Littlewood-Richardson coefficients and the hive model

Ronald C King

Joint work with Christophe Tollu and Frédéric Toumazet

Presented at:

The 60th Séminaire Lotharingien De Combinatoire Strobl, Austria: 1 April 2008

Schur functions

- Let *n* be a fixed positive integer and $\mathbf{x} = (x_1, x_2, \dots, x_n)$ a sequence of indeterminates.
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be a partition of weight $|\lambda|$ and length $\ell(\lambda) \leq n$, so that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$.
- Then the Schur function $s_{\lambda}(\mathbf{x})$ is defined by:

$$s_{\lambda}(\mathbf{x}) = \frac{\left|x_{i}^{n+\lambda_{j}-j}\right|_{1 \leq i,j \leq n}}{\left|x_{i}^{n-j}\right|_{1 \leq i,j \leq n}}$$

Schur functions

- Let *n* be a fixed positive integer and $\mathbf{x} = (x_1, x_2, \dots, x_n)$ a sequence of indeterminates.
- Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ be a partition of weight $|\lambda|$ and length $\ell(\lambda) \leq n$, so that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$.
- Then the Schur function $s_{\lambda}(\mathbf{x})$ is defined by: $s_{\lambda}(\mathbf{x}) = \frac{\left|x_{i}^{n+\lambda_{j}-j}\right|_{1 \leq i,j \leq n}}{\left|x_{i}^{n-j}\right|_{1 \leq i,j \leq n}}.$
- The Schur functions form a \mathbb{Z} -basis of Λ_n , the ring of polynomial symmetric functions of x_1, \ldots, x_n .

LR-coefficients

Any product of Schur functions can be expressed as a linear sum of Schur functions.

$$s_{\lambda}(\mathbf{x}) \ s_{\mu}(\mathbf{x}) = \sum_{\nu} \ c^{\nu}_{\lambda\mu} \ s_{\nu}(\mathbf{x})$$

LR-coefficients

Any product of Schur functions can be expressed as a linear sum of Schur functions.

$$s_{\lambda}(\mathbf{x}) \ s_{\mu}(\mathbf{x}) = \sum_{\nu} \ c_{\lambda\mu}^{\nu} \ s_{\nu}(\mathbf{x})$$

- Each Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ is a non-negative integer.
- They may be evaluated by means of the Littlewood-Richardson rule.

LR-rule

- Fill the boxes of the Young diagram F^{λ} with 0's. Then fill the boxes of the skew Young diagram $F^{\nu/\lambda}$ with μ_i entries *i* for i = 1, 2, ..., n.
- $c_{\lambda\mu}^{\nu}$ is the number of such diagrams with entries weakly increasing across rows, strictly increasing down columns, and satisfying the lattice permutation rule.

LR-rule

- Fill the boxes of the Young diagram F^{λ} with 0's. Then fill the boxes of the skew Young diagram $F^{\nu/\lambda}$ with μ_i entries *i* for i = 1, 2, ..., n.
- $c_{\lambda\mu}^{\nu}$ is the number of such diagrams with entries weakly increasing across rows, strictly increasing down columns, and satisfying the lattice permutation rule.

• Ex.
$$n = 3$$
, $\lambda = (2, 1, 0)$, $\mu = (3, 2, 0)$, $\nu = (4, 3, 1)$

LR-rule

- Fill the boxes of the Young diagram F^{λ} with 0's. Then fill the boxes of the skew Young diagram $F^{\nu/\lambda}$ with μ_i entries *i* for i = 1, 2, ..., n.
- $c_{\lambda\mu}^{\nu}$ is the number of such diagrams with entries weakly increasing across rows, strictly increasing down columns, and satisfying the lattice permutation rule.

• Ex.
$$n = 3$$
, $\lambda = (2, 1, 0)$, $\mu = (3, 2, 0)$, $\nu = (4, 3, 1)$

0	0	1	1
0	2	2	
1			

• Hence $c_{\lambda\mu}^{\nu} = 2$.

Stretched LR coefficients

- Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$
- **●** Partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ stretching parameter *t* ∈ N
- Stretched partition $t\lambda = (t\lambda_1, t\lambda_2, \dots, t\lambda_n)$
- Stretched Littlewood-Richardson coefficient $c_{t\lambda,t\mu}^{t\nu}$

Stretched LR coefficients

- Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$
- Partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ stretching parameter t ∈ N
- Stretched partition $t\lambda = (t\lambda_1, t\lambda_2, \dots, t\lambda_n)$
- Stretched Littlewood-Richardson coefficient $c_{t\lambda,t\mu}^{t\nu}$

• Ex:
$$n = 3, \lambda = (2, 1, 0), \mu = (3, 2, 0), \nu = (4, 3, 1)$$

• $t = 1$: $c_{21,32}^{431} = 2$
• $t = 2$: $c_{42,64}^{862} = 3$
• $t = 3$: $c_{63,94}^{1293} = 4$
• ...
• suggests $c_{t\lambda,t\mu}^{t\nu} = t + 1$.

LR coefficients and polynomials

Ex: Let
$$c_{421,532}^{\nu} = c$$
 and $c_{t(421),t(532)}^{t\nu} = P(t)$.
 $c = 1$ $\nu = (953)$ $P(t) = 1$
 $c = 2$ $\nu = (9431)$ $P(t) = (t+1)$
 $c = 3$ $\nu = (8441)$ $P(t) = (t+1)(t+2)/2$
 $c = 4$ $\nu = (8531)$ $P(t) = (t+1)(t+2)(t+3)/6$
 $c = 4$ $\nu = (7442)$ $P(t) = (t+1)^2$
 $c = 5$ $\nu = (7541)$ $P(t) = (t+1)(t+2)(2t+3)/6$
 $c = 6$ $\nu = (7532)$ $P(t) = (t+1)^2(t+2)/2$
 $c = 7$ $\nu = (74321)$ $P(t) = (t+1)(t+2)(t^2+3t+6)/6$

Generating function for LR-polynomials

Ex: Let
$$F(z) = G(z)/(1-z)^d = \sum_{t=0}^{\infty} P(t) z^t$$
.

$$\begin{array}{lll} c = 1 & \nu = (953) & d = 1 & G(z) = 1 \\ c = 2 & \nu = (9431) & d = 2 & G(z) = 1 \\ c = 3 & \nu = (8441) & d = 3 & G(z) = 1 \\ c = 4 & \nu = (8531) & d = 4 & G(z) = 1 \\ c = 4 & \nu = (7442) & d = 3 & G(z) = 1 + z \\ c = 5 & \nu = (7541) & d = 4 & G(z) = 1 + z \\ c = 6 & \nu = (7532) & d = 4 & G(z) = 1 + 2z \\ c = 7 & \nu = (74321) & d = 5 & G(z) = 1 + 2z + z^2 \end{array}$$

Further example

Ex: n = 7, $\lambda = (433210)$, $\mu = (432210)$, $\nu = (7444321)$.

• LR coefficient $c_{\lambda\mu}^{\nu} = 13$

LR polynomial

$$c_{t\lambda,t\mu}^{t\nu} = 1/10080$$

$$\times (t+1)(t+2)(t+3)(t+4)(t+5)$$

$$\times (5t+21)(t^2+2t+4)$$

 \bullet where 10080 = 5! 84

● d = 8 and $G(z) = 1 + 4z + 12z^2 + 3z^3$

Polynomial behaviour

Theorem For all λ, μ, ν such that $c_{\lambda\mu}^{\nu} > 0$ there exists

- a polynomial $P^{\nu}_{\lambda\mu}(t)$ in t with $P^{\nu}_{\lambda\mu}(0) = 1$
- such that $P_{\lambda\mu}^{\nu}(t) = c_{t\lambda,t\mu}^{t\nu}$ for all positive integers t.

Polynomial behaviour

Theorem For all λ, μ, ν such that $c^{\nu}_{\lambda\mu} > 0$ there exists

• a polynomial $P^{\nu}_{\lambda\mu}(t)$ in t with $P^{\nu}_{\lambda\mu}(0) = 1$

• such that $P_{\lambda\mu}^{\nu}(t) = c_{t\lambda,t\mu}^{t\nu}$ for all positive integers t.

Conjectures

- coefficients in $P^{\nu}_{\lambda\mu}(t)$ are all rational and non-negative.
- coefficients in G(z) are all positive integers.

Polynomial behaviour

Theorem For all λ, μ, ν such that $c^{\nu}_{\lambda\mu} > 0$ there exists

• a polynomial $P^{\nu}_{\lambda\mu}(t)$ in t with $P^{\nu}_{\lambda\mu}(0) = 1$

• such that $P_{\lambda\mu}^{\nu}(t) = c_{t\lambda,t\mu}^{t\nu}$ for all positive integers t.

Conjectures

- coefficients in $P^{\nu}_{\lambda\mu}(t)$ are all rational and non-negative.
- coefficients in G(z) are all positive integers.

Problems

- predict degree of polynomial
- explain origin of factors of form $(t+1)(t+2)\cdots(t+m)$
- prove (if true) and account for positivity of coefficients

Integer hives

■ *n*-hive with vertex labels $a_{ij} \in \mathbb{Z}$ for $0 \le i, j, i + j \le n$. Ex: n = 4

· ·

Integer hives

■ *n*-hive with vertex labels $a_{ij} \in \mathbb{Z}$ for $0 \le i, j, i + j \le n$. **Ex**: n = 4

- Vertex labels increase from left to right
- Edge labels non-negative differences between neighbouring vertex labels

$$\alpha = a_{i,j+1} - a_{ij}, \quad \beta = a_{i+1,j-1} - a_{ij}, \quad \gamma = a_{i+1,j} - a_{ij}.$$

Hive conditions

Distinct types of rhombi, with vertex and edge labels:

• Note: $\alpha, \beta, \gamma, \delta \geq 0$ and $\alpha + \delta = \beta + \gamma$.

Hive conditions

Distinct types of rhombi, with vertex and edge labels:

• Note: $\alpha, \beta, \gamma, \delta \geq 0$ and $\alpha + \delta = \beta + \gamma$.

Hive conditions in terms of vertex labels:

$$b + c \ge a + d.$$

Hive conditions in terms of edge labels:

$$\alpha \geq \gamma$$
 and $\beta \geq \delta$.

LR-hives vertex labels

Definition An LR-hive is an integer n-hive for which

- all rhombi of type R1, R2 and R3 satisfy the hive conditions;
- boundaries determined by partitions λ, μ, ν with $\ell(\lambda), \ell(\mu), \ell(\nu) \leq n \text{ and } |\lambda| + |\mu| = |\nu|;$

LR-hives vertex labels

Definition An LR-hive is an integer *n*-hive for which

- all rhombi of type R1, R2 and R3 satisfy the hive conditions;
- boundaries determined by partitions λ, μ, ν with $\ell(\lambda), \ell(\mu), \ell(\nu) \leq n$ and $|\lambda| + |\mu| = |\nu|$;
- boundary vertex labels

LR-hives edge labels

Definition An LR-hive is an integer *n*-hive for which

- all rhombi of type R1, R2 and R3 satisfy the hive conditions;
- boundaries determined by partitions λ, μ, ν with $\ell(\lambda), \ell(\mu), \ell(\nu) \leq n$ and $|\lambda| + |\mu| = |\nu|$;
- boundary edge labels

Bijection between LR-diagrams and LR-hives

Example: n = 3, $\lambda = (320)$, $\mu = (210)$ and $\nu = (431)$.

- \square D = Littlewood-Richardson diagram;
- G =Generalised Gelfand-Zetlin pattern;
- \blacksquare Z = Zeros and cumulative row sums of G;
- H = LR-hive = reorientation of lower triangular part of Z.

LR-hives showing that $c_{753,742}^{9964} = 6$

0	0	0
9 7	9 7	9 7
18 16 12	18 16 12	18 16 12
24 24 21 15	$24 \ 23 \ 21 \ 15$	24 24 20 15
28 28 26 22 15	28 28 26 22 15	28 28 26 22 15
0	0	0
9 7	9 7	9 7
18 16 12	18 16 12	18 16 12
$24 \ 23 \ 20 \ 15$	$24 \ 22 \ 20 \ 15$	24 23 19 15
28 28 26 22 15	$28 \ 28 \ 26 \ 22 \ 15$	28 28 26 22 15

Theorems

Theorem

The LR-coefficient $c_{\lambda\mu}^{\nu}$ is the number of LR-hives with boundary labels determined by λ , μ and ν .

Theorems

Theorem

The LR-coefficient $c^{\nu}_{\lambda\mu}$ is the number of LR-hives with boundary labels determined by λ , μ and ν .

Corollary

The LR-polynomial $P_{\lambda\mu}^{\nu}(t)$ can be identified as the Ehrhart quasi-polynomial $i(\mathcal{P},t) = \#\{t\mathcal{P} \cap \mathbb{Z}^m\}$, of a rational convex polytope \mathcal{P} defined by the LR-hive boundary conditions and the set of LR-hive inequalities: $a + d \leq b + c$ for each rhombus.

Theorems

Theorem

The LR-coefficient $c^{\nu}_{\lambda\mu}$ is the number of LR-hives with boundary labels determined by λ , μ and ν .

Corollary

The LR-polynomial $P_{\lambda\mu}^{\nu}(t)$ can be identified as the Ehrhart quasi-polynomial $i(\mathcal{P},t) = \#\{t\mathcal{P} \cap \mathbb{Z}^m\}$, of a rational convex polytope \mathcal{P} defined by the LR-hive boundary conditions and the set of LR-hive inequalities: $a + d \leq b + c$ for each rhombus.

Note: Even though \mathcal{P} may be rational but not integer the Ehrhart quasi-polynomial $i(\mathcal{P}, t)$ is polynomial.

Construction of convex polytopes

• Let
$$m = (n-2)(n-1)/2 = \#$$
 interior points of an *n*-hive

- Let $v = (a_{11}, a_{12}, ...) \in \mathbb{R}^m$ be vector of interior labels
- Then polytope \mathcal{P} is *d*-dimensional convex hull of these integer points in \mathbb{R}^m .

Construction of convex polytopes

• Let
$$m = (n-2)(n-1)/2 = \#$$
 interior points of an *n*-hive

- Let $v = (a_{11}, a_{12}, ...) \in \mathbb{R}^m$ be vector of interior labels
- Then polytope \mathcal{P} is *d*-dimensional convex hull of these integer points in \mathbb{R}^m .

Ex:
$$\lambda = (753), \mu = (742), \nu = (9964), n = 4, m = 3,$$

Interior vertex labels $v = (a_{11}, a_{12}, a_{21})$ (16, 21, 24), (16, 21, 23), (16, 20, 24),
(16, 20, 23), (16, 20, 22), (16, 19, 23).

Integer points of \mathcal{P} :

•
•
dimension d=2.

Scaling convex polytope

- Expand \mathcal{P} by scaling with t
- Identify and count all integer points to give $\mathcal{P}(t)$

Linear factors

Origin of some linear factors in LR-polynomials.

- Let \mathcal{P} be an LR hive polytope, and $\overline{\mathcal{P}}$ its interior.
- For $t \in \mathbb{N}$: $P_{\lambda\mu}^{\nu}(t) = i(\mathcal{P}, t) = \#\{t\mathcal{P} \cap \mathbb{Z}^d\}.$
- Ehrhart reciprocity: $i(\mathcal{P}, -t) = (-1)^d \# \{ t \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$

• For
$$m \in \mathbb{N}$$
: $P^{\nu}_{\lambda\mu}(-m) = i(\mathcal{P}, -m) = (-1)^d \# \{ m \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$

Hence $P_{\lambda\mu}^{\nu}(-m) = 0$ and $P_{\lambda\mu}^{\nu}(t)$ contains a factor (t + m) if
 and only if m 𝒫 contains no interior integer points.

Linear factors

Origin of some linear factors in LR-polynomials.

- Let \mathcal{P} be an LR hive polytope, and $\overline{\mathcal{P}}$ its interior.
- For $t \in \mathbb{N}$: $P_{\lambda\mu}^{\nu}(t) = i(\mathcal{P}, t) = \#\{t\mathcal{P} \cap \mathbb{Z}^d\}.$
- Ehrhart reciprocity: $i(\mathcal{P}, -t) = (-1)^d \# \{ t \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$
- For $m \in \mathbb{N}$: $P^{\nu}_{\lambda\mu}(-m) = i(\mathcal{P}, -m) = (-1)^d \# \{ m \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$
- Hence $P_{\lambda\mu}^{\nu}(-m) = 0$ and $P_{\lambda\mu}^{\nu}(t)$ contains a factor (t + m) if
 and only if m 𝒫 contains no interior integer points.

Corollary $P_{\lambda\mu}^{\nu}(t)$ contains $(t+1)(t+2)\cdots(t+m)$ as a factor if $m\mathcal{P}$ contains no interior integer points.

Problem: predict maximum value of m.

Construction of convex polytopes

Ex:
$$\lambda = (210)$$
, $\mu = (320)$, $\nu = (431)$, $n = 3$, $d = 1$

- $\ \, {\cal P}\cap {\Bbb Z}= \ \ \, \bullet \ \ \, \bullet \ \ \, o \ \, interior \ \, points \ \ \,$
- implies P(t) contains a factor (t+1) but no factor (t+2). In fact P(t) = (t+1).

Construction of convex polytopes

Ex:
$$\lambda = (753)$$
, $\mu = (742)$, $\nu = (9964)$, $n = 4$, $d = 2$

 $0 \quad 9 \quad 18 \quad 24 \quad 28$

• $\mathcal{P} \cap \mathbb{Z}^2$: • • • • one interior point

• implies no factor (t+m). In fact $P(t) = \frac{1}{2}(5t^2+5t+2)$.

Degrees of LR-polynomials

- For $c_{\lambda\mu}^{\nu} > 0$ the LR-rule implies $\ell(\lambda), \ell(\mu) \leq \ell(\nu)$.
- $c_{\lambda\mu}^{\nu}$ is the number of LR *n*-hives with $n = \ell(\nu)$, boundary labels linear in the parts of λ, μ, ν , interior vertex labels subject to linear inequalities (HCs).
Degrees of LR-polynomials

- For $c_{\lambda\mu}^{\nu} > 0$ the LR-rule implies $\ell(\lambda), \ell(\mu) \leq \ell(\nu)$.
- $c_{\lambda\mu}^{\nu}$ is the number of LR *n*-hives with $n = \ell(\nu)$, boundary labels linear in the parts of λ, μ, ν , interior vertex labels subject to linear inequalities (HCs).
- Solution For *t* ∈ N, $P_{\lambda\mu}^{\nu}(t)$ is the number of scaled LR *n*-hives with boundary labels scaled by *t* and interior vertex labels subject to the same scaled linear inequalities.
- The range of each vertex label is at most linear in t.
- ▶ An *n*-hive has (n-1)(n-2)/2 interior vertices.

Degrees of LR-polynomials

- **●** For $c^{\nu}_{\lambda\mu} > 0$ the LR-rule implies $\ell(\lambda), \ell(\mu) \leq \ell(\nu)$.
- $c_{\lambda\mu}^{\nu}$ is the number of LR *n*-hives with $n = \ell(\nu)$, boundary labels linear in the parts of λ, μ, ν , interior vertex labels subject to linear inequalities (HCs).
- Solution For *t* ∈ N, $P_{\lambda\mu}^{\nu}(t)$ is the number of scaled LR *n*-hives with boundary labels scaled by *t* and interior vertex labels subject to the same scaled linear inequalities.
- The range of each vertex label is at most linear in t.
- ▶ An *n*-hive has (n-1)(n-2)/2 interior vertices.

Degree bound deg $P_{\lambda\mu}^{\nu}(t) \leq (n-1)(n-2)/2$ with $n = \ell(\nu)$.

First example

Ex: n = 5, degree bound (n - 1)(n - 2)/2 = 6.

 $\ \, \bullet \ \, \lambda = (9,7,6,2,0), \, \mu = (13,5,3,1,0), \, \nu = (14,12,11,5,4).$

• $P_{\lambda\mu}^{\nu}(t) = (t+1)$ so that $\deg P_{\lambda\mu}^{\nu}(t) = 1$.

First example

Ex: n = 5, degree bound (n - 1)(n - 2)/2 = 6.

 $\ \, {\bf I} = (9,7,6,2,0), \, \mu = (13,5,3,1,0), \, \nu = (14,12,11,5,4).$

• $P_{\lambda\mu}^{\nu}(t) = (t+1)$ so that $\deg P_{\lambda\mu}^{\nu}(t) = 1$.

Origin of mismatch - factorisation

$$P^{\nu}_{\lambda\mu}(t) = P^{\nu_K}_{\lambda_I \,\mu_J}(t) \ P^{\nu_{\overline{K}}}_{\lambda_{\overline{I}} \,\mu_{\overline{J}}}(t).$$

■ LR-hives for n = 5 are fixed by two smaller subhives of sizes r = 3 and n - r = 2.

LR factorisation example

Ex:
$$n = 5, r = 3, n - r = 2$$
:
• $\lambda = (9, 7, 6, 2, 0), \mu = (13, 5, 3, 1, 0), \nu = (14, 12, 11, 5, 4).$
• $I = \{1, 2, 4\}, J = \{2, 3, 4\}, K = \{2, 3, 5\}.$
• $\lambda_I = (9, 7, 2), \mu_J = (5, 3, 1), \nu_K = (12, 11, 4)$
• $\lambda_{\overline{I}} = (6, 0), \mu_{\overline{J}} = (13, 0), \nu_{\overline{K}} = (14, 5)$

LR-coefficient:

 $c_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)} = c_{(9,7,2),(5,3,1)}^{(12,11,4)} c_{(6,0),(13,0)}^{(14,5)} = 2 \cdot 1 = 2.$

LR-polynomial:

$$P_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)}(t) = P_{(9,7,2),(5,3,1)}^{(12,11,4)}(t) P_{(6,0),(13,0)}^{(14,5)}(t)$$
$$= (t+1) \cdot 1 = (t+1).$$

LR factorisation example

Ex:
$$n = 5, r = 3, n - r = 2$$
:
• $\lambda = (9, 7, 6, 2, 0), \mu = (13, 5, 3, 1, 0), \nu = (14, 12, 11, 5, 4).$
• $I = \{1, 2, 4\}, J = \{2, 3, 4\}, K = \{2, 3, 5\}.$
• $\lambda_I = (9, 7, 2), \mu_J = (5, 3, 1), \nu_K = (12, 11, 4)$
• $\lambda_{\overline{I}} = (6, 0), \mu_{\overline{J}} = (13, 0), \nu_{\overline{K}} = (14, 5)$

LR-coefficient:

 $c_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)} = c_{(9,7,2),(5,3,1)}^{(12,11,4)} c_{(6,0),(13,0)}^{(14,5)} = 2 \cdot 1 = 2.$

LR-polynomial:

$$P_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)}(t) = P_{(9,7,2),(5,3,1)}^{(12,11,4)}(t) P_{(6,0),(13,0)}^{(14,5)}(t)$$
$$= (t+1) \cdot 1 = (t+1).$$

Puzzles

Definition A puzzle is a diagram on a triangular lattice in which edges are distinguished so that it is composed of copies of the following pieces oriented in any way so as to fit:

Puzzles

Definition A puzzle is a diagram on a triangular lattice in which edges are distinguished so that it is composed of copies of the following pieces oriented in any way so as to fit:

Puzzles

Definition A puzzle is a diagram on a triangular lattice in which edges are distinguished so that it is composed of copies of the following pieces oriented in any way so as to fit:

Hive plan

Definition A hive plan is made up of corridors, dark rooms and light rooms obtained by deleting interior edges of a puzzle:

Hive plan

Definition A hive plan is made up of shaded corridors, dark rooms and light rooms obtained by deleting interior edges of a puzzle:

Hive plan

Definition A hive plan is made up of corridors, blue rooms and red rooms obtained by deleting interior edges of a puzzle:

Link between puzzles and Horn triples

(I, J, K) is Horn triple if it specifies the positions of the thick edges on the boundary of any puzzle. It is essential if the puzzle with these boundary thick edges is unique.

Link between puzzles and Horn triples

If (I, J, K) is Horn triple if it specifies the positions of the thick edges on the boundary of any puzzle. It is essential if the puzzle with these boundary thick edges is unique.

• For
$$I = (1, 2, 4)$$
, $J = (2, 3, 4)$ and $K = (2, 3, 5)$ we have:

Each Horn triple defines an inequality

Each Horn triple defines an inequality

$$\begin{split} \nu_{2} + \nu_{3} + \nu_{5} &\leq (\nu_{2} + \nu_{3}) + \gamma_{4} = (\alpha_{1} + \alpha_{2} + \beta_{1} + \beta_{2}) + \gamma_{4} \\ &\leq \lambda_{1} + \alpha_{2} + \beta_{1} + \beta_{2} + \gamma_{4} \leq \lambda_{1} + \lambda_{2} + \beta_{1} + \beta_{2} + \gamma_{4} \\ &\leq \lambda_{1} + \lambda_{2} + \beta_{3} + \beta_{2} + \gamma_{4} \leq \lambda_{1} + \lambda_{2} + (\beta_{3} + \beta_{4} + \gamma_{4}) \\ &= \lambda_{1} + \lambda_{2} + (\alpha_{4} + \mu_{2} + \mu_{3} + \mu_{4}) \leq \lambda_{1} + \lambda_{2} + \lambda_{4} + \mu_{2} + \mu_{3} + \mu_{4} \\ \end{split}$$
That is $|\nu_{K}| \leq |\lambda_{I}| + |\mu_{J}|.$

Horn inequalities and non-zero conditions

Theorem The LR-coefficient $c^{\nu}_{\lambda\mu} > 0$ if and only if

- and $|\nu_K| \le |\lambda_I| + |\mu_J|$ for each Horn triple (I, J, K).

Horn inequalities and non-zero conditions

Theorem The LR-coefficient $c^{\nu}_{\lambda\mu} > 0$ if and only if

$$|\nu| = |\lambda| + |\mu|$$

■ and $|\nu_K| \le |\lambda_I| + |\mu_J|$ for each Horn triple (I, J, K).

Corollary
$$c_{t\lambda,t\mu}^{t\nu} > 0$$
 if and only if $c_{\lambda\mu}^{\nu} > 0$

Proof

•
$$|t\nu| - |t\lambda| - |t\mu| = t(|\nu| - |\lambda| - |\mu|)$$

$$|t\nu_K| - |t\lambda_I| - |t\mu_J| = t(|\nu_K| - |\lambda_I| - |\mu_J|)$$

Consequences of any Horn equality

All sequences of inequalities become equalities.

$$\nu_{2} + \nu_{3} + \nu_{5} = (\nu_{2} + \nu_{3}) + \gamma_{4} = (\alpha_{1} + \alpha_{2} + \beta_{1} + \beta_{2}) + \gamma_{4}$$

= $\lambda_{1} + \alpha_{2} + \beta_{1} + \beta_{2} + \gamma_{4} = \lambda_{1} + \lambda_{2} + \beta_{1} + \beta_{2} + \gamma_{4}$
= $\lambda_{1} + \lambda_{2} + \beta_{3} + \beta_{2} + \gamma_{4} = \lambda_{1} + \lambda_{2} + (\beta_{3} + \beta_{4} + \gamma_{4})$
= $\lambda{1} + \lambda_{2} + (\alpha_{4} + \mu_{2} + \mu_{3} + \mu_{4}) = \lambda_{1} + \lambda_{2} + \lambda_{4} + \mu_{2} + \mu_{3} + \mu_{4}.$

Edge label equalities

• Equalities imply: $\nu_5 = \gamma_4$, $\alpha_1 = \lambda_1$, $\alpha_2 = \lambda_2$, $\beta_1 = \beta_3$, $\beta_2 = \beta_4$, $\alpha_4 = \lambda_4$.

In addition: $\beta_5 + \nu_5 = \gamma_4 + \mu_5,$ $\nu_1 + \alpha_1 + \alpha_2 = \lambda_1 + \lambda_2 + \gamma_1, \quad \gamma_2 + \alpha_4 = \lambda_4 + \gamma_3.$

• These then imply: $\beta_5 = \mu_5$, $\nu_1 = \gamma_1$, $\gamma_2 = \gamma_3$.

Factorisation of LR-hives

Factorisation of LR-hives

Illustration of H_n **and subhives** H_r , H_{n-r}

• Lemma In the case of any Horn equality and a corresponding puzzle, the deletion of redundant corridors from any LR-hive H_n gives a pair of LR-subhives H_r and H_{n-r} .

- Lemma In the case of any Horn equality and a corresponding puzzle, the deletion of redundant corridors from any LR-hive H_n gives a pair of LR-subhives H_r and H_{n-r} .
- Lemma In the case of any essential Horn equality, this map from the LR-hives H_n to pairs of LR-hives H_r and H_{n-r} is a bijection.

- Lemma In the case of any Horn equality and a corresponding puzzle, the deletion of redundant corridors from any LR-hive H_n gives a pair of LR-subhives H_r and H_{n-r} .
- Lemma In the case of any essential Horn equality, this map from the LR-hives H_n to pairs of LR-hives H_r and H_{n-r} is a bijection.
- Theorem If an essential Horn inequality is saturated then both $c^{\nu}_{\lambda\mu}$ and $P^{\nu}_{\lambda\mu}(t)$ factorise.

- Lemma In the case of any Horn equality and a corresponding puzzle, the deletion of redundant corridors from any LR-hive H_n gives a pair of LR-subhives H_r and H_{n-r} .
- Lemma In the case of any essential Horn equality, this map from the LR-hives H_n to pairs of LR-hives H_r and H_{n-r} is a bijection.
- Theorem If an essential Horn inequality is saturated then both $c^{\nu}_{\lambda\mu}$ and $P^{\nu}_{\lambda\mu}(t)$ factorise.
- Definition If all essential Horn inequalities are strict then both $c^{\nu}_{\lambda\mu}$ and $P^{\nu}_{\lambda\mu}(t)$ are said to be primitive.

LR factorisation example

Ex:
$$n = 5, r = 3, n - r = 2$$
:
• $\lambda = (9, 7, 6, 2, 0), \mu = (13, 5, 3, 1, 0), \nu = (14, 12, 11, 5, 4).$
• $I = \{1, 2, 4\}, J = \{2, 3, 4\}, K = \{2, 3, 5\}.$
• $\lambda_I = (9, 7, 2), \mu_J = (5, 3, 1), \nu_K = (12, 11, 4)$
• $\lambda_{\overline{I}} = (6, 0), \mu_{\overline{J}} = (13, 0), \nu_{\overline{K}} = (14, 5)$

LR-coefficient:

 $c_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)} = c_{(9,7,2),(5,3,1)}^{(12,11,4)} c_{(6,0),(13,0)}^{(14,5)} = 2 \cdot 1 = 2.$

LR-polynomial:

$$P_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)}(t) = P_{(9,7,2),(5,3,1)}^{(12,11,4)}(t) P_{(6,0),(13,0)}^{(14,5)}(t)$$
$$= (t+1) \cdot 1 = (t+1).$$

LR factorisation example

Ex:
$$n = 5, r = 3, n - r = 2$$
:
• $\lambda = (9, 7, 6, 2, 0), \mu = (13, 5, 3, 1, 0), \nu = (14, 12, 11, 5, 4).$
• $I = \{1, 2, 4\}, J = \{2, 3, 4\}, K = \{2, 3, 5\}.$
• $\lambda_I = (9, 7, 2), \mu_J = (5, 3, 1), \nu_K = (12, 11, 4)$
• $\lambda_{\overline{I}} = (6, 0), \mu_{\overline{J}} = (13, 0), \nu_{\overline{K}} = (14, 5)$

LR-coefficient:

 $c_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)} = c_{(9,7,2),(5,3,1)}^{(12,11,4)} c_{(6,0),(13,0)}^{(14,5)} = 2 \cdot 1 = 2.$

LR-polynomial:

$$P_{(9,7,6,2,0),(13,5,3,1,0)}^{(14,12,11,5,4)}(t) = P_{(9,7,2),(5,3,1)}^{(12,11,4)}(t) P_{(6,0),(13,0)}^{(14,5)}(t)$$
$$= (t+1) \cdot 1 = (t+1).$$

Degree bound for a primitive example

Ex: n = 6, degree bound (n - 1)(n - 2)/2 = 10.

▲
$$\lambda = (4, 3, 3, 1, 0, 0), \mu = (4, 2, 1, 1, 1, 0), \nu = (6, 5, 4, 2, 2, 1).$$

- $P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)/24.$
- deg $P^{\nu}_{\lambda\mu}(t) = 4$.

Degree bound for a primitive example

Ex: n = 6, degree bound (n - 1)(n - 2)/2 = 10.

- $\ \, {\bf I} = (4,3,3,1,0,0), \, \mu = (4,2,1,1,1,0), \, \nu = (6,5,4,2,2,1).$
- $P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)/24.$
- All essential Horn inequalities are strict.
- The LR-polynomial does not factorise.
- The factorised degree bound is not saturated.

Degree bound for a primitive example

Ex: n = 6, degree bound (n - 1)(n - 2)/2 = 10.

 $\ \, {\bf I} = (4,3,3,1,0,0), \, \mu = (4,2,1,1,1,0), \, \nu = (6,5,4,2,2,1).$

- $P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)/24.$
- All essential Horn inequalities are strict.
- The LR-polynomial does not factorise.
- The factorised degree bound is not saturated.

Origin of mismatch - partitions have equal parts.

Five-vertex equal edge constraints

- Equal edge constraints on 5-vertex subdiagrams
- In each case $\alpha \ge \beta \ge \alpha$ so that $\beta = \alpha$.

Five-vertex equal edge constraints

- Equal edge constraints on 5-vertex subdiagrams
- In each case $\alpha \ge \beta \ge \alpha$ so that $\beta = \alpha$.

- Consecutive equal edges force neighbouring equal edge.
- Retain skeleton consisting of only equal edges.

Skeleton of an LR-hive and degree bounds

- Apply 5-vertex equal edge procedure to LR n-hive.
- Work inwards from boundaries specified by λ, μ, ν .
- Invoke triangular hive condition $\alpha + \beta = \gamma$:

- **P** Result is skeletal graph $G_{n;\lambda\mu\nu}$ of hive.
- Let $d(G_{n;\lambda\mu\nu})$ be number of components of $G_{n;\lambda\mu\nu}$ not connected to the boundary.

Skeleton of an LR-hive and degree bounds

- Apply 5-vertex equal edge procedure to LR n-hive.
- **•** Work inwards from boundaries specified by λ, μ, ν .
- Invoke triangular hive condition $\alpha + \beta = \gamma$:

• Let $d(G_{n;\lambda\mu\nu})$ be number of components of $G_{n;\lambda\mu\nu}$ not connected to the boundary.

Theorem deg $P_{\lambda\mu}^{\nu}(t) \leq d(G_{n;\lambda\mu\nu})$.
Skeleton of an LR-hive and degree bounds

- Apply 5-vertex equal edge procedure to LR n-hive.
- Work inwards from boundaries specified by λ, μ, ν .
- Invoke triangular hive condition $\alpha + \beta = \gamma$:

• Let $d(G_{n;\lambda\mu\nu})$ be number of components of $G_{n;\lambda\mu\nu}$ not connected to the boundary.

Theorem deg $P_{\lambda\mu}^{\nu}(t) \leq d(G_{n;\lambda\mu\nu})$.

Conjecture If $P_{\lambda\mu}^{\nu}(t)$ is primitive then $\deg P_{\lambda\mu}^{\nu}(t) = d(G_{n;\lambda\mu\nu})$.

Theorem deg $P_{\lambda\mu}^{\nu}(t) \leq d(G_{n;\lambda\mu\nu}).$

• $P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)/24.$

•
$$\deg P_{\lambda\mu}^{\nu}(t) = 4 = d(G_{n;\lambda\mu\nu}).$$

• $P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)/24.$

• deg
$$P_{\lambda\mu}^{\nu}(t) = 4 = d(G_{n;\lambda\mu\nu}).$$

Skeleton graph degree bound is saturated.

Degree of LR-polynomial

Ex: n = 7, $\lambda = (4332100)$, $\mu = (4322100)$, $\nu = (7444321)$.

• $P_{\lambda\mu}^{\nu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$ $\times (5t+21)(t^2+2t+4)/10080.$

Degree of LR-polynomial

Ex: n = 7, $\lambda = (4332100)$, $\mu = (4322100)$, $\nu = (7444321)$.

• $P_{\lambda\mu}^{\nu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$ $\times (5t+21)(t^2+2t+4)/10080.$

Degree of LR-polynomial

Ex: n = 7, $\lambda = (4332100)$, $\mu = (4322100)$, $\nu = (7444321)$.

• $P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$ $\times (5t+21)(t^2+2t+4)/10080.$

• deg $P^{\nu}_{\lambda\mu}(t) = 8 = d(G_{n;\lambda\mu\nu}).$

Ex:
$$n = 6$$
, $\lambda = (221100)$, $\mu = (221100)$, $\nu = (332211)$.

•
$$P^{\nu}_{\lambda\mu}(t) = \frac{1}{2}(t+1)(t+2).$$

Ex:
$$n = 6$$
, $\lambda = (221100)$, $\mu = (221100)$, $\nu = (332211)$.

•
$$P^{\nu}_{\lambda\mu}(t) = \frac{1}{2}(t+1)(t+2).$$

Ex:
$$n = 6$$
, $\lambda = (221100)$, $\mu = (221100)$, $\nu = (332211)$.

•
$$P^{\nu}_{\lambda\mu}(t) = \frac{1}{2}(t+1)(t+2).$$

Ex:
$$n = 6$$
, $\lambda = (221100)$, $\mu = (221100)$, $\nu = (332211)$.

•
$$P^{\nu}_{\lambda\mu}(t) = \frac{1}{2}(t+1)(t+2).$$

Ex:
$$n = 6$$
, $\lambda = (221100)$, $\mu = (221100)$, $\nu = (332211)$.

•
$$P^{\nu}_{\lambda\mu}(t) = \frac{1}{2}(t+1)(t+2).$$

Counterexample to skeleton degree bound

Ex:
$$n = 8$$
, $\lambda = (76531000)$, $\mu = (65553000)$, $\nu = (88886422)$.

- $P^{\nu}_{\lambda\mu}(2) = (t+1)(t+2)(t+3)(t+4)/24$
- Now construct skeleton

$$d(G_{n;\lambda\mu\nu}) = 5.$$

Counterexample to skeleton degree bound

Ex:
$$n = 8$$
, $\lambda = (76531000)$, $\mu = (65553000)$, $\nu = (88886422)$.

- $P^{\nu}_{\lambda\mu}(2) = (t+1)(t+2)(t+3)(t+4)/24$
- Now construct skeleton

• deg $P_{\lambda\mu}^{\nu}(t) = 4 < 5 = d(G_{n;\lambda\mu\nu}).$

Linear factors

Origin of linear factors in LR-polynomials.

- Let \mathcal{P} be an LR hive polytope, and $\overline{\mathcal{P}}$ its interior.
- For $t \in \mathbb{N}$: $P_{\lambda\mu}^{\nu}(t) = i(\mathcal{P}, t) = \#\{t\mathcal{P} \cap \mathbb{Z}^d\}.$
- Ehrhart reciprocity: $i(\mathcal{P}, -t) = (-1)^d \# \{ t \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$

• For
$$m \in \mathbb{N}$$
: $P^{\nu}_{\lambda\mu}(-m) = i(\mathcal{P}, -m) = (-1)^d \# \{ m \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$

• Hence $P_{\lambda\mu}^{\nu}(-m) = 0$ and $P_{\lambda\mu}^{\nu}(t)$ must contain a linear factor (t+m) if $m\mathcal{P}$ contains no interior integer points.

Linear factors

Origin of linear factors in LR-polynomials.

- Let \mathcal{P} be an LR hive polytope, and $\overline{\mathcal{P}}$ its interior.
- For $t \in \mathbb{N}$: $P_{\lambda\mu}^{\nu}(t) = i(\mathcal{P}, t) = \#\{t\mathcal{P} \cap \mathbb{Z}^d\}.$
- Ehrhart reciprocity: $i(\mathcal{P}, -t) = (-1)^d \# \{ t \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$

• For
$$m \in \mathbb{N}$$
: $P^{\nu}_{\lambda\mu}(-m) = i(\mathcal{P}, -m) = (-1)^d \# \{ m \overline{\mathcal{P}} \cap \mathbb{Z}^d \}.$

• Hence $P_{\lambda\mu}^{\nu}(-m) = 0$ and $P_{\lambda\mu}^{\nu}(t)$ must contain a linear factor (t+m) if $m\mathcal{P}$ contains no interior integer points.

Anticipate: $P_{\lambda\mu}^{\nu}(t)$ may contain $(t+1)(t+2)\cdots(t+M)$. Problem: Determine M.

Possible continuation in t

• For
$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$
 let $\overline{\mathbf{x}} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
with $\overline{x}_i = x_i^{-1}$ for $i = 1, 2, \dots, n$.
• For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ let $\tilde{\lambda} = (\lambda_n, \dots, \lambda_2, \lambda_1)$.
• $s_{t\lambda}(\mathbf{x}) = \frac{\left| x_i^{t\lambda_j + n - j} \right|}{\left| x_i^{n - j} \right|} \implies s_{-m\lambda}(\mathbf{x}) = \frac{\left| x_i^{-m\lambda_j + n - j} \right|}{\left| x_i^{n - j} \right|}$.
• This gives $s_{-m\lambda}(\mathbf{x}) = \frac{\left| \overline{x}_i^{m\lambda_{n-k+1} + n - k} \right|}{\left| \overline{x}_i^{n-k} \right|} = s_{m\tilde{\lambda}}(\overline{\mathbf{x}})$.

Possible continuation in t

Definition For $c_{\lambda\mu}^{\nu} > 0$ and any positive integer m, let

$$c^{-m\nu}_{-m\lambda,-m\mu} = c^{m\tilde{\nu}}_{m\tilde{\lambda},m\tilde{\mu}}$$

LR polynomials for negative *t*

 $\begin{array}{ll} \text{Conjecture: Let } c_{\lambda\mu}^{\nu} > 0 \text{ be simple, all Horn inequalities strict,} \\ \text{then} \qquad P_{\lambda\mu}^{\nu}(-m) = c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}}, \\ \text{where} \quad s_{m\tilde{\lambda}}(x) \; s_{m\tilde{\mu}}(x) = \sum_{\nu} c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} \; s_{m\tilde{\nu}}(x). \end{array}$

LR polynomials for negative t

Conjecture: Let $c_{\lambda\mu}^{\nu} > 0$ be simple, all Horn inequalities strict,

then
$$P_{\lambda\mu}^{\nu}(-m) = c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}}$$
,
where $s_{m\tilde{\lambda}}(x) \ s_{m\tilde{\mu}}(x) = \sum_{\nu} c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} \ s_{m\tilde{\nu}}(x)$.

Standardization:

•
$$s_{m\tilde{\lambda}}(\mathbf{x}) = 0$$
 or $\pm s_{\rho}(\mathbf{x})$ for some partition ρ .

- $s_{m\tilde{\mu}}(\mathbf{x}) = 0$ or $\pm s_{\sigma}(\mathbf{x})$ for some partition σ .
- $s_{m\tilde{\nu}}(\mathbf{x}) = 0$ or $\pm s_{\tau}(\mathbf{x})$ for some partition τ .

LR polynomials for negative t

Conjecture: Let $c_{\lambda\mu}^{\nu} > 0$ be simple, all Horn inequalities strict,

then
$$P_{\lambda\mu}^{\nu}(-m) = c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}}$$
,
where $s_{m\tilde{\lambda}}(x) \ s_{m\tilde{\mu}}(x) = \sum_{\nu} c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} \ s_{m\tilde{\nu}}(x)$.

Standardization:

•
$$s_{m\tilde{\lambda}}(\mathbf{x}) = 0$$
 or $\pm s_{\rho}(\mathbf{x})$ for some partition ρ .

- $s_{m\tilde{\mu}}(\mathbf{x}) = 0$ or $\pm s_{\sigma}(\mathbf{x})$ for some partition σ .
- $s_{m\tilde{\nu}}(\mathbf{x}) = 0$ or $\pm s_{\tau}(\mathbf{x})$ for some partition τ .

Two types of zero:

•
$$s_{m\tilde{\lambda}}(\overline{x}) = 0$$
, $s_{m\tilde{\mu}}(\overline{x}) = 0$, $s_{m\tilde{\nu}}(\overline{x}) = 0$.

 $c_{\rho\sigma}^{\tau} = 0.$

Ex: n = 7, $\lambda = (433210)$, $\mu = (432210)$, $\nu = (7444321)$.

• $P_{\lambda\mu}^{\nu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$ $\cdot (5t+21)(t^2+2t+4)/10080.$

Ex: n = 7, $\lambda = (433210)$, $\mu = (432210)$, $\nu = (7444321)$.

•
$$P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$$

 $\cdot (5t+21)(t^2+2t+4)/10080.$

Type one zeros for m = 1, 2, 3 since:

•
$$s_{m\tilde{\lambda}}(\overline{x}) = s_{m\tilde{\mu}}(\overline{x}) = 0$$
 for $m = 1, 2$.

•
$$s_{m\tilde{\nu}}(\overline{x}) = 0$$
 for $m = 1, 2, 3$.

Ex: n = 7, $\lambda = (433210)$, $\mu = (432210)$, $\nu = (7444321)$.

•
$$P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$$

 $\cdot (5t+21)(t^2+2t+4)/10080.$

Type one zeros for m = 1, 2, 3 since:

•
$$s_{m\tilde{\lambda}}(\overline{x}) = s_{m\tilde{\mu}}(\overline{x}) = 0$$
 for $m = 1, 2$.

•
$$s_{m\tilde{\nu}}(\overline{x}) = 0$$
 for $m = 1, 2, 3$.

Type two zeros for m = 4, 5 since:

•
$$c_{\rho\sigma}^{\tau} = 0 \text{ for } m = 4, 5.$$

Ex: n = 7, $\lambda = (433210)$, $\mu = (432210)$, $\nu = (7444321)$.

•
$$P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$$

 $\cdot (5t+21)(t^2+2t+4)/10080.$

Type one zeros for m = 1, 2, 3 since:

•
$$s_{m\tilde{\lambda}}(\overline{x}) = s_{m\tilde{\mu}}(\overline{x}) = 0$$
 for $m = 1, 2$.

•
$$s_{m\tilde{\nu}}(\overline{x}) = 0$$
 for $m = 1, 2, 3$.

Type two zeros for m = 4, 5 since:

•
$$c_{\rho\sigma}^{\tau} = 0$$
 for $m = 4, 5$.

No more zeros for m > 5 since for m = 6: $c_{\rho\sigma}^{\tau} = 3$.

Simple and non-simple examples

Simple: n = 7, $\lambda = (433210)$, $\mu = (432210)$, $\nu = (7444321)$.

- $P_{\lambda\mu}^{\nu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$ $\cdot (5t+21)(t^2+2t+4)/10080.$
- $c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} = 0, 0, 0, 0, 0, 3, 39, 247$ for m = 1, 2, 3, 4, 5, 6, 7, 8.
- $\ \, {\cal P}^{\nu}_{\lambda\mu}(-m)=0,0,0,0,0,3,39,247 \ \, {\rm for} \ m=1,2,3,4,5,6,7,8. \ \,$

Simple and non-simple examples

Simple: n = 7, $\lambda = (433210)$, $\mu = (432210)$, $\nu = (7444321)$.

•
$$P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)(t+3)(t+4)(t+5)$$

 $\cdot (5t+21)(t^2+2t+4)/10080.$

• $c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} = 0, 0, 0, 0, 0, 3, 39, 247$ for m = 1, 2, 3, 4, 5, 6, 7, 8.

•
$$P^{\nu}_{\lambda\mu}(-m) = 0, 0, 0, 0, 0, 3, 39, 247$$
 for $m = 1, 2, 3, 4, 5, 6, 7, 8$.

Non-simple: n = 6, $\lambda = (221100)$, $\mu = (221100)$, $\nu = (332211)$.

•
$$P^{\nu}_{\lambda\mu}(t) = (t+1)(t+2)/2.$$

•
$$c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} = 0, 0, 0, 3, 6$$
, for $m = 1, 2, 3, 4, 5$.

•
$$P^{\nu}_{\lambda\mu}(-m) = 0, 0, 3, 6, 10$$
 for $m = 1, 2, 3, 4, 5$.

Non-primitive example

Non-primitive: n = 5, $\lambda = (9, 7, 6, 2, 0)$, $\mu = (13, 5, 3, 1, 0)$, $\nu = (14, 12, 11, 5, 4)$, $P^{\nu}_{\lambda\mu}(t) = (t + 1)$.

•
$$c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} = 0, 0, 0, \dots$$
 for $m = 1, 2, 3, \dots$

•
$$P_{\lambda\mu}^{\nu}(-m) = 0, 1, 2, \dots$$
 for $m = 1, 2, 3, \dots$

Non-primitive example

Non-primitive: n = 5, $\lambda = (9, 7, 6, 2, 0)$, $\mu = (13, 5, 3, 1, 0)$, $\nu = (14, 12, 11, 5, 4)$, $P^{\nu}_{\lambda\mu}(t) = (t + 1)$.

•
$$c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} = 0, 0, 0, \dots$$
 for $m = 1, 2, 3, \dots$

•
$$P^{\nu}_{\lambda\mu}(-m) = 0, 1, 2, \dots$$
 for $m = 1, 2, 3, \dots$

Primitive factors

$$\ \, {\bf I}=2,\,\lambda_{\overline{I}}=(6,0),\,\mu_{\overline{J}}=(13,0),\,\nu_{\overline{K}}=(14,5).$$

Non-primitive example

Non-primitive: n = 5, $\lambda = (9, 7, 6, 2, 0)$, $\mu = (13, 5, 3, 1, 0)$, $\nu = (14, 12, 11, 5, 4)$, $P^{\nu}_{\lambda\mu}(t) = (t + 1)$.

•
$$c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} = 0, 0, 0, \dots$$
 for $m = 1, 2, 3, \dots$

•
$$P^{\nu}_{\lambda\mu}(-m) = 0, 1, 2, \dots$$
 for $m = 1, 2, 3, \dots$

Primitive factors

•
$$n = 3$$
, $\lambda_I = (9, 7, 2)$, $\mu_J = (5, 3, 1)$, $\nu_K = (12, 11, 4)$.

Conjecture: $c_{\lambda\mu}^{\nu} > 0$ is primitive, all essential Horn inequalities strict, if and only if $c_{m\tilde{\lambda},m\tilde{\mu}}^{m\tilde{\nu}} \neq 0$ for some positive integer m.