A combinatorial proof for the largest power of 2 in the number of involutions

Jang Soo Kim

KAIST

The 60th Séminaire Lotharingien de Combinatoire
April 1st, 2008

Definition of $\tau_{p}(n)$

- \mathfrak{S}_{n} : the set of permutations of $[n]=\{1,2, \ldots, n\}$
- A : a finitely generated group
- $h_{n}(A):=$ the number of homomorphisms from A to \mathfrak{S}_{n}
- $m_{A}(d):=$ the number of subgroups of index d in A

Wohlfahrt (1977)

$$
\sum_{n \geq 0} \frac{h_{n}(A)}{n!} x^{n}=\exp \left(\sum_{d \geq 1} \frac{m_{A}(d)}{d} x^{d}\right)
$$

- p : a prime number
- $\mathbb{Z} / p \mathbb{Z}$: the cyclic group of order p
- $\tau_{p}(n):=h_{n}(\mathbb{Z} / p \mathbb{Z})$ is the number of $\pi \in \mathfrak{S}_{n}$ satisfying $\pi^{p}=1$

Then

$$
\sum_{n \geq 0} \frac{\tau_{p}(n)}{n!} x^{n}=\exp \left(x+\frac{x^{p}}{p}\right)
$$

Some results for $\operatorname{ord}_{p}\left(\tau_{p}(n)\right)$

- $\operatorname{ord}_{p}(n):=\max \left\{k: p^{k} \mid n\right\}$
- $\operatorname{ord}_{3}(72)=\operatorname{ord}_{3}\left(2^{3} \cdot 3^{2}\right)=2$

Chowla, Herstein and Moore (1952)

$$
\operatorname{ord}_{2}\left(\tau_{2}(n)\right) \geq\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor
$$

Grady and Newman (1994)

$$
\operatorname{ord}_{p}\left(\tau_{p}(n)\right) \geq\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor
$$

Ochiai (1999) found $\operatorname{ord}_{p}\left(\tau_{p}(n)\right)$ for all primes $p \leq 23$. In particular, if $p=2$ then Ochiai's result is the following:
Let $n \equiv r \bmod 4$ with $r=0,1,2,3$. Then

$$
\operatorname{ord}_{2}\left(\tau_{2}(n)\right)=\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor+\delta_{r, 3}
$$

Case $p=2$: involutions

- $\tau_{2}(n)=$ the number of $\pi \in \mathfrak{S}_{n}$ with $\pi^{2}=1$, which is called an involution.
- $\mathcal{I}_{n}:=$ the set of involutions in \mathfrak{S}_{n}
- $t_{n}:=\left|\mathcal{I}_{n}\right|=\tau_{2}(n)$
- $\pi \in \mathcal{I}_{n} \leftrightarrow$ an incomplete matching on n vertices

Example
$\pi=(12)(35)(46)(79)(811)(1012)(1316)(1819)(2023)$ in cycle notation

We call each connected component a fixed point or an edge.

$\phi(\pi)$: the block graph

- Normal blocks contain two vertices.
- The special block contains only one vertex. (exists only if n is odd)

$\phi(\pi)$: the block graph

- Normal blocks contain two vertices.
- The special block contains only one vertex. (exists only if n is odd)

$\phi(\pi)$: the block graph

- Normal blocks contain two vertices.
- The special block contains only one vertex. (exists only if n is odd)

$\phi(\pi)$: the block graph

- Normal blocks contain two vertices.
- The special block contains only one vertex. (exists only if n is odd)

Dividing \mathcal{I}_{n} into $\phi^{-1}(G)$

$\mathfrak{G}_{n}:=$ the set of block graphs $\phi(\pi)$ for $\pi \in \mathcal{I}_{n}$, i.e., the image $\phi\left(\mathcal{I}_{n}\right)$
$\phi^{-1}(G):=\{\pi: \phi(\pi)=G\}$

$$
\begin{aligned}
\mathcal{I}_{n} & =\bigcup_{G \in \mathfrak{G}_{n}} \phi^{-1}(G) \\
t_{n} & =\sum_{G \in \mathfrak{G}_{n}}\left|\phi^{-1}(G)\right|
\end{aligned}
$$

- How to find $\left|\phi^{-1}(G)\right|$ for $G \in \mathfrak{G}_{n}$?
- Each $\pi \in \phi^{-1}(G)$ can be constructed by
- labeling vertices with $2 i-1$ and $2 i$ in the normal block B_{i} of G,
- adding an edge between the vertices in isolated normal blocks.

Lemma

Let $G \in \mathfrak{G}_{n}$ and $m(G)$ denote the number of 2-block-cycles in G.

$$
\left|\phi^{-1}(G)\right|=2^{\left\lfloor\frac{n}{2}\right\rfloor-m(G)}
$$

Proof.

- There are two ways to label vertices (or add an edge) in a normal block.
- In this counting, a 2-block-cycle doubles the number of $\pi \in \phi^{-1}(G)$.

Deriving a formula for t_{n}

$g_{n}:=$ the number of $G \in \mathfrak{G}_{n}$ without 2-block-cycles
The number of $G \in \mathfrak{G}_{n}$ with exactly i 2-block-cycles is equal to

$$
\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ 2 i}(2 i)!!g_{n-4 i}
$$

where m !! denotes the product of all positive odd integers at most m.
Let $n=4 k+r$ for $0 \leq r \leq 3$.

$$
\begin{aligned}
t_{n} & =\sum_{G \in \mathfrak{G}_{n}}\left|\phi^{-1}(G)\right|=\sum_{G \in \mathfrak{G}_{n}} 2^{\left\lfloor\frac{n}{2}\right\rfloor-m(G)} \\
& =\sum_{i=0}^{\left\lfloor\frac{n}{4}\right\rfloor} 2^{\left\lfloor\frac{n}{2}\right\rfloor-i}\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ 2 i}(2 i)!!g_{n-4 i} \\
& =2^{\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{\left(2 k+\left\lfloor\frac{r}{2}\right\rfloor\right)!!}{\left(2 i+\left\lfloor\frac{r}{2}\right\rfloor\right)!!} g_{4 i+r}
\end{aligned}
$$

Finding $\operatorname{ord}_{2}\left(t_{n}\right)$

Theorem

Let $n=4 k+r$ for $0 \leq r \leq 3$. Then

$$
t_{n}=2^{\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{\left(2 k+\left\lfloor\frac{r}{2}\right\rfloor\right)!!}{\left(2 i+\left\lfloor\frac{r}{2}\right\rfloor\right)!!} g_{4 i+r}
$$

where g_{n} denotes the number of $G \in \mathfrak{G}_{n}$ without 2-block-cycles.

$$
g_{2 n+1}=g_{2 n}+n g_{2 n-1}
$$

n	0	1	2	3	4	5	6	7
g_{n}	1	1	1	2	2	6	8	26

For all $i \neq 0$ and $r=0,1,2,3$,

$$
\operatorname{ord}_{2}\left(2^{0}\binom{k}{0} \frac{\left(2 k+\left\lfloor\frac{r}{2}\right\rfloor\right)!!}{\left(\left\lfloor\frac{r}{2}\right\rfloor\right)!!} g_{r}\right)<\operatorname{ord}_{2}\left(2^{i}\binom{k}{i} \frac{\left(2 k+\left\lfloor\frac{r}{2}\right\rfloor\right)!!}{\left(2 i+\left\lfloor\frac{r}{2}\right\rfloor\right)!!} g_{4 i+r}\right)
$$

Thus

$$
\operatorname{ord}_{2}\left(t_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor+\delta_{r, 3}
$$

Weights on involutions

Let $\pi \in \mathcal{I}_{n}$, an incomplete matching.
fix $(\pi):=$ the number of fixed points in π edge $(\pi):=$ the number of edges in π
$\mathrm{wt}(\pi):=x^{\mathrm{fix}(\pi)} y^{\text {edge }(\pi)}$

$$
t_{n}(x, y):=\sum_{\pi \in \mathcal{I}_{n}} \mathrm{wt}(\pi)
$$

Note that $t_{n}(x,-1)$ is the Hermite polynomial.

$$
t_{n}(x, y)=\sum_{\pi \in \mathcal{I}_{n}} \mathrm{wt}(\pi)=\sum_{G \in \mathfrak{S}_{n}} \sum_{\pi \in \phi^{-1}(G)} \mathrm{wt}(\pi)
$$

We want to define $\mathrm{wt}(G)$ satisfying

$$
\sum_{\pi \in \phi^{-1}(G)} \mathrm{wt}(\pi)=\left|\phi^{-1}(G)\right| \mathrm{wt}(G)
$$

Defining $\mathrm{wt}(G)$ satisfying $\mathrm{wt}(G)=\frac{1}{\left|\phi^{-1}(G)\right|} \sum_{\pi \in \phi^{-1}(G)} \mathrm{wt}(\pi)$

Recall © the map ϕ and $\mathrm{wt}(\pi)=x^{\mathrm{fix}(\pi)} y^{\mathrm{edge}(\pi)}$.
All edges and the fixed points remain the same except those in isolated normal blocks.

$$
\text { (O O } \Rightarrow \text { (1) (2) or (1)-(2) }
$$

Put weight $\frac{x^{2}+y}{2}$ on each isolated normal block.

$$
\mathrm{wt}(G):=\left(\frac{x^{2}+y}{2}\right)^{\mathrm{inb}(\mathrm{G})} x^{\mathrm{fix}\left(\mathrm{G}^{\prime}\right)} y^{\operatorname{edge}\left(\mathrm{G}^{\prime}\right)}
$$

Here G^{\prime} denotes the block graph obtained from G by removing the isolated normal blocks.

$$
\mathrm{wt}(G)=\frac{1}{\left|\phi^{-1}(G)\right|} \sum_{\pi \in \phi^{-1}(G)} \mathrm{wt}(\pi)
$$

Note that $\mathrm{wt}(G)$ is an integer if $(x, y)=(1,1)$ or $(1,-1)$.

The weighted sum of involutions, $t_{n}(x, y)$

$$
\sum_{\pi \in \phi^{-1}(G)} \mathrm{wt}(\pi)=\left|\phi^{-1}(G)\right| \mathrm{wt}(G)=2^{\left\lfloor\frac{n}{2}\right\rfloor-m(G)} \mathrm{wt}(G)
$$

$g_{n}(x, y):=$ the weighted sum of $G \in \mathfrak{G}_{n}$ without 2-block-cycles
The weighted sum of $G \in \mathfrak{G}_{n}$ with exactly i 2-block-cycles is equal to

$$
\begin{aligned}
&\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ 2 i}(2 i)!!y^{2 i} g_{n-4 i}(x, y) \\
& t_{n}(x, y)=\sum_{G \in \mathfrak{G}_{n}} \sum_{\pi \in \phi^{-1}(G)} \mathrm{wt}(\pi)=\sum_{G \in \mathfrak{G}_{n}}\left|\phi^{-1}(G)\right| \mathrm{wt}(G) \\
&=2\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor \\
& \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{\left(2 k+\left\lfloor\frac{r}{2}\right\rfloor\right)!!}{\left(2 i+\left\lfloor\frac{r}{2}\right\rfloor\right)!!} y^{2 k-2 i} g_{4 i+r}(x, y)
\end{aligned}
$$

In particular, if $(x, y)=(1,-1)$ then

$$
t_{n}(1,-1)=2^{\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{\left(2 k+\left\lfloor\frac{r}{2}\right\rfloor\right)!!}{\left(2 i+\left\lfloor\frac{r}{2}\right\rfloor\right)!!} g_{4 i+r}(1,-1)
$$

Properties of $g_{n}(x, y)$

Recurrence relation:

$$
\begin{aligned}
g_{2 n+1}(x, y) & =x \cdot g_{2 n}(x, y)+n y \cdot g_{2 n-1}(x, y) \\
g_{2 n}(x, y) & =\frac{x^{2}+y}{2} g_{2 n-2}(x, y)+(n-1) x y \cdot g_{2 n-3}(x, y) \\
& +2\binom{n-1}{2} y^{2} \cdot g_{2 n-4}(x, y)+3\binom{n-1}{3} y^{4} \cdot g_{2 n-8}(x, y)
\end{aligned}
$$

Using the recurrence, we obtain the following.

- Let $n=8 k+r$ where $0 \leq r<8$. Then

$$
g_{n}(1,1) \equiv \begin{cases}(-1)^{\left\lfloor\frac{k}{2}\right\rfloor} \bmod 4 & \text { if } r=0,1,2 \\ 2 \bmod 4 & \text { if } r=3,4,5,7 \\ 0 \bmod 4 & \text { if } r=6\end{cases}
$$

- If $n \geq 8$ then $g_{n}(1,-1)$ is even.
- If $k \geq 2$ then $\operatorname{ord}_{2}\left(g_{4 k+2}(1,-1)\right) \geq 2$.

Using the recurrence, we obtain $t_{n}(1,-1)$ for $n \leq 9$.

n	0	1	2	3	4	5	6	7	8	9
$g_{n}(1,-1)$	1	1	0	-1	-1	1	2	-1	-6	-2

Recall

$$
t_{n}(1,-1)=2^{\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{n}{4}\right\rfloor} \sum_{i=0}^{k} 2^{i}\binom{k}{i} \frac{\left(2 k+\left\lfloor\frac{r}{2}\right\rfloor\right)!!}{\left(2 i+\left\lfloor\frac{r}{2}\right\rfloor\right)!!} g_{4 i+r}(1,-1) .
$$

Using the properties of $g_{n}(1,-1)$ and some elementary number theory, we can obtain $\operatorname{ord}_{2}\left(t_{n}(1,-1)\right)$.

n	$\operatorname{ord}_{2}\left(t_{n}\right)$	$\operatorname{ord}_{2}\left(t_{n}(1,-1)\right)$
$4 k$	k	k
$4 k+1$	k	k
$4 k+2$	$k+1$	$k+3+\operatorname{ord}_{2}(k)$
$4 k+3$	$k+2$	$k+1$

Even involutions and odd involutions

A permutation π is even if $\operatorname{sign}(\pi)=1$, and odd if $\operatorname{sign}(\pi)=-1$. Note that

$$
t_{n}(1,-1)=\sum_{\pi \in \mathcal{I}_{n}} \operatorname{sign}(\pi)
$$

$t_{n}^{\text {even }}:=$ the number of even involutions in \mathcal{I}_{n}
$t_{n}^{\text {odd }}:=$ the number of odd involutions in \mathcal{I}_{n}

$$
t_{n}^{\text {even }}=\frac{1}{2}\left(t_{n}+t_{n}(1,-1)\right), \quad t_{n}^{\text {odd }}=\frac{1}{2}\left(t_{n}-t_{n}(1,-1)\right)
$$

n	$\operatorname{ord}_{2}\left(t_{n}\right)$	$\operatorname{ord}_{2}\left(t_{n}(1,-1)\right)$	$\operatorname{ord}_{2}\left(t_{n}^{\text {even }}\right)$	$\operatorname{ord}_{2}\left(t_{n}^{\text {odd }}\right)$
$4 k$	k	k	$k+\chi_{\text {odd }}(k)$	$? ?$
$4 k+1$	k	k	$? ?$	$k+\operatorname{ord}_{2}(k)+\chi_{\text {even }}(k)$
$4 k+2$	$k+1$	$k+3+\operatorname{ord}_{2}(k)$	k	k
$4 k+3$	$k+2$	$k+1$	k	k

$\chi_{\text {even }}(k)$ is 1 if k is even, and 0 otherwise.
$\chi_{\text {odd }}(k)$ is 1 if k is odd, and 0 otherwise.

Case $p \geq 3: \pi^{p}=1$, fixed points and p-cycles

- p : a prime number ≥ 3
- $\tau_{p}(n)$: the number of $\pi \in \mathfrak{S}_{n}$ with $\pi^{p}=1$
- $\mathfrak{S}_{n, p}:=\left\{\pi \in \mathfrak{S}_{n}: \pi^{p}=1\right\}$
- $\pi \in \mathfrak{S}_{n, p}$ is a directed graph consisting of fixed points and p-cycles.

(2)
(3) (24)

Grady and Newman (1994)

$$
\operatorname{ord}_{p}\left(\tau_{p}(n)\right) \geq\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor
$$

π to the directed block graph $\phi_{p}(\pi)$

$\downarrow \phi_{p}$

Finding $\left|\phi_{p}^{-1}(G)\right|$

$\mathfrak{G}_{n, p}:=$ the set of directed block graphs $\phi_{p}(\pi)$ for $\pi \in \mathfrak{S}_{n, p}$

$$
\tau_{p}(n)=\left|\mathfrak{S}_{n, p}\right|=\sum_{G \in \mathfrak{G}_{n, p}}\left|\phi_{p}^{-1}(G)\right|
$$

- $\operatorname{inb}(G):=$ the number of isolated normal blocks
- Connected components C and C^{\prime}, not contained in an isolated normal block, are called identical if they have the same sequence of visiting blocks.
- Divide all connected components of G, not contained in an isolated normal block, into identical classes.
- type $(G):=\left(c_{1}, c_{2}, \ldots, c_{l}\right)$, where c_{i} denotes the number of components in an identical class.
- In the example, $\operatorname{inb}(G)=2$ and type $(G)=(3,2,2,1,1,1,1)$

Finding $\left|\phi_{p}^{-1}(G)\right|$

Let $n=p k+r$ and $G \in \mathfrak{G}_{n, p}$.
Let type $(G)=\left(c_{1}, c_{2}, \ldots, c_{l}\right)$.
Then

$$
\left|\phi_{p}^{-1}(G)\right|=\frac{(1+(p-1)!)^{i n b(G)}(p!)^{k-i n b(G)} r!}{c_{1}!\cdots c_{l}!}
$$

- $c_{i} \leq p$ and equality holds only if there are p cycles in p blocks.
- $1+(p-1)!\equiv 0 \bmod p$

$$
\begin{gathered}
\operatorname{ord}_{p}\left(\left|\phi_{p}^{-1}(G)\right|\right) \geq\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor \\
\operatorname{ord}_{p}\left(\tau_{p}(n)\right) \geq\left\lfloor\frac{n}{p}\right\rfloor-\left\lfloor\frac{n}{p^{2}}\right\rfloor
\end{gathered}
$$

Thank you for listening!

