Fabrizio Caselli
 (Università di Bologna)

Invariants, coinvariants, and the multivariate Robinson-Schensted correspondence

60th SLC
Strobl (Austria)

Preliminaries

We denote by W the symmetric group S_{n}.

Given a permutation $\sigma \in W$ we denote by

$$
\operatorname{Des}(\sigma)=\{i \mid \sigma(i)>\sigma(i+1)\}
$$

the set of the descents of σ and its major index by

$$
\operatorname{maj}(\sigma)=\sum_{i \in \operatorname{Des}(\sigma)} i
$$

If $\sigma=35241$ we have $\operatorname{Des}(\sigma)=\{2,4\}$.

Theorem (Mac Mahon)

$$
\begin{aligned}
W(q) & =\sum_{\sigma \in W} q^{\operatorname{maj}(\sigma)}=\sum_{\sigma \in W} q^{\operatorname{inv}(\sigma)} \\
& =\prod_{i=1}^{n}\left(1+q+q^{2}+\cdots+q^{i}\right),
\end{aligned}
$$

where $\operatorname{inv}(\sigma)=\mid\{(i, j): i<j$ and $\sigma(i)>\sigma(j)\} \mid$.

The coinvariant algebra associated to W is

$$
R^{W}:=\mathbb{C}[X] /\left(\mathbb{C}[X]_{+}^{W}\right),
$$

where $\mathbb{C}[X]$ is the algebra of polynomial functions in n indeterminates, i.e. $X=\left(x_{1}, \ldots, x_{n}\right)$.

Given a module multigraded in \mathbb{N}^{k}

$$
R=\bigoplus_{\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{N}^{k}} R_{a_{1}, \ldots, a_{k}}
$$

we define its Hilbert series by

$$
\operatorname{Hilb}(R)=\sum\left(\operatorname{dim} R_{a_{1}, \ldots, a_{k}}\right) q_{1}^{a_{1}} \cdots q_{k}^{a_{k}} .
$$

The algebra R^{W} is graded in \mathbb{N} and

Theorem. We have

$$
W(q)=\operatorname{Hilb}\left(R^{W}\right) .
$$

Given an irreducible representation λ of W let $f^{\lambda}(q)$ be the polynomial whose coefficient of q^{i} is the multiplicity of the representation λ in the homogeneous component of degree i in R^{W}, i.e.

$$
f^{\lambda}(q)=\sum\left\langle\chi^{\lambda}, \chi\left(R_{k}^{W}\right)\right\rangle q^{k} .
$$

There is an explicit combinatorial interpretation of the polynomials $f^{\lambda}(q)$ in terms of standard tableaux.

We say that i is a descent of a tableau T if i appears strictly above $i+1$ and we define $\operatorname{maj}(T)$ as the sum of its descents.

In this case $\operatorname{Des}(T)=\{1,3,5,6\}$ and so $\operatorname{maj}(T)=$ 15.

Its shape is denoted by $\lambda(T)=(3,2,1,1)$.

Theorem (Lusztig et al.). We have

$$
f^{\lambda}(q)=\sum_{\{T: \lambda(T)=\lambda\}} q^{\operatorname{maj}(T)}
$$

The 2-dimensional case

Since R^{W} is isomorphic as a W-module to the group algebra $\mathbb{C} W$ we deduce the identity

$$
W(q)=\sum_{\lambda} f^{\lambda}(1) f^{\lambda}(q)
$$

If we consider the natural generalization

$$
W(q, t)=\sum_{\lambda} f^{\lambda}(q) f^{\lambda}(t)
$$

we fall again in a Hilbert polynomial:

Theorem (Barcelo, Reiner, Stanton).

 $W(q, t)$ is the Hilbert polynomial of $(\mathbb{C}[X] \otimes \mathbb{C}[X])^{\Delta W} /\left((\mathbb{C}[X] \otimes \mathbb{C}[X])_{+}^{W \times W}\right)$. The polynomial $W(q, t)$ is known as the bimahonian distribution.Recall that $(\mathbb{C}[X] \otimes \mathbb{C}[X])^{\Delta W}$ is a Cohen-Macauley algebra and in particular it is a free module on the subalgebra $(\mathbb{C}[X] \otimes \mathbb{C}[X])^{W \times W}$. It follows another interpretation $W(q, t)$

$$
W(q, t)=\frac{\operatorname{Hilb}\left((\mathbb{C}[X] \otimes \mathbb{C}[X])^{\Delta W}\right)}{\operatorname{Hilb}\left((\mathbb{C}[X] \otimes \mathbb{C}[X])^{W \times W}\right)}
$$

The two Hilbert series appearing in the preceding formula can be studied using the theory of bipartite partitions and results of Garsia and Gessel.

Theorem (Garsia-Gessel).

$$
W(q, t)=\sum_{w \in W} q^{\operatorname{maj}(w)} t^{\operatorname{maj}\left(w^{-1}\right)}
$$

We can summarize these facts in the following sequence of identities:

$$
\begin{aligned}
W(q, t) & =\sum_{\{S, T: \lambda(S)=\lambda(T)\}} q^{\operatorname{maj}(S)} t^{\operatorname{maj}(T)} \\
(\text { Lusztig }) & =\sum_{\lambda} f^{\lambda}(q) f^{\lambda}(t)
\end{aligned}
$$

$($ Bar., Rei., Sta. $)=\operatorname{Hilb}\left(\frac{\mathbb{C}[X] \otimes \mathbb{C}[X])^{\Delta W}}{\left((\mathbb{C}[X] \otimes \mathbb{C}[X])_{+}^{W \times W}\right)}\right)$
(Conen-Macauley $)=\frac{\operatorname{Hilb}\left((\mathbb{C}[X] \otimes \mathbb{C}[X])^{\Delta W}\right)}{\operatorname{Hilb}\left((\mathbb{C}[X] \otimes \mathbb{C}[X])^{W \times W}\right)}$

$$
(\text { Garsia-Gessel })=\sum_{\sigma \in W} q^{\operatorname{maj}(\sigma)} t^{\operatorname{maj}\left(\sigma^{-1}\right)}
$$

The equality between the first and the last line follows also immediately from the RobinsonSchensted correspondence.

Let $\sigma=31542$. We construct

3	1 3

1	4
3	5

$\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}$
$5 \square$

The last tableau is denoted by $P(\sigma)$.
The recording tableau $Q(\sigma)$ is

Theorem (Robinson-Schensted).

- The correspondence $\sigma \rightarrow(Q(\sigma), P(\sigma))$ is a bijection between W and pairs of tableaux having the same shape.
- We have $\operatorname{Des}(\sigma)=\operatorname{Des}(Q(\sigma))$ and $\operatorname{Des}\left(\sigma^{-1}\right)=\operatorname{Des}(P(\sigma))$.

Multimahonian distributions

How to generalize to the k-dimensional case? We need another ingredient. Given k irreducible representations $\lambda^{(1)}, \ldots, \lambda^{(k)}$ of W we define

$$
d_{\lambda^{(1)}, \ldots, \lambda^{(k)}}:=\frac{1}{|W|} \sum_{w \in W} \chi^{\lambda^{(1)}}(w) \cdots \chi^{\lambda^{(k)}}(w) .
$$

In other words $d_{\lambda^{(1)}, \ldots, \lambda^{(k)}}$ is the multiplicity of $\lambda^{(k)}$ in $\lambda^{(1)} \otimes \cdots \otimes \lambda^{(k-1)}$. These numbers have been deeply studied by Bessenrodt, Kleshchev, Dvir, Regev.
Theorem (C.). We have
$\operatorname{Hilb}\left(\frac{\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]^{\triangle W}}{\left(\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]_{+}^{W^{k}}\right)}\right)=$

$$
\sum_{\lambda^{(1)}, \ldots, \lambda^{(k)}} d_{\lambda^{(1)}, \ldots, \lambda^{(k)} f^{\lambda^{(1)}}\left(q_{1}\right) \cdots f^{\lambda^{(k)}}\left(q_{k}\right)}
$$

Here X_{i} stands for the n-tuple of variables $\left(x_{i, 1}, \ldots, x_{i, n}\right)$. We call this polynomial the multimahonian distribution.

One can also generalize the other equalities of the 2-dimensional case.

Corollary. We have

$$
\begin{aligned}
& \sum_{T_{1}, \ldots, T_{k}} d_{\lambda\left(T_{1}\right), \ldots, \lambda\left(T_{k}\right)} q_{1}^{\operatorname{maj}\left(T_{1}\right)} \cdots q_{k}^{\operatorname{maj}\left(T_{k}\right)} \\
= & \sum_{\sigma_{1} \cdots \sigma_{k}=1} q_{1}^{\operatorname{maj}\left(\sigma_{1}\right)} \cdots q_{k}^{\operatorname{maj}\left(\sigma_{k}\right)}
\end{aligned}
$$

It follows the existence of a "multivariate RobinsonSchensted correspondence" in the following sense:

Corollary. There exists a map that associates to every k-tuple of permutations whose product is the identity a k-tuple of standard tableaux of size n such that:

- Every k-tuple of tableaux $\left(T_{1}, \ldots, T_{k}\right)$ is obtained exactly $d_{\lambda\left(T_{1}\right), \ldots, \lambda\left(T_{k}\right)}$ times;
- If $\left(T_{1}, \ldots, T_{k}\right)$ corresponds to $\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ then $\operatorname{maj}\left(T_{i}\right)=\operatorname{maj}\left(\sigma_{i}\right)$ for all i.

Refined multimahonian distributions

We can do something more from a combinatorial point of view. We have a further decomposition of the coinvariant algebra Theorem(Adin-Brenti-Roichman)
We have

$$
R_{k}^{W} \cong \sum_{|\lambda|=k} R_{\lambda},
$$

as W-modules, by means of a canonical isomorphism.

We can use this result to define a multidegree on the coinvariant algebra. We say that R_{λ} is the homogeneous component of R^{W} of multidegree λ and we consider its Hilbert series

$$
\operatorname{Hilb}\left(R^{W}\right)\left(q_{1}, \ldots, q_{n}\right)=\sum_{\lambda}\left(\operatorname{dim} R_{\lambda}\right) q_{1}^{\lambda_{1}} \cdots q_{n}^{\lambda_{n}} .
$$

Putting $q=q_{1}=q_{2}=\cdots=q_{n}$ we reobtain the polynomial $W(q)$.

By means of this decomposition of R^{W} we can also decompose the algebra

$$
\frac{\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]^{\Delta W}}{\left(\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]_{+}^{W^{k}}\right)}
$$

in homogeneous components whose degrees are k-tuples of partitions with at most n parts. (Recall $X_{i}=\left(x_{i, 1}, \ldots, x_{i, n}\right)$).
Therefore the Hilbert series will depend on k n-tuples of variables Q_{1}, \ldots, Q_{k}, where $Q_{i}=$ $\left(q_{i, 1}, \ldots, q_{i, n}\right)$.

We define $f^{\lambda}\left(q_{1}, \ldots, q_{k}\right)$ as the polynomial whose coefficient of $q_{1}^{\mu_{1}} \cdots q_{k}^{\mu_{k}}$ is the multiplicity of the representation λ in R_{μ}. This is our main result.

Theorem (C). We have

$\operatorname{Hilb}\left(\frac{\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]^{\Delta W}}{\left(\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]_{+}^{W}\right)}\right)\left(Q_{1}, \ldots, Q_{k}\right)=$

$$
\sum_{1), \ldots, \lambda^{(k)}} d_{\lambda^{(1)}, \ldots, \lambda^{(k)}} f^{\lambda^{(1)}}\left(Q_{1}\right) \cdots f^{\lambda^{(k)}}\left(Q_{k}\right) .
$$

Given a permutation or a tableau X we define the partition $\mu(X)$ by putting

$$
(\mu(X))_{i}=|\operatorname{Des}(X) \cap\{i, \ldots, n\}| .
$$

The following is an extension of Lusztig decomposition theorem
Theorem (Adin-Brenti-Roichman).
The multiplicity of the representation μ in R_{λ} is

$$
\mid\{T \text { tableau : } \lambda(T)=\lambda \text { e } \mu(T)=\mu\} \mid
$$

and hence

$$
f^{\lambda}\left(q_{1}, \ldots, q_{n}\right)=\sum_{\{T: \lambda(T)=\lambda\}} Q^{\mu(T)} .
$$

We can therefore write

$$
\begin{aligned}
& \sum_{\lambda^{(1)}, \ldots, \lambda^{(k)}} d_{\lambda(1), \ldots, \lambda^{(k)}} f^{\lambda^{(1)}}\left(Q_{1}\right) \cdots f^{\lambda^{(k)}}\left(Q_{k}\right) \\
= & \sum_{T_{1}, \ldots, T_{k}} d_{\lambda\left(T_{1}\right), \ldots, \lambda\left(T_{k}\right)} Q_{1}^{\mu\left(T_{1}\right)} \cdots Q_{k}^{\mu\left(T_{k}\right)} \\
= & \operatorname{Hilb} \frac{\mathbb{C}\left[X_{1}, \ldots, X_{k}\right] \Delta W}{\left(\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]_{+}^{W}\right)}\left(Q_{1}, \ldots, Q_{k}\right)
\end{aligned}
$$

And from the point of view of permutations? Consider the multidegree on $\mathbb{C}[X]$ for which a monomial is homogeneous of multidegree equal to the partition obtained by reordering its exponents.

$$
\operatorname{deg}\left(x_{1}^{3} x_{2}^{5} x_{3}^{4}\right)=(5,4,3) .
$$

Consequently the algebra of polynomials in $n k$ variables $\mathbb{C}\left[X_{1} \ldots, X_{k}\right]$ is multigraded by k-tuples of partitions. Since the action of W^{k} respects this grading we can consider the Hilbert series of the invariants of $W^{k} \ominus$ and its diagonal subgroup ΔW. Their quotient is given by

Theorem (C.) We have

$\frac{\operatorname{Hilb}\left(\mathbb{C}\left[X_{1} \ldots, X_{k}\right]^{\triangle W}\right)\left(Q_{1}, \ldots, Q_{k}\right)}{\operatorname{Hilb}\left(\mathbb{C}\left[X_{1} \ldots, X_{k}\right]^{W^{k}}\right)\left(Q_{1}, \ldots, Q_{k}\right)}=$

$$
\sum_{\sigma_{1} \cdots \sigma_{k}=1} Q_{1}^{\mu\left(\sigma_{1}\right)} \cdots Q_{k}^{\mu\left(\sigma_{k}\right)}
$$

So similarly to the case of the total degree we have
$W\left(Q_{1}, \ldots, Q_{k}\right)$

$$
\begin{aligned}
& =\sum_{T_{1}, \ldots, T_{k}} d_{\lambda\left(T_{1}\right), \ldots, \lambda\left(T_{k}\right)} Q_{1}^{\mu\left(T_{1}\right)}, \ldots, Q_{k}^{\mu\left(T_{k}\right)} \\
& =\sum_{\lambda^{(1)}, \ldots, \lambda^{(k)}} d_{\lambda(1), \ldots, \lambda^{(k)} f^{\lambda^{(1)}}\left(Q_{1}\right) \cdots f^{\lambda^{(k)}}\left(Q_{k}\right)}^{=\operatorname{Hilb}\left(\frac{\left.\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]\right]^{\Delta W}}{\left(\mathbb{C}\left[X_{1}, \ldots, X_{k}\right]_{+}^{W}\right)}\right)\left(Q_{1}, \ldots, Q_{k}\right)} \\
& \stackrel{?}{=} \frac{\operatorname{Hilb}\left(\mathbb{C}\left[X_{1} \ldots, X_{k}\right]^{\Delta W}\right)\left(Q_{1}, \ldots, Q_{k}\right)}{\operatorname{Hilb}\left(\mathbb{C}\left[X_{1} \ldots, X_{k}\right]^{W^{k}}\right)\left(Q_{1}, \ldots, Q_{k}\right)} \\
& =\sum_{\sigma_{1} \cdots \sigma_{k}=1} Q_{1}^{\mu\left(\sigma_{1}\right) \ldots Q_{k}^{\mu\left(\sigma_{k}\right)}}
\end{aligned}
$$

Corollary-Conjecture There exists a map that associates to every k-tuple of permutations whose product is the identity a k-tuple of standard tableaux of size n such that:

- Every k-tuple of tableaux $\left(T_{1}, \ldots, T_{k}\right)$ is obtained exactly $d_{\lambda\left(T_{1}\right), \ldots, \lambda\left(T_{k}\right)}$ times;
- If (T_{1}, \ldots, T_{k}) corresponds to ($\sigma_{1}, \ldots, \sigma_{k}$) then $\operatorname{Des}\left(T_{i}\right)=\operatorname{Des}\left(\sigma_{i}\right)$ for all i.

