
Séminaire Lotharingien de Combinatoire 60 (2009), Article B60a

ON BIJECTIONS BETWEEN 231-AVOIDING PERMUTATIONS AND

DYCK PATHS

CHRISTIAN STUMP

Abstract. We construct a bijection between 231-avoiding permutations and Dyck
paths that sends the sum of the major index and the inverse major index of a 231-
avoiding permutation to the major index of the corresponding Dyck path. Further-
more, we relate this bijection to others and exhibit a bistatistic on 231-avoiding per-
mutations which is related to the q, t-Catalan numbers.

1. Introduction

The q, t-Catalan numbers Catn(q, t) were defined by A. Garsia and M. Haiman in [7]
as symmetric rational function in q and t. They reduce for q = t = 1 to the well-known
Catalan numbers Catn := 1

n+1

(

2n
n

)

; more generally, they reduce for t = q−1, up to a
power of q, to the q-Catalan numbers considered by P.A. MacMahon in [12],

q(
n

2) Catn(q, q
−1) =

1

[n + 1]q

[

2n
n

]

q

.

Here, [k]q := 1−qk

1−q
is the usual q-extension of the integer k, [k]q! := [1]q[2]q . . . [k]q is

the q-factorial of k and [ kℓ ]q := [k]q!

[ℓ]q![k−ℓ]q!
is the q-binomial coefficient. In [6], A. Garsia

and J. Haglund proved that Catn(q, t) is in fact a polynomial with non-negative integer
coefficients by providing a combinatorial description of Catn(q, t) in terms of the two
statistics area and bounce on Dyck paths of semilength n. So far, no bijective proof is
known for the fact that Catn(q, t) is symmetric in q and t.

In this article, we construct a bijection between 231-avoiding permutations and Dyck
paths which sends the sum of the major index and the inverse major index on 231-
avoiding permutations to the major index of the corresponding Dyck path. Using this
bijection, we exhibit a polynomial An(q, t) which is related to Catn(q, t) by

An(q, q
−1) = Catn(q, q

−1),

and show bijectively that An(q, t) is symmetric in q and t.
Finally, we connect the proposed bijection to a bijection between 132-avoiding per-

mutations and Dyck paths introduced in [11] by C. Krattenthaler and to a bijection
from 231-avoiding permutations and Dyck paths introduced in [1] by J. Bandlow and
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K. Killpatrick. Using these connections, we obtain several generating function identities
as corollaries of the main theorem.

The article is organized as follows: In Section 2, we define pattern-avoiding per-
mutations and Dyck paths and state some of their basic properties. In Section 3, we
construct the announced bijection between 231-avoiding permutations and Dyck paths.
In Section 4 we describe the bistatistic (maj,

(

n

2

)

− imaj) on 231-avoiding permutations,
and we prove the symmetry of the corresponding generating function. In Section 5 we
show how the bijection can be described in terms of earlier bijections, and in Section 6
we describe how the bistatistic (maj,

(

n

2

)

− imaj) could be connected to the q, t-Catalan
numbers Catn(q, t).

2. Basic definitions

We denote by Sn the symmetric group of all permutations of the set [n] := {1, . . . , n}.
Usually, we write a permutation σ ∈ Sn in one-line notation as the word σ = [σ1, . . . , σn]
of length n where σi := σ(i) (often, we suppress the commas or even the brackets
around). A subword of σ is a subsequence [σi1 , . . . , σik ] of σ with i1 < · · · < ik.

Definition 2.1. Let σ ∈ Sn and τ ∈ Sk. σ avoids the pattern τ and is called τ -avoiding

if σ does not contain a subword of length k having the same relative order as τ . In
particular, σ is called

• 231-avoiding if σ does not contain a subword [σi, σj , σk] with σk < σi < σj ,
• 312-avoiding if σ does not contain a subword [σi, σj , σk] with σj < σk < σi.

For τ ∈ Sk, we denote the set of all σ ∈ Sn which are τ -avoiding by Sn(τ).

Remark 2.2. In [10], D.E. Knuth proved that for any τ ∈ S3 the number of τ -avoiding
permutations is equal to the n-th Catalan number Catn.

An integer 1 ≤ i < n is called a descent of σ if σi > σi+1, otherwise i is called an
ascent. As we count n as an ascent, this differs from the usual definition. By Des(σ)
(respectively Asc(σ)) we denote the set of all descents (respectively ascents) of σ, and
we set des(σ) := |Des(σ)| and asc(σ) := |Asc(σ)|. As we will often use the descent set
and sometimes the ascent set of the inverse of a permutation, we will denote these sets
by iDes(σ) and by iAsc(σ) respectively.

We furthermore need the following two elementary involutions on Sn: define ρ to
be the involution sending [σ1, . . . , σn] to [σn, . . . , σ1] and σ 7→ σ̂ to be the involution
sending a permutation to its inverse. We can easily describe the descent set and the
inverse descent set of the images of those involutions: sending a permutation to its
inverse interchanges Des and iDes, and for ρ we have

Des(ρ(σ)) = [n− 1] \ {n− i : i ∈ Des(σ)},

iDes(ρ(σ)) = [n− 1] \ iDes(σ).

Furthermore, define the major index of a permutation σ by

maj(σ) :=
∑

i∈Des(σ)

i,
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Figure 1. The Dyck path 01 001 011 01 01 ∈ D6.

and define its inverse major index to be the major index of its inverse, imaj(σ) := maj(σ̂).
The inverse major index is discussed in detail by D. Foata and G.-N. Han in [3, Chapters
11, 12].

Next, we define Dyck paths and state the properties of Dyck paths we need:

Definition 2.3. A Dyck path of semilength n is a sequence of 2n letters containing n
0’s and n 1’s such that every prefix contains at least as many 0’s as 1’s. We denote the
set of all Dyck paths of semilength n by Dn.

A natural way of thinking of a Dyck path is to identify it with the lattice path
consisting of north and east steps starting at (0, 0) and ending at (n, n), where a north
step is encoded by a 0 and an east step by a 1. The property that any prefix contains
at least as many 0’s as 1’s is equivalent to the property that a Dyck path always stays
weakly above the diagonal x = y, see Figure 1 for an example of a Dyck path of
semilength 6.

It is well-known that – as for τ -avoiding permutations with τ ∈ S3 – the number of
Dyck paths of semilength n is given by Catn, see e.g. [14].

For D ∈ Dn, an integer i with 1 ≤ i < 2n is called descent of D, if Di = 1 and
Di+1 = 0, and let Des(D) denote the set of all descents of D. In analogy to the
definition on permutations, the major index of D is defined by

maj(D) :=
∑

i∈Des(D)

i.

A descent can also be described as a valley in the lattice path, i.e., an east step followed
by a north step. The coordinates of a descent or valley of a Dyck path D are the
coordinates of the lattice point right after the corresponding east step. Furthermore,
we define the sets SetX(D) and SetY (D) to be the set of x-coordinates and the set of
y-coordinates of the descents or valleys of D. In [2, Section 3], D. Callan called SetX(D)
and SetY (D) the “ascent-descent code” of D.

The following observation is fundamental.

Proposition 2.4. A Dyck path D is uniquely determined by SetX(D) and SetY (D) and

furthermore

maj(D) =
∑

i∈SetX(D)

i+
∑

j∈SetY (D)

j.



4 CHRISTIAN STUMP

Example 2.5. Let D = 01 001 011 01 01 ∈ D6 be the Dyck path shown in Figure 1.
As indicated by the blanks, the descent set of D is given by Des(D) = {2, 5, 8, 10} and
its major index by 2 + 5 + 8 + 10 = 25. The valleys of D – indicated in the picture by
dots – have coordinates (1, 1), (2, 3), (4, 4) and (5, 5) which gives

SetX(D) = {1, 2, 4, 5}, SetY (D) = {1, 3, 4, 5}.

There exist plenty of bijections between pattern-avoiding permutations and Dyck
paths. To mention one, J. Bandlow and K. Killpatrick introduced an interesting bijec-
tion which sends the inversion number inv(σ) := |{i < j : σi > σj}| of a 312-avoiding
permutation σ to the area statistic of the corresponding Dyck path. We will discuss
this and other bijections in more detail in Sections 5 and 6, for definitions see [1].

3. The bijection

In this section, we construct a bijection Φ between Sn(231) and Dn such that

maj(Φ(σ)) = maj(σ) + imaj(σ).

Lemma 3.1. Let σ ∈ Sn(231), with Des(σ) = {i1, . . . , ik}, Asc(σ) = {j1, . . . , jn−k}.
Then

iDes(σ) = {σi1 − 1, . . . , σik − 1},

iAsc(σ) =
(

{σj1 − 1, . . . , σjn−k
− 1} \ {0}

)

∪ {n}

Proof. Let i be a descent of σ. As σ is 231-avoiding, [σi − 1, σi] cannot be a subword
of σ. In other words, σ̂(σi − 1) > σ̂(σi) = i, and therefore σi − 1 is a descent of σ̂. On
the other hand, let i′ be a descent of σ̂, which is 312-avoiding. The same argument as
above yields σ(σ̂i′+1) > σ(σ̂i′+1 +1) or, equivalently, σ̂i′+1 is a descent of σ. This implies

iDes(σ) = {σi1 − 1, . . . , σik − 1}.

As Asc(σ) = [n] \ Des(σ), the statement about iAsc(σ) follows. �

Recall the definition of the involution ρ on Sn and its properties as discussed in
Section 2. Together with Lemma 3.1, this implies the following corollary.

Corollary 3.2. Let σ be τ -avoiding for a given τ ∈ {132, 231, 312, 213}. Then

des(σ) = des(σ̂), asc(σ) = asc(σ̂).

Remark 3.3. For τ ∈ {123, 321}, the analogous statement of the previous corollary is
false. E.g., σ = [2, 4, 1, 3] is 123-avoiding and

Des(σ) = {2}, iDes(σ) = {1, 3}.

Lemma 3.4. Let j be an ascent of a 231-avoiding permutation σ and let k > j. Then

σk > σj.

Proof. This follows immediately from the fact that σ is 231-avoiding. �

For the remaining part of this section, set σ to be a 231-avoiding permutation. Our
next goal is to show that σ is uniquely determined by its ascent set and the image of
its ascent set. Given the sets

Asc(σ) = {j1, . . . , jn−k = n}, σ(Asc(σ)) = {ℓ1, . . . , ℓn−k}
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in increasing order (i.e., j1 < · · · < jn−k and ℓ1 < · · · < ℓn−k). Then, by the previous
lemma, σ(j1) < · · · < σ(jn−k), and therefore σ(ji) = ℓi.

To determine σ on its descent set, we determine σ on its descent blocks, i.e., the
maximal sequences of consecutive descents. On any descent block {ji+1, . . . , ji+1−1},
σ is decreasing and bounded from below by the image on the ascent following the
sequence (recall that our definition of the ascent set implies that every descent block is
followed by an ascent). In symbols, σ(ji + 1) > · · · > σ(ji+1 − 1) > σ(ji+1). Together
with the property of being 231-avoiding, this determines σ on its descents from right
to left: start with the rightmost descent, say m. Then σ(m) is given by the smallest
unassigned integer larger than σ(m + 1). Repeat this process by going through all
descents from right to left as shown in Example 3.6.

By Lemma 3.1 and the above discussion we conclude the following fact, which is, in
a slightly different context, originally due to A. Reifegerste, see [13, Proposition 2.4]
and the following discussion.

Corollary 3.5. σ is uniquely determined by Des(σ) and iDes(σ).

Example 3.6. Let σ ∈ S6(231) such that

Des(σ) = {1, 2, 4, 5}, iDes(σ) = {1, 3, 4, 5}.

This implies
Asc(σ) = {3, 6}, iAsc(σ) = {2, 6}.

By Lemma 3.1, we have

σ(Des(σ)) = {2, 4, 5, 6}, σ(Asc(σ)) = {1, 3}.

As described in the previous discussion, we first determine σ on its ascent set,

σ3 = 1 < σ6 = 3.

Then, we determine σ on its descents from right to left. The rightmost descent, 5, is
mapped to the smallest unassigned integer larger than σ(6) = 3, which is 4; the next
descent, 4, is mapped to the smallest unassigned integer larger than σ(5) = 4, which is
5; and so on. This gives

σ6 = 3 < σ5 = 4 < σ4 = 5, σ3 = 1 < σ2 = 2 < σ1 = 6,

and in total, we get σ = [6, 2, 1, 5, 4, 3].

Our next goal is to construct a bijection between Asc(σ) and iAsc(σ) such that the
image of any ascent j is less than or equal to j.

Let j be an ascent of σ. By τ(j), we denote the size of the descent block immediately
left of j, or, equivalently,

τ(j) := j − 1 − j′,

with j′ being the largest ascent such that j′ < j (respectively 0 if j is the first ascent).

Lemma 3.7. Let j be an ascent of σ. Then

j ≥ σj + τ(j).

Proof. Lemma 3.4 implies σk > σj for all k such that k > j and for all k such that
j > k > j − τ(j). Therefore, n − j ≤ n − σ(j) − τ(j), which is equivalent to the
statement. �
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Corollary 3.8. Let Asc(σ) = {j1, . . . , jn−k}. Then, for any 1 ≤ ℓ < n− k, we have

jℓ ≥ σjℓ+1
− 1.

Proof. By Lemma 3.7, jℓ+1 is greater than or equal to σjℓ+1
+ τ(jℓ+1), which, by defini-

tion, is equal to σjℓ+1
+ jℓ+1 − 1 − jℓ. This proves the corollary. �

By Lemma 3.1 and Corollary 3.8, we can define a bijection between Asc(σ) and
iAsc(σ), which has the desired property that the image of an ascent j is less than or
equal to j in the following way:

jℓ 7→ σjℓ+1
− 1 for 1 ≤ ℓ < n− k,

jn−k 7→ n

This implies the following corollary concerning the descent sets of σ and σ̂:

Corollary 3.9. Let Des(σ) = {i1, . . . , ik} and let iDes(σ) = {i′1, . . . , i
′
k} such that

i1 < · · · < ik and i′1 < · · · < i′k. Then iℓ ≤ i′ℓ for 1 ≤ ℓ ≤ n.

Now we are in the position to define the proposed bijection.

Definition 3.10. Define a map Φ from Sn(231) to Dn as follows: let σ ∈ Sn(231) with
Des(σ) = {i1, . . . , ik} and iDes(σ) = {i′1, . . . , i

′
k}, such that

i1 < · · · < ik < ik+1 := n, i′1 < · · · < i′k < i′k+1 := n.

Then Φ(σ) is defined to be the Dyck path starting with i′1 0’s, followed by i1 1’s, followed
by i′2 − i′1 0’s, followed by i2 − i1 1’s, followed by i′3 − i′2 0’s, and so on, ending with
ik+1 − ik 1’s.

Theorem 3.11. The map Φ defined in the previous definition is well-defined and bi-

jective.

Proof. By Proposition 3.2 and Corollary 3.9, Φ is well-defined and by Proposition 3.5
it is injective and therefore bijective. �

From the definition, we immediately obtain the following corollary.

Corollary 3.12. Let σ ∈ Sn(231). Then

SetX(Φ(σ)) = Des(σ), SetY (Φ(σ)) = iDes(σ),

and, in particular,

maj(Φ(σ)) = maj(σ) + imaj(σ).

Example 3.13. Let σ be the permutation defined in Example 3.6. As the descent set of
σ is {1, 2, 4, 5} and the descent set of its inverse is {1, 3, 4, 5}, the coordinates of the de-
scents of Φ(σ) are (1, 1), (2, 3), (4, 4) and (5, 5) and therefore Φ(σ) = 01 001 011 01 01
is the Dyck path described in Example 2.5. Furthermore,

maj(σ) = 1 + 2 + 4 + 5 = 12,

imaj(σ) = 1 + 3 + 4 + 5 = 13,

maj(Φ(σ)) = 2 + 5 + 8 + 10 = 25.

In Figure 2 all 231-avoiding permutations of the set {1, 2, 3, 4} and their associated
Dyck paths are shown.
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[4, 3, 1, 2] 7→ [4, 1, 3, 2] 7→ [1, 3, 2, 4] 7→ [1, 4, 3, 2] 7→ [2, 1, 3, 4] 7→
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[4, 2, 1, 3] 7→ [2, 1, 4, 3] 7→ [3, 2, 1, 4] 7→ [4, 3, 2, 1] 7→

Figure 2. The bijection between S4(231) and D4.

4. A bistatistic on 231-avoiding permutations

Define the polynomial An(q, t) by

An(q, t) :=
∑

σ∈Sn(231)

qmaj(σ)t(
n

2)−imaj(σ).

The first values of An(q, t) are given by

A1(q, t) = 1,

A2(q, t) = q + t,

A3(q, t) = q3 + q2t+ qt2 + t3 + qt,

A4(q, t) = q6 + q5t+ q4t2 + 2q3t3 + q2t4 + qt5 + t6 + q4t+ q3t2 + q2t3 + qt4 + q3t+ qt3.

Obviously, An(q, t) reduces for q = t = 1 to Catn and the bijection Φ defined in the
previous section shows that An(q, t) can also be described in terms of Dyck paths. As
considered by J. Fürlinger and J. Hofbauer in [5, Section 5], define two statistics maj0
and maj1 on a Dyck path D by

maj0(D) :=
∑

i∈Des(D)

∣

∣{j ≤ i : Dj = 0}
∣

∣, maj1(D) :=
∑

i∈Des(D)

∣

∣{j ≤ i : Dj = 1}
∣

∣.
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Corollary 4.1. Let Φ be the bijection defined in Theorem 3.11, and let σ be a 231-
avoiding permutation. Then

maj1(Φ(σ)) = maj(σ), maj0(Φ(σ)) = imaj(σ),

and furthermore

An(q, t) =
∑

D∈Dn

qmaj1(D)t(
n

2)−maj0(D).

Since maj1(D) + maj0(D) = maj(D), we get

q(
n

2)An(q, q
−1) =

∑

D∈Dn

qmaj(D),

which is equal to MacMahon’s q-Catalan number defined in the introduction, see [5,
Section 3]. Using another identity in [5], we obtain the following generating function
identity.

Theorem 4.2. An(q, t) satisfies the generating function identity

∑

n≥0

An(q, t) z
n

(1 + qz) . . . (1 + qn+1z)(1 + tz) . . . (1 + tn+1z)
= 1.

Proof. Setting x = 1, a = q−1 and b = q in [5, Theorem 5] gives the above identity. �

The following corollary follows immediately from the fact that the generating function
identity proved in Theorem 4.2 is symmetric in q and t.

Corollary 4.3. The polynomial An(q, t) is symmetric in q and t,

An(q, t) = An(t, q).

Now, we want to provide a bijective proof of a refinement of this symmetry.

Theorem 4.4.
∑

σ∈Sn(231)

ades(σ)qmaj(σ)timaj(σ) =
∑

σ∈Sn(312)

an−1−des(σ)q(
n

2)−maj(σ)t(
n

2)−imaj(σ).

Proof. Let Ψ be the involution on Sn(231) defined by the rule that a given σ is mapped
to the unique τ with Des(τ) := [n − 1] \ iDes(σ) and iDes(τ) := [n − 1] \ Des(σ) (in
Section 3, we proved the existence of such a τ). This implies des(σ) = n−1−des(Ψ(σ))
and furthermore

maj(σ) =

(

n

2

)

− imaj(Ψ(σ)), imaj(σ) =

(

n

2

)

− maj(Ψ(σ)).

Since mapping a permutation to its inverse interchanges Des(σ) and iDes(σ), the state-
ment follows. �

Remark 4.5. Equivalently, we could have defined the bijection Ψ in the proof of
Theorem 4.4 in terms of Dyck paths by the rule that a given Dyck path D is mapped
to the unique Dyck path D′ with

SetX(D′) = [n− 1] \ SetY (D), SetY (D′) = [n− 1] \ SetX(D).
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5. Another description of Φ

The bijection Φ defined in Definition 3.10 is closely connected to other bijections
from pattern-avoiding permutations to Dyck paths. In [11], C. Krattenthaler con-
structed bijections from 132- and from 123-avoiding permutations to Dyck paths which
were recently related to other bijections between pattern-avoiding permutations and
Dyck paths by D. Callan in [2]. In this section, we express the bijection Φ in terms
of Krattenthaler’s bijection from 132-avoiding permutations to Dyck paths, which we
denote by κ.

First, we recall the definition of κ from [11, Section 2] and give an example. For
any Dyck path D, the height of D at position i is the number of north steps minus
the number of east steps until and including position i. Now, let σ = [σ1, . . . , σn] be a
132-avoiding permutation and let hi denote the number of j’s larger than i such that
σj > σi. Read σ from left to right and successively generate a Dyck path. When σi is
read, then in the path we adjoin as many north steps as necessary, followed by an east
step from height hi + 1 to height hi.

Example 5.1. Let σ = [3, 4, 5, 1, 2, 6]. Then (h1, . . . , h6) = (3, 2, 1, 2, 1, 0) which gives
the heights of the east steps of the corresponding Dyck paths. Therefore, κ(σ) =
0000111 00111.

Our next goal is to express κ in terms of the descent set of σ and the descent set of
σ̂.

Lemma 5.2. Let σ be any permutation. Then

(i) hi+1 < hi if and only if i ∈ Asc(σ),
(ii) σ ∈ Sn(132) if and only if hi+1 ≥ hi − 1 for all 1 ≤ i < n.

Proof. The first statement is obvious. as is the fact that σ ∈ Sn(132) implies hi+1 ≥
hi− 1 for all 1 ≤ i < n. For the reverse statement we use that hi+1 ≥ hi− 1 implies for
an ascent i that there exists no k > i with σi < σk < σi+1. �

Proposition 5.3. Let σ be a 132-avoiding permutation. Then κ(σ) is the Dyck path

D given by

SetX(D) = Des(σ), SetY (D) = {i+ hi : i ∈ Des(σ)}.

Proof. The statement follows from the first part of the previous lemma and the definition
of κ. �

Proposition 5.4. Let σ be a 132-avoiding permutation. Then

iDes(σ) =
{

n− i− hi : i ∈ Des(σ)
}

.

Proof. Let i be a descent of σ. The number of σj ’s right of σi that are smaller than σi is
equal to n− i− hi. Since σ is 132-avoiding, we know that the set of those σj ’s is equal
to {1, . . . , n− i − hi}. This implies that σ̂n−i−hi

> σ̂n−i−hi+1, and therefore n− i − hi
is a descent of σ̂.

Now let i be a descent of σ and let j > i. The previous lemma implies that i+ hi 6=
j + hj , because otherwise {i, i+ 1, . . . , j − 1} ⊆ Asc(σ), a contradiction to i ∈ Des(σ).
The proposition follows from Corollary 3.2. �
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These two propositions characterize κ in terms of the descent set of σ and the descent
set of σ̂: let σ ∈ Sn(132). Then

SetX(κ(σ)) = Des(σ), SetY (κ(σ)) = {n− j : j ∈ iDes(σ)}.

Example 5.5. Continuing the previous example, we have that Des(σ) and iDes(σ) are
given by {3} and by {2}, respectively. On the other hand,

SetX(κ(σ)) = {3} = Des(σ), SetY (κ(σ)) = {4} = {n− j : j ∈ iDes(σ)}.

Let D be a Dyck path with valleys {(i1, j1), . . . , (ik, jk)}. The last map we need is
the involution Ψ as described in Remark 4.5 followed by the involution on Dyck paths
sending D to the Dyck path with valleys {(n − jk, n − ik), . . . , (n − j1, n − i1)}. We
denote this composition by ψ.

Now we can describe the relation of Φ and κ using the involutions ρ and ψ:

Theorem 5.6. κ = ψ ◦ Φ ◦ ρ.

Proof. Let σ be a 132-avoiding permutation. Then

SetX(Φ ◦ ρ(σ)) = Des(ρ(σ)) = [n− 1] \ {n− i : i ∈ Des(σ)},

SetY (Φ ◦ ρ(σ)) = iDes(ρ(σ)) = [n− 1] \ iDes(σ).

On the other hand,

SetX(ψ(D)) = {n− i : i ∈ [n− 1] \ SetX(D)},

SetY (ψ(D)) = {n− i : i ∈ [n− 1] \ SetY (D)},

for a Dyck path D. So, in total, we have

SetX(ψ ◦ Φ ◦ ρ(σ)) = Des(σ),

SetY (ψ ◦ Φ ◦ ρ(σ)) = {n− j : j ∈ iDes(σ)}.

Together with the above discussion, this implies the theorem. �

Example 5.7. Set σ := [6, 2, 1, 5, 4, 3]. As we have seen in Example 3.13, Φ(σ) =
01 001 011 01 01, and therefore ψ(Φ(σ)) = 0000111 00111. As shown in Example 5.1,
this equals κ(ρ(σ)).

Next, we want to use the involutions Ψ, ρ, and σ 7→ σ̂ (we denote the latter by i) to
prove an analogue of Theorem 4.4 for Sn(132) and Sn(213).

Theorem 5.8.

∑

σ∈Sn(132)

ades(σ)qmaj(σ)timaj(σ) =
∑

σ∈Sn(213)

an−1−des(σ)q(
n

2)−maj(σ)t(
n

2)−imaj(σ).

Proof. The bijection between Sn(132) and Sn(213) defined by ρ ◦ i ◦ Ψ ◦ ρ, where Ψ is
meant as described in the proof of Theorem 4.4, sends the tristatistic (des,maj, imaj)
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to the tristatistic (n− 1 − des,
(

n

2

)

− maj,
(

n

2

)

− imaj):

(des,maj, imaj)
ρ
7−→ (n− 1 − des,

(

n

2

)

− n des + maj,

(

n

2

)

− imaj)

ψ
7−→ (des, imaj, n des−maj)

i
7−→ (des, n des−maj, imaj)

ρ
7−→ (n− 1 − des,

(

n

2

)

− maj,

(

n

2

)

− imaj).

�

Corollary 5.9.
∑

σ∈Sn(132)

qmaj(σ)timaj(σ) =
∑

σ∈Sn(213)

q(
n

2)−maj(σ)t(
n

2)−imaj(σ).

Computations suggest that the statement is also true when summing over Sn(123)
and over Sn(321) respectively. E.g.,

{(

maj(σ), imaj(σ)
)

: σ ∈ S4(123)
}

=

{

(5, 5), (2, 4), (4, 4), (5, 4), (4, 2), (3, 3), (4, 3),
(2, 2), (5, 3), (4, 5), (3, 4), (4, 4), (3, 5), (6, 6)

}

,

{(

maj(σ), imaj(σ)
)

: σ ∈ S4(321)
}

=

{

(0, 0), (3, 3), (2, 2), (3, 2), (2, 3), (1, 1), (4, 4),
(2, 1), (3, 1), (2, 4), (1, 2), (4, 2), (2, 2), (1, 3)

}

.

It would be implied by the following conjecture.

Conjecture 5.10. There exists a bijection from Sn(321) to itself which leaves the
descent set Des invariant and maps the descent set of the inverse, iDes, to {n− j : j ∈
iDes}.

In the remaining part of this section, we describe the connection between Φ and the
bijection by Bandlow and Killpatrick between Sn(132) and Dn mentioned at the end
of Section 2. This shows how the area statistic on Dyck paths can be represented in
Sn(231) via Φ. We denote the bijection Bandlow and Killpatrick defined in [1] by β.
Together with M. Fulmek, C. Krattenthaler already described the connection between
β and κ in a comment on Bandlow and Killpatrick’s article, [4]. By the definitions of
Φ, κ and β, we have

β = Ψ ◦ Φ ◦ i.

As β sends the inversion number on Sn(132) to the area statistic on Dn and i leaves
the inversion number invariant, we conclude for any 231-avoiding permutation σ,

inv(σ) = area(Ψ ◦ Φ(σ)).

6. Connections to q, t-Catalan numbers

The q, t-Catalan numbers Catn(q, t) can be defined in terms of the two statistics area

and bounce on Dyck paths, which were first considered by J. Fürlinger and J. Hofbauer
in [5] and by J. Haglund in [8] respectively. For definitions and for further information
see e.g. [9].
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Definition 6.1. Define the q, t-Catalan numbers Catn(q, t) as

Catn(q, t) :=
∑

D∈Dn

qarea(D)tbounce(D).

In [7], A. Garsia and M. Haiman proved that Catn(q, t) = Catn(t, q). But it is still
an open problem to find a bijective proof of this fact. Furthermore, they proved that

q(
n

2) Catn(q, q
−1) is equal to MacMahon’s q-Catalan numbers, and therefore

Catn(q, q
−1) = An(q, q

−1).

Simple computations show that, for n ≥ 4, Catn(q, t) 6= An(q, t), but the computations
lead to the following guess. It was verified for n ≤ 10.

Guess 6.2. We have

Catn(q, t) =
∑

D∈Dn

qmaj1(D)−kDt(
n

2)−maj0(D)−kD ,

for appropriate non-negative integers kD.

Example 6.3. Let n = 4. Then

Cat4(q, t) = q6 +q5t+q4t2 +q3t3 +q2t4 +qt5 + t6 +q4t+q3t2 +q2t3 +qt4 +q3t+q2t2 +qt3,

and therefore
A4(q, t) − Cat4(q, t) = q3t3 − q2t2 = q2t2(qt− 1).

This shows that
Cat4(q, t) =

∑

D∈D4

qmaj1(D)−kDt(
n

2)−maj0(D)−kD ,

where either kD =
{

1, D = 01 01 0011
0, otherwise

, or kD =
{

1, D = 000111 01
0, otherwise

.

Remark 6.4. For n = 4, the involution defined in Corollary 4.3 interchanges the paths
01 01 0011 and 000111 01. Therefore even if one could determine the kD’s in Guess 6.2,
the proposed involution would fail to prove the open problem of finding a bijective proof
of the symmetry property of Catn(q, t).
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