P ′| = |P | − 2
and that P ′ has k − 1 essential cells. Clearly, the permutation corresponding to the
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(x + y)-labeling of P ′ is τ = σ1 . . . σk−1. Let the permutation corresponding to the
(x− y)-labeling of P ′ be τ ′′ = σ′′

1 . . . σ
′′

k−1. From the properties of the (x− y)-labeling,
a cell labeled Q 6= C is the rightmost cell of a trapezoidal strip in P if and only if Q is
the rightmost cell of a trapezoidal strip in P ′. This means that σ′

i and σ′′

i begin with
the same letter for 1 ≤ i ≤ k − 1. The desired result now follows from the induction
hypothesis applied to P ′, τ and τ ′′. �

5.5. Billey–Jockusch–Stanley–Reifegerste versus Knuth–Rotem. We will
show the following equality:

(1) Billey–Jockusch–Stanley–Reifegerste = inverse ◦ Knuth–Rotem ◦ inverse .

The Billey–Jockusch–Stanley–Reifegerste bijection is defined by values and positions
of excedances. Suppose that π = a1a2 . . . an is a 321-avoiding permutation and that
π′ is the image of π under the Billey–Jockusch–Stanley–Reifegerste bijection. The
only permutation of length n without excedances is 12 . . . n. As is easy to see, that
permutation is fixed by both sides of identity (1). So we can assume that π has at
least one excedance. Let π have an excedance a at position i, denoted (i, a). Also,
let (j, b) be the excedance closest to the left of (i, a). If no such excedance exists we
define j = 0. Note that b < a, since otherwise an occurrence of 321 would be formed.

Consider the Ferrers diagram corresponding to π in the definition of the Billey–
Jockusch–Stanley–Reifegerste bijection (shaded in the figure in Subsection 3.7 on
page 10). The point (j + 1, n + 2 − a) is a corner in that diagram. It is sent to
the left-to-right minimum (j + 1, n + 2 − a) in π′. Thus, we need to prove that an
excedance (i, a) corresponds to a left-to-right minimum (j + 1, n + 2 − a) under the
right hand side of identity (1).

Because a > i, b > j and b < a it follows that both i and j are strict non-excedances

in π−1 with the property that there are no other strict non-excedances between i and
j. (A strict non-excedance between i and j would either bring an occurrence of 321
in π or in π−1, or an occurrence of an excedance between a and b in π.) Thus the
sequence β, obtained when applying Knuth–Rotem’s bijection to π−1 will have the
letter j + 1 in positions b = aj , aj+1, . . . , ai−1 and the letter i + 1 in position a = ai.
Let P be the Dyck path corresponding to β. It remains to show that f−1, the inverse
of the standard bijection, sends P to a permutation having the letter j+ 1 in position
n + 2 − a. After applying inverse we would then have the letter n+ 2 − a in position
j + 1, the same outcome as when applying the Billey–Jockusch–Stanley–Reifegerste
bijection.

For the remainder of this proof we use induction on n, the length of the permutation
π. The smallest permutation that has an excedance is π = 21. In this case, i = 1,
j = 0 and a = 2. See Figure 3A. After rotating that diagram counter clockwise by
3π/4 radians we read the Dyck path udud. The inverse of the standard bijection,
f−1, sends udud to the permutation π′ = 21. It has the letter j + 1 = 1 in position
n + 2 − a = 2 as desired.

Assume that n > 2. Let D be the diagram constructed from the sequence (in Bn)
corresponding to π. Let P be the Dyck path we read from D. Let (r, s) be the
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coordinate in D corresponding to the first return to the x-axis in P . In particular,
r = s. Consider the following four cases.

Case 1: s = 0. This case is sketched in Figure 3B. Note that a > i + 1, and we
can remove the first step and the last step of the path, thus shifting the path one
step to the left. This corresponds to adjoining n to the right side of the permutation
obtained inductively from the reduced Dyck path. Moreover, the number of steps is
now 2(n − 1), i and j are unchanged, while a becomes a − 1. From the induction
hypothesis it follows that j + 1 will be in position (n− 1) + 2 − (a− 1) = n + 2 − a,
as desired.

Case 2: n > s > i. From the definition of the standard bijection we see that the
permutation f−1(P ) is of the form π′ = σnτ where each letter of σ is larger than any
letter of τ ; the largest letter, n, is in position n− s+ 1; part σ is obtained inductively
from the portion of the path above the line y = s; and τ is obtained inductively from
the portion of the path below the line y = s. Applying the induction to τ we see that
the letter j + 1 is in position (s− 1) + 2− a = s+ 1 − a. Thus, in π′, the letter j + 1
is in position (s+ 1 − a) + (n− s+ 1) = n+ 2 − a.

Case 3: 0 < s < i. From the path we remove the part below the line y = s, we
remove the first and the last steps of the remaining path, and we shift the obtained
path so that it runs from (n− s−1, n− s−1) to (0, 0). The resulting path we call P ′.
It is responsible for building the standardization σ′ of σ in the outcome permutation
π′ = σnτ . (Here σ′ is obtained from σ by adding |τ | to each of its letters.) Note
that i, j and a in P become i − s, j − s and a − s − 1 in P ′, respectively. From
the induction hypothesis applied to P ′ it follows that (j − s) + 1 will be in position
(n−s−1)+2−(a−s−1) = n+2−a in σ′. But (j−s)+1 in σ′ is (j−s)+1+s = j+1
in σ. Thus, in π′, the letter j + 1 will be in position n+ 2 − a.

Case 4: s = i. In this case i + 1 = a and we need to prove that the letter j + 1
is in position n + 2 − a = n + 1 − i. Remove from P the first and last steps of the
subpath from (n, n) to (i, i). Shift the path from (n, n − 1) to (i + 1, i) one step to
the left. Let P ′ denote the obtained path from (n− 1, n− 1) to (0, 0). Now we apply
f−1 to P and get a 132-avoiding permutation of length (n− 1) of the form σ (n− 1) τ ,
where |τ | ≥ i. The first return in P ′ to the line y = x will be either at (i, i) or above
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the line y = i. By the induction hypothesis, in σ(n−1)τ , the letter j+1 is in position
(n− 1) + 2− a = n− i. This position is located to the right of n− 1. Looking at the
definition of the standard bijection we see that f−1(P ) is σ(n − 1)τ with the largest
letter, n, inserted immediately to the left of the letter j + 1, causing it to appear in
position n− i+ 1 = n + 2 − a.

6. Proof of Theorem 1

In this section we prove the equidistributions presented in Theorem 1. In light of
Theorem 2 it suffices to consider the following five bijections:

Simion–Schmidt, Billey–Jockusch–Stanley–Reifegerste,

West, Knuth and Elizalde–Deutsch .

For brevity we shall write stat1 ≃ stat2 in this section when, for all π in the relevant
domain, we have stat1(π) = stat2(ψ(π)), where ψ is the bijection under consideration.

6.1. Simion–Schmidt’s bijection. Let π be a 123-avoiding permutation of length n
and let π′ be the image of π under the Simion–Schmidt bijection. By Lemma 6 we have
lmin(π) = lmin(π′). In particular, lmin ≃ lmin. A three letter segment abc is a valley
precisely when a and b are left-to-right minima but c is not. Thus valley ≃ valley.
Similarly, we have ldr ≃ ldr and head ≃ head. Indeed, ldr is determined by the position
of the first non-left-to-right minimum and head is the first left-to-right minimum.

• comp.r ≃ comp.r: Suppose that π = AB where B is the rightmost reverse
component. Then B = mC where m is a left-to-right minimum in π. It follows that
π′ = A′B′ in which A′ and B′ are the images, under Simion–Schmidt’s bijection, of
A and B, respectively. Because the Simion–Schmidt bijection is an involution it also
follows that B′ is the rightmost reverse component in π′. By induction on the number
of reverse components we thus have comp.r ≃ comp.r.

• slmax.c ≃ lir: The statistic slmax.c is the position of the second left-to-right
minimum (it is defined to be n if there is only one left-to-right minimum). Suppose
π = a1Aa2B where a1 and a2 are the two leftmost left-to-right minima (the case
π = 1 . . . n is trivial). Note that each letter in A is larger than a1 and a2. We know
that π′ = a1A

′a2B
′ and |A| = |A′|. To avoid the pattern 132 the segment A′ must be

increasing. Thus slmax.c ≃ lir.
• slmax.i.r ≃ lir.i: The statistic slmax.i.r is one less than the minimal i such that

the letter i is to the left of the letter 1. Note that such an i in π must be a left-to-right
minimum. Suppose slmax.i.r(π) = i−1 and i ≤ n (the case slmax.i.r(π) = n is trivial).
Then i and 1 are two consecutive left-to-right minima in π. Consequently, i and 1 are
two consecutive left-to-right minima in π′. Thus the letters 2, 3, . . . , i− 1 must be to
the right of 1 in π′. To avoid forming an occurrence of 132, those letters must also be
in increasing order. Thus lir.i(π′) = i− 1.

• ldr.i ≃ ldr.i: By definition ldr.i(π) is the largest i such that i, i − 1, . . . , 1 is a
subword in π. In particular, i + 1, if it exists, is to the right of i in π. Suppose that
ldr.i(π) = i. Clearly, the letters i, i − 1, . . . , 1 are consecutive left-to-right minima in
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π and i+ 1 is a non-left-to-right minimum. Thus i, i− 1, . . . , 1 is a subword in π′ and
i+ 1 is to the right of i in π′; hence ldr.i(π′) = i.

• head.i.r ≃ rmin: Plainly, head.i.r(π) = n− i+ 1 where i is the position of 1 in π.
Let π′ = σ1τ . The letter 1 is in the same position in π′ as it is in π and so |τ | = n− i.
To avoid 132 the letters of τ must be in increasing order. The sequence of right-to-left
minima in π′ is thus simply 1τ and therefore head.i.r(π) = rmin(π′).

• valley.i ≃ valley.i: By definition, valley.i(π) is the number of letters i in π such
that i is to the left of both i − 1 and i + 1. Suppose i in π is one of those letters
counted by valley.i(π). To avoid 123 the letter i must be a left-to-right minimum.
Thus i − 1 is a left-to-right minimum too, but i+ 1 is not. Since lmin(π) = lmin(π′)
this observation translates to π′. That is, in π′, the letters i and i− 1 are left-to-right
minima whereas i+ 1 is not. Thus i+ 1 is to the right of i in π′ and the letter i in π′

is counted by valley.i(π′). Because the Simion–Schmidt bijection is an involution it is
easy to see that no i which is not counted by valley.i(π) contributes to valley.i(π′).

• rank ≃ rank: Suppose that rank(π) = k and π has a in position k + 1. We
distinguish two cases based on whether a is a left-to-right minimum or not. If a is a
non-left-to-right-minimum, then k + 1 is the left-to-right minimum closest to a in π
from the left. Since lmin(π) = lmin(π′) we have rank(π′) = k. On the other hand, if
a is a left-to-right minimum, then a ≤ k + 1 and π′ will have the same left-to-right
minimum, a, in position k + 1. Thus rank(π′) = k in this case as well.

6.2. Billey–Jockusch–Stanley–Reifegerste’s bijection. Let π = a1a2 . . . an be a
321-avoiding permutation of length n and let π′ be the image of π under the Billey–
Jockusch–Stanley–Reifegerste bijection. That exc ≃ des was proved in [12].

• valley ≃ valley: A 321-avoiding permutation is a shuffle of two increasing sub-
words. From this one can see that if aiai+1ai+2 is a valley in π, then ai is an excedance
and ai+1 is a non-excedance. Thus, in the permutation matrix corresponding to π,
there is an E-square in the i-th row but no E-square in the (i+ 1)-st row. It follows
that the Ferrers diagram has a corner in the (i+1)-st row. Thus a′ia

′

i+1a
′

i+2 is a valley
in π′ = a′1a

′

2 . . . a
′

n. (The dot in row i + 1, corresponding to the letter a′i+1, will be
to the left of the dots in rows i and i + 2 corresponding to the letters a′i and a′i+2,
respectively).

• peak.i ≃ valley.i: By definition, peak.i(π) is the number of letters a in π to the
right of both a − 1 and a + 1; and valley.i(π) is the number of letters a in π to the
left of both a− 1 and a+ 1. If i is counted by peak.i, then i is a non-excedance while
i + 1 is an excedance; otherwise an occurrence of 321 is formed. Thus we have an
E-square in column n− i, but no E-square in column n− i+ 1. Note also that there
is a column n− i+ 2 (corresponding to the letter i− 1). Thus column n− i+ 1 is not
the rightmost column of the matrix and it contains a corner of the Ferrers diagram.
So peak.i counts the columns that contain a corner but no E-squares, excluding the
rightmost column. In the construction of π′ each corner with the properties described
above gives rise to a letter i in π′ to the left of i− 1 and i+ 1. Indeed, such a corner
has an E-square in the column immediately to its left and no E-square in the column
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immediately to its right; consequently, the points corresponding to i− 1 and i+ 1 in
π′ will be below the point corresponding to i in π′. Thus peak.i ≃ valley.i.

• slmax.i ≃ zeil: The letter between the two leftmost left-to-right maxima in a
321-avoiding permutation is an initial segment of 123 . . . . Hence slmax.i is the length
of the maximal initial segment of the form 23 . . . i. Moreover, each of the letters
counted by slmax.i is an excedance. Thus we have E-squares in positions (ℓ, n − ℓ)
for ℓ = 1, 2, . . . , i − 1 and no E-square in position (k, n − k). Thus π′ is of the form
π′ = n(n − 1)(n − 2) . . . (n − k + 2)A(n − k)B(n − k + 1)C, where A, B, and C are
some words. Clearly, zeil(π′) = k = slmax.i(π).

• head.i ≃ ldr: The statistic head.i(π) is the position of 1 in π. Say this position
is i. Then row i of the permutation matrix corresponding to π is the topmost row
that does not contain an E-square. Thus, in π′, the first i letters will be in decreasing
order, while in position i there will be an ascent (unless i = n). Thus ldr(π′) = i.

• slmax.r.c ≃ rdr: Let the right-to-left minima of π, read from right to left, be r1,
r2, . . . , rk. One can see that slmax.r.c is one more than the number of letters between
r1 and r2. (To make sure that there is at least two left-to-right minima we can assume
that a 0 stays in front of π when considering this statistic.) To avoid the pattern 321
the letters between r1 and r2 must be the largest letters in π, and thus all of them
are excedances. Thus, in the permutation matrix corresponding to π, there will be
E-squares in positions (i, n−i) for i = n−1, n−2, . . . , n−(slmax.r.c(π)−1) and there
will be no E-squares in the (n − slmax.r.c(π))-th row. In turn, this guarantees that
the 132-avoiding permutation π′ ends with j(slmax.r.c(π) − 1)(slmax.r.c(π) − 2). . . 1,
where j, if it exists, is strictly larger than slmax.r.c(π). To avoid 132 this segment
must be preceded by a letter smaller than j. Thus rdr(π′) = slmax.r.c(π).

• rir ≃ rmin: Let rir(π) = i. We have i = n only if π = π′ = 12 . . . n, and
then, trivially, rir(π) = rmin(π′) = n. Assume i < n. The letters in the rightmost
increasing run are non-excedances while the letter immediately to the left of that run
is an excedance. Thus the bottommost E-square is in row n − i in the permutation
matrix. The dots placed in rows n− i+ 1, n− i+ 2, . . . , n when creating π′ gives the
sequence of right-to-left minima in π′, and thus rmin(π′) = i.

• lir.i ≃ lmax: Let lir.i(π) = i. We have i = n only if π = π′ = 12 . . . n, and then,
trivially, lir.i(π) = lmax(π′) = n. Assume i < n. By definition, i is the largest positive
integer such that 1, 2, . . . , i is a subword of π. Since π is the shuffle of two increasing
sequences, i+ 1 is the leftmost excedance in π. The E-square corresponding to i+ 1
in the permutation matrix is placed in column n− i, leaving i columns to the right of
it. When constructing π′ each of those i columns gets a dot, beginning at the position
(1, n − i + 1) and moving in the South-East direction. Those dots give the sequence
of left-to-right maxima in π′, and thus lmax(π′) = i.

• last ≃ m-ldr.i: Note that ldr.i(π) is the largest i such that i, (i − 1), . . . , 1 is a
subword in π. The case π = π′ = 12 . . . n is trivial. Suppose i < n and last(π) = i.
To avoid the pattern 321, the letters i + 1, i + 2, . . . , n must form a subword of π,
and clearly each of them is an excedance. Therefore the n − i leftmost columns of
the permutation matrix corresponding to π contain E-squares but the (n − i + 1)-st
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column does not contain an E-square. From this, and the way π′ is constructed, it
immediately follows that (n− i+ 1), (n− i), . . . , 1 is the longest subword of π′ of the
sought type. Thus m-ldr.i(π′) = i.

6.3. West’s bijection. Recall that West’s bijection is induced by an isomorphism
between generating trees. The two isomorphic trees generate 123- and 132-avoiding
permutations, respectively. However, for the purpose of this proof we shall generate
321-avoiding permutations instead of 123-avoiding ones. This change is reflected in
positions of active sites: In the 123-avoiding case the active sites are all the positions to
the left of the leftmost ascent and the position in between the two letters of the leftmost
ascent. In the 321-avoiding case the active sites are all the positions to the right of
the rightmost descent and the position in between the two letters of the rightmost
descent.

The active sites in a 132-avoiding permutation are the leftmost position and every
position immediately to the right of right-to-left maxima.

All the proofs below are by induction on the length of the permutation, with easily
verifiable base cases. Let π be a 321-avoiding permutation of length n. Let π′ be the
image of π under the modified version of West’s bijection as described above.

• peak.i ≃ valley.i: By definition, peak.i(π) is the number of letters a in π to the
right of both a − 1 and a + 1; and valley.i(π′) is the number of letters a in π′ to the
left of both a− 1 and a + 1.

Case 1. Assume that π ends with n. Then π′ begins with n. Insertion of n + 1
to the right of n in π does not change peak.i. Insertion of n + 1 to the left of n in π′

does not change valley.i. Insertion of n+ 1 in any other position in π and π′ increases
peak.i and valley.i by 1.

Case 2. Assume that π does not end with n. To avoid the pattern 321, the letter
n must be the last letter of the rightmost descent. Thus n is not the leftmost letter in
π′, and to avoid the pattern 132, the letter n − 1 must be to the left of n. It follows
that insertion of n+1 in an active site of π and π′, respectively, does not change peak.i
and valley.i, respectively.

• exc ≃ asc: Insertion of n + 1 at the end of π does not change the number of
excedances. Similarly, insertion of n+ 1 at the beginning of π′, the number of ascents
is not changed. In all other cases, the number of excedances in π and the number of
ascents in π′ is increased by 1.

• slmax.i ≃ lir.i: We see that slmax.i(π) is one more than the length of the maximum
initial segment of the form 234 . . . in π. Also, lir.i(π′) is the largest i such that 12 . . . i
is a subword of π′.

Case 1. Assume that π = 234 . . . n1. Using induction it is easy to verify that
π′ = 12 . . . n. Insertion of n+ 1 at the end of π does not change slmax.i, and insertion
of n + 1 at the beginning of π′ does not change lir.i. On the other hand, insertion of
n + 1 between n and 1 in π increases slmax.i by 1, and insertion of n + 1 at the end
of π′ increases lir.i by 1.

Case 2. Assume that π 6= 234 . . . n1, and thus π′ 6= 12 . . . n. Insertion of n+ 1 will
not change slmax.i in π and it will not change lir.i in π′.
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• slmax.r.c ≃ comp: By definition slmax.r.c(π) = 1 if the letter n is not in position
n − 1, and slmax.r.c(π) is one more than the length of the maximal segment of the
form i(i+ 1) . . . n if n is in position n− 1.

Insertion of n + 1 at the end of π′ (creating two active sites) increases the number
of components by 1. The corresponding action on π (creating two active sites) is
insertion of n+ 1 in position n; this increases slmax.r.c by 1. Insertion of n+ 1 in any
other active site of π′ will create an indecomposable permutation (n+ 1 will be to the
left of 1). The corresponding operation on π places n + 1 in a position different from
n, and thus slmax.r.c will be 1.

• rir ≃ rmax: A proof is straightforward from the location of active sites in π and
π′: the (number of) active sites in π and π′ essentially give the rir- and rmax-statistics,
respectively.

• lir.i ≃ ldr.i: By definition lir.i(π) is the largest i such that 12 . . . i is a subword of
π, and ldr.i(π′) is the largest i such that i(i− 1) . . . 1 is a subword of π′.

It is easy to see, by induction, that π = 12 . . . n corresponds to π′ = n(n − 1) . . . 1.
Insertion of n+1 at the end of π and at the beginning of π′ will increase lir.i and ldr.i
by 1, respectively. For any other insertions and any other π and π′, the statistics lir.i
and ldr.i will not change.

• last ≃ head: Insertion of n+ 1 in π changes the last letter only if the insertion is
at the end. Similarly, insertion of n + 1 in π′ changes the leftmost letter only if the
insertion is at the beginning.

6.4. Knuth’s bijection. Elizalde and Pak [6] proved that exc ≃ exc, fix ≃ fix and
lis ≃ n-rank. Let π be a 321-avoiding permutation of length n and let π′ be the image
of π under Knuth’s bijection.

• lir ≃ lmax: If lir(π) = i then the first row of the recording tableau begins with
1, 2, . . . , i, and i + 1 (if it exists) is the leftmost element in the second row. Thus
the statistic lir translates to the statistic “length of the rightmost slope” (segment of
down-steps) in the corresponding Dyck path. After reflection, that statistic becomes
“length of the leftmost slope” (segment of up-steps). The up-steps in the leftmost slope
have corresponding down-steps such that between these steps one has a proper Dyck
path. In particular, the down-step corresponding to the leftmost up-step gives the first
return to the x-axis, giving the position of n, the rightmost left-to-right maxima, in
π′. Proceeding recursively it is easy to see that in general the up-steps in the leftmost
slope read from left to right correspond to the left-to-right maxima in π′ read from
right to left. This gives the desired result.

• lir.i ≃ rmin: The statistic lir.i is the length of the longest subword of the form
12 . . . i. So, if lir.i(π) = i, the first row of the insertion tableau begins with 1, 2, . . . , i,
and i + 1 (if it exists) is the leftmost element in the second row. Thus the statistic
lir.i translates to the statistic “length of the leftmost slope” in the corresponding Dyck
path. After reflection, that statistic becomes “length of the rightmost slope”. Returns
to the x-axis in the Dyck path correspond to reverse components in π′. Consider the
part D′ of the Dyck path between the last return and next-to-last return to the x-axis.
The first up-step of D′ corresponds to the rightmost down-step in the rightmost slope,
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and it corresponds to the rightmost letter, say a, in π′. The letter a is the largest
letter in the rightmost reverse component of π′, and thus it is a right-to-left minimum.
Proceeding recursively we see that the next to last down-step in the rightmost slope
corresponds to the second right-to-left minimum from the right, and so on.

6.5. Elizalde-Deutsch’s bijection. Elizalde and Deutsch [5] proved that fix ≃ fix.

7. Appendix

The set of 552 statistics partitioned with respect to equality as function. There are
148 classes. By choosing the first element of each class we get the set STAT.

{ asc,des.c,des.r,asc.r.c }{ comp,comp.i,comp.r.c,comp.i.c.r }{ cyc,cyc.i,cyc.r.c,cyc.i.c.r }

{ des,asc.c,asc.r,des.r.c }{ exc,exc.i.c.r }{ fix,fix.i,fix.r.c,fix.i.c.r }

{ head,last.r,m-head.c,m-last.r.c }

{ lmax,lmin.c,rmax.r,rmin.i,lmin.i.c,rmax.i.r,rmin.r.c,lmax.i.c.r }

{ lmin,lmax.c,lmin.i,rmin.r,lmax.i.r,rmax.r.c,rmin.i.c,rmax.i.c.r }

{ last,head.r,m-last.c,m-head.r.c }{ ldr,lir.c,rir.r,rdr.r.c,zeil.i.c.r }

{ lds,lds.i,lis.c,lis.r,lds.r.c,lis.i.c,lis.i.r,lds.i.c.r }

{ lir,ldr.c,rdr.r,rir.r.c,zeil.i.r }

{ lis,lds.c,lds.r,lis.i,lds.i.c,lds.i.r,lis.r.c,lis.i.c.r }

{ peak,peak.r,valley.c,valley.r.c }{ slmax }

{ rmax,lmax.r,rmax.i,rmin.c,lmax.i.c,lmin.r.c,rmin.i.r,lmin.i.c.r }

{ rmin,lmax.i,lmin.r,rmax.c,lmax.r.c,lmin.i.r,rmax.i.c,rmin.i.c.r }{ rank,rank.i }

{ rdr,lir.r,rir.c,zeil.i,ldr.r.c }{ rir,ldr.r,rdr.c,lir.r.c,zeil.i.c }

{ valley,peak.c,valley.r,peak.r.c }{ zeil,rdr.i,lir.i.c,rir.i.r,ldr.i.c.r }

{ asc.i,des.i.c,des.i.r,asc.i.c.r }{ comp.c,comp.r,comp.i.c,comp.i.r }

{ cyc.c,cyc.r,cyc.i.c,cyc.i.r }{ des.i,asc.i.c,asc.i.r,des.i.c.r }

{ exc.c,exc.i.r }{ exc.i,exc.r.c }{ exc.r,exc.i.c }{ fix.c,fix.r,fix.i.c,fix.i.r }

{ head.c,last.r.c,m-head,m-last.r }{ head.i,last.i.c,m-head.i.r,m-last.i.c.r }

{ last.c,head.r.c,m-last,m-head.r }{ last.i,head.i.c,m-last.i.r,m-head.i.c.r }

{ ldr.i,lir.i.r,rir.i.c,zeil.r.c,rdr.i.c.r }{ lir.i,zeil.c,ldr.i.r,rdr.i.c,rir.i.c.r }

{ peak.i,peak.i.c,valley.i.r,valley.i.c.r }{ slmax.c }{ slmax.i }{ slmax.r }

{ rank.c,rank.i.c }{ rank.r,rank.i.r }{ rir.i,zeil.r,ldr.i.c,rdr.i.r,lir.i.c.r }

{ valley.i,peak.i.r,valley.i.c,peak.i.c.r }{ head.i.r,last.i.c.r,m-head.i,m-last.i.c }

{ last.i.r,head.i.c.r,m-last.i,m-head.i.c }{ slmax.i.c }{ slmax.i.r }{ slmax.r.c }

{ rank.r.c,rank.i.c.r }{ slmax.i.c.r }{ n-asc,n-des.c,n-des.r,n-asc.r.c }

{ n-comp,n-comp.i,n-comp.r.c,n-comp.i.c.r }{ n-cyc,n-cyc.i,n-cyc.r.c,n-cyc.i.c.r }

{ n-des,n-asc.c,n-asc.r,n-des.r.c }{ n-exc,n-exc.i.c.r }

{ n-fix,n-fix.i,n-fix.r.c,n-fix.i.c.r }{ n-head,n-last.r }

{ n-lmax,n-lmin.c,n-rmax.r,n-rmin.i,n-lmin.i.c,n-rmax.i.r,n-rmin.r.c,n-lmax.i.c.r }

{ n-lmin,n-lmax.c,n-lmin.i,n-rmin.r,n-lmax.i.r,n-rmax.r.c,n-rmin.i.c,n-rmax.i.c.r }

{ n-last,n-head.r }{ n-ldr,n-lir.c,n-rir.r,n-rdr.r.c,n-zeil.i.c.r }

{ n-lds,n-lds.i,n-lis.c,n-lis.r,n-lds.r.c,n-lis.i.c,n-lis.i.r,n-lds.i.c.r }

{ n-lir,n-ldr.c,n-rdr.r,n-rir.r.c,n-zeil.i.r }

{ n-lis,n-lds.c,n-lds.r,n-lis.i,n-lds.i.c,n-lds.i.r,n-lis.r.c,n-lis.i.c.r }

{ n-peak,n-peak.r,n-valley.c,n-valley.r.c }{ n-slmax }

{ n-rmax,n-lmax.r,n-rmax.i,n-rmin.c,n-lmax.i.c,n-lmin.r.c,n-rmin.i.r,n-lmin.i.c.r }

{ n-rmin,n-lmax.i,n-lmin.r,n-rmax.c,n-lmax.r.c,n-lmin.i.r,n-rmax.i.c,n-rmin.i.c.r }

{ n-rank,n-rank.i }{ n-rdr,n-lir.r,n-rir.c,n-zeil.i,n-ldr.r.c }

{ n-rir,n-ldr.r,n-rdr.c,n-lir.r.c,n-zeil.i.c }{ n-valley,n-peak.c,n-valley.r,n-peak.r.c }

{ n-zeil,n-rdr.i,n-lir.i.c,n-rir.i.r,n-ldr.i.c.r }

{ n-asc.i,n-des.i.c,n-des.i.r,n-asc.i.c.r }{ n-comp.c,n-comp.r,n-comp.i.c,n-comp.i.r }

{ n-cyc.c,n-cyc.r,n-cyc.i.c,n-cyc.i.r }{ n-des.i,n-asc.i.c,n-asc.i.r,n-des.i.c.r }
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{ n-exc.c,n-exc.i.r }{ n-exc.i,n-exc.r.c }{ n-exc.r,n-exc.i.c }

{ n-fix.c,n-fix.r,n-fix.i.c,n-fix.i.r }{ n-head.c,n-last.r.c }{ n-head.i,n-last.i.c }

{ n-last.c,n-head.r.c }{ n-last.i,n-head.i.c }

{ n-ldr.i,n-lir.i.r,n-rir.i.c,n-zeil.r.c,n-rdr.i.c.r }

{ n-lir.i,n-zeil.c,n-ldr.i.r,n-rdr.i.c,n-rir.i.c.r }

{ n-peak.i,n-peak.i.c,n-valley.i.r,n-valley.i.c.r }{ n-slmax.c }{ n-slmax.i }{ n-slmax.r }

{ n-rank.c,n-rank.i.c }{ n-rank.r,n-rank.i.r }

{ n-rir.i,n-zeil.r,n-ldr.i.c,n-rdr.i.r,n-lir.i.c.r }

{ n-valley.i,n-peak.i.r,n-valley.i.c,n-peak.i.c.r }{ n-head.i.r,n-last.i.c.r }

{ n-last.i.r,n-head.i.c.r }{ n-slmax.i.c }{ n-slmax.i.r }{ n-slmax.r.c }

{ n-rank.r.c,n-rank.i.c.r }{ n-slmax.i.c.r }{ m-asc,m-des.c,m-des.r,m-asc.r.c }

{ m-comp,m-comp.i,m-comp.r.c,m-comp.i.c.r }{ m-cyc,m-cyc.i,m-cyc.r.c,m-cyc.i.c.r }

{ m-des,m-asc.c,m-asc.r,m-des.r.c }{ m-exc,m-exc.i.c.r }

{ m-fix,m-fix.i,m-fix.r.c,m-fix.i.c.r }

{ m-lmax,m-lmin.c,m-rmax.r,m-rmin.i,m-lmin.i.c,m-rmax.i.r,m-rmin.r.c,m-lmax.i.c.r }

{ m-lmin,m-lmax.c,m-lmin.i,m-rmin.r,m-lmax.i.r,m-rmax.r.c,m-rmin.i.c,m-rmax.i.c.r }

{ m-ldr,m-lir.c,m-rir.r,m-rdr.r.c,m-zeil.i.c.r }

{ m-lds,m-lds.i,m-lis.c,m-lis.r,m-lds.r.c,m-lis.i.c,m-lis.i.r,m-lds.i.c.r }

{ m-lir,m-ldr.c,m-rdr.r,m-rir.r.c,m-zeil.i.r }

{ m-lis,m-lds.c,m-lds.r,m-lis.i,m-lds.i.c,m-lds.i.r,m-lis.r.c,m-lis.i.c.r }

{ m-peak,m-peak.r,m-valley.c,m-valley.r.c }{ m-slmax }

{ m-rmax,m-lmax.r,m-rmax.i,m-rmin.c,m-lmax.i.c,m-lmin.r.c,m-rmin.i.r,m-lmin.i.c.r }

{ m-rmin,m-lmax.i,m-lmin.r,m-rmax.c,m-lmax.r.c,m-lmin.i.r,m-rmax.i.c,m-rmin.i.c.r }

{ m-rank,m-rank.i }{ m-rdr,m-lir.r,m-rir.c,m-zeil.i,m-ldr.r.c }

{ m-rir,m-ldr.r,m-rdr.c,m-lir.r.c,m-zeil.i.c }{ m-valley,m-peak.c,m-valley.r,m-peak.r.c }

{ m-zeil,m-rdr.i,m-lir.i.c,m-rir.i.r,m-ldr.i.c.r }

{ m-asc.i,m-des.i.c,m-des.i.r,m-asc.i.c.r }{ m-comp.c,m-comp.r,m-comp.i.c,m-comp.i.r }

{ m-cyc.c,m-cyc.r,m-cyc.i.c,m-cyc.i.r }{ m-des.i,m-asc.i.c,m-asc.i.r,m-des.i.c.r }

{ m-exc.c,m-exc.i.r }{ m-exc.i,m-exc.r.c }{ m-exc.r,m-exc.i.c }

{ m-fix.c,m-fix.r,m-fix.i.c,m-fix.i.r }

{ m-ldr.i,m-lir.i.r,m-rir.i.c,m-zeil.r.c,m-rdr.i.c.r }

{ m-lir.i,m-zeil.c,m-ldr.i.r,m-rdr.i.c,m-rir.i.c.r }

{ m-peak.i,m-peak.i.c,m-valley.i.r,m-valley.i.c.r }

{ m-slmax.c }{ m-slmax.i }{ m-slmax.r }{ m-rank.c,m-rank.i.c }{ m-rank.r,m-rank.i.r }

{ m-rir.i,m-zeil.r,m-ldr.i.c,m-rdr.i.r,m-lir.i.c.r }

{ m-valley.i,m-peak.i.r,m-valley.i.c,m-peak.i.c.r }

{ m-slmax.i.c }{ m-slmax.i.r }{ m-slmax.r.c }{ m-rank.r.c,m-rank.i.c.r }{ m-slmax.i.c.r }
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